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Homework 6 
Due 4 November at 6:00 pm 

 
1. Magnetic Circuits Core with and without air gap.  

 

 

b

                Commercial Core                                                              Top View 
 
The core of interest has a circular center leg and four rectangular outer legs. The cross 
sectional area of the round center leg is equal to the sum of areas of the four rectangular 
legs. The radius of the center core is a and the dimensions of the cross section of the 
outer legs are b x c.  
 
 
 
 
 
 
 
 
 
 
 

a. Determine the reluctance of the configuration with and without the gap.  
b. Determine the inductance of both configurations. 
c. Determine the energy stored in terms of BBmax. 

 
Note for this problem, you might find the following will make interesting reading.  

o A discussion of air-gapped magnetic cores from the University of Surrey in the 
UK: http://info.ee.surrey.ac.uk/Workshop/advice/coils/gap/index.html 

o The 2001 Magnetics Design Handbook from TI, especially the chapter on 
Inductor and Flyback Transformer Design. 
http://focus.ti.com/docs/training/catalog/events/event.jhtml?sku=SEM401014  

o Electrical Power Transformer and Inductor from Lazar’s Power Electronics Guide 
http://www.smps.us/magnetics  

w

2a

Assume that there are N turns of wire carrying a 
current I wrapped around the center leg. Analyze 
two cases, one with no gap and one with a gap lg 
in the central leg. You are to find the reluctances 
and inductance for both cases and then use that 
information to determine the maximum possible 
energy stored for each case give that the B field 
cannot exceed B

ch
Bmax or the core will saturate. Also 

simplify your solution for the gap case by 
assume the reluctance of the gap is much larger 
than that of the core. Core μ μ>> o . 

h/2

http://info.ee.surrey.ac.uk/Workshop/advice/coils/gap/index.html
http://focus.ti.com/docs/training/catalog/events/event.jhtml?sku=SEM401014
http://www.smps.us/magnetics
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a. Reluctance of configuration, no air gap. 
 

R
l
A

R Rcenter legs= = +
μ

 and note that πa bc2 4= =  A

R
h
acenter =

μπ 2  and R
h
bclegs =

2
μ

Since the areas are the same for all legs, the total 

reluctance is R
l
A

R R
h
A

h
A

h
Acenter legs= = + = + =

μ μ
2 3
μ μ

 

 
Reluctance with air gap. 
 

R
l
A

R R Rcenter gap legs= = + +
μ

 where we will assume that the gap is sufficiently small that 

the reluctance of the center leg remains the same. Clearly the outer legs remain the same 

so that the only new term is R
l

Agap
g

o
=
μ

. For the case where 

The gap dominates,  R Rgap=
b. To determine the inductance first draw the circuit model. 

Then we have the flux as φm

NI
R

= The total flux linking the 

circuit will be N  times this so that the inductance is  

L
I

N
I

N
R

m= = =
Λ φ 2

thus all we need to know is the reluctance. For the case with no gap, 

we have then that L
N
R

AN
h

= =
2 2

3
μ

while for the gap, L
N
R

AN
l

o

g
= =

2 2μ
 

φm  

R
NI

c. The magnetic field in a solenoid is given by B
NI
l

NI
h

= =
μ μ

3
 for the case with no gap. 

If the magnetic field is Bmax, then I
hB

N
=

3 max

μ
and the energy stored is 

W
LI AN

h
hB

N
B hA
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⎛
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⎞
⎠
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max max  For the gap case, 
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μ μ

max max  . Note that since 
l hg

oμ
>>

3
μ

 the energy 

stored in the gap case is larger, even though most of the energy is stored in the gap.          
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2. Inductance of Transmission Line 

 
 
 
 
 
 
 
 
 
 
Two common transmission lines we considered previously are shown above. Note that 
the analysis of these two lines can be found in many places in the reference materials 
provided for this course. However, we will go through all of the steps so that they are 
both addressed thoroughly.  

D 

b 

2a 

 
a. Begin by analyzing the magnetic field 

r
B produced by a long, straight wire 

carrying a current I. Assume that the wire has a radius = a. (This is the 
radius of all wires except for the outer shield of the coax.) 

 Begin by determining the current enclosed by a 
closed circle of radius r for the two cases shown. 
That is, for r<a and r>a. Clearly label your 
results. Then use your results to find the 
expressions for the magnetic field 

r
B for all 

values of r. 

 
 
 
 
 
 
 
 
For the inner circle, the current enclosed will be determined by the area it encloses, 

which is so that the current will be πr 2 π
π

r
a

I
2

2 . For the outer circle, the current enclosed 

is all of the current or I. Then we have for the magnetic field 
r r
B dl B r Io encl∫ ⋅ = =φ π μ2  

and 
r
B

I
r

o= $φ
μ
π2

for the region outside the current and 
r
B

Ir
a

o= $φ
μ
π2 2 inside the wire. 
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b. Before considering the external inductance for the coax or two-wire lines, 
first evaluate the internal inductance per unit length of the long, straight 
wire using the energy method. The flux method is also possible, but 
somewhat more difficult in this case. 

 
The magnetic field energy inside the wire is given by 

1
2

2
2 2 2 4 2 2 420 2

2

4
3

0

2 4

4μ
π
μ

μ
π

μ
π

μ
π

μ
πo o

oa o o a oB Bdv
Ir
a

Ir
a

rdr
I
a

r dr
I a

a
r r

∫∫∫ ∫ ∫⋅ = = =  

So that the inductance is L
a

i
o= = oμ
π

μ
π2

1
4 8

 per unit length 

 
 

c. Find the external inductance per unit length for the coaxial cable using 
either the flux or energy method. They are equally easy for this case. We 
will not determine the internal inductance of the coax shield because that 
is generally not large enough to matter.  

 
The energy method involves similar integrations. 

1
2

2
2 2 2 4

1
2 20

2

0

2

μ
π
μ

μ
π

μ
π

μ
π

μ
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oa o o a oB Bdv
I
r

I
r
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I

r
dr

I b
a

r r
∫∫∫ ∫ ∫⋅ = = = ln   

So that the inductance is L
b
ae

o=
μ
π2

ln per unit length 

 
d. Assuming that each of the two long, straight wires in the two-wire line 

produce the same 
r
B field, although with different locations, determine the 

external inductance per unit length for the line. The flux method is 
generally easier for this configuration.  

 
 
 
 
 
The integral is done from the edge of one wire to the edge of the other, as shown in the 

dashed line above.  φ
μ
π

μ
πm

o

a

D a oI
r
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I D a
a
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−
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∫2
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2
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L
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a
D
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≈2
2

2μ
π

μ
π

ln ln  per unit length.  
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3. Numerical Methods Assessing results.  
 
We can quite easily analyze the two-wire line using FEMM. Shown below is the field 
structure determine for two parallel lines, each with a radius of 1cm, whose centers are 
separated by a distance of 6cm. The conductors are shown in green. No direction is 
shown for the field but one current goes into the page and one out. The outer circle 
(radius = 10cm) is just the limit of the analysis region, since numerical methods can only 
consider a region of finite extent. There is no boundary or any other object there.  
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The magnetic field intensity is shown below. Note that there is field throughout this 
region, inside and outside the conductors.  

 
 
On the next page is plotted the normal component of the magnetic field 

r
B n⋅ $ on the 

horizontal axis (the line that passes through the centers of both wires). The data used in 
this plot are also in the Excel spreadsheet HW6_f09.xls. The first column is the 
horizontal position, with the origin located between the wires. The second column is the 
vertical (normal) component of 

r
B .  

 
a. The task in this problem is to use the results from problem 2 part a to 

confirm that the FEMM analysis is reasonable. Note that perfect 
agreement is not possible, but in this case, the agreement should be very 
good. In column 3, evaluate the magnetic field for the locations of column 
1, for the wire on the left. In column 4, evaluate the magnetic field for the 
wire on the right. Be sure to use the appropriate expressions for inside and 
outside the wires. You are not given the currents in the two wires, so you 
will have to assume some value based on the magnitudes shown for the 
field and then correct it later. In column 5, add the contributions from the 
two wires. Finally, plot the field values vs. position. Now, adjust the value 
of the current in the wires until you obtain the best possible agreement. 



 

Fields and Waves I Homework 6 Fall 2009 
K. A. Connor  November 2009 

7 

What value of current produces the best possible agreement? Plot your 
results. Discuss any differences you observe between the FEMM results 
and those obtained using the ideal fields from two long, straight wires. 

 

 
 
 

b. FEMM does not directly evaluate the inductance. However, it can give us 
the following: Total energy stored in the magnetic field 0.0384018 Joules 
or the volume integral of 

r r
A J⋅ 0.0803573 Henry Amp^2. The problem 

solved is 2D but FEMM does not consider the per unit length values. It 
requires the actual depth to be specified. From your knowledge of the 
inductance per unit length for this line, determine the depth used by 
FEMM in this problem. Note, FEMM used an integer value for this 
dimension, so your result should also be an integer. Discuss your answer.  

 
The external inductance per unit length for this line is given by the expression in the 

previous problem L
D a

a
D
a

xo o o=
−

≈ = = −2
2

2 6
1

716 10 7μ
π

μ
π

μ
π

ln ln ln .  The calculations 

in the gray cells in the spreadsheet show that the closest integer is 1cm. The two results 
do not agree exactly, but they are close. Also, the inductance used here is just the 
external inductance, so the values from FEMM should be a little bit larger, which they 

are. The internal inductance is Li
o= = −2

8
1 10 7x

μ
π

which brings the results closer 

together. The differences are not large enough to be concerned about. 
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c. FEMM also calculates the force on conductors. For this case, the force 

given is 0.328163 N, which also uses the depth. From your knowledge of 
the forces between current-carrying conductors, what is the direction of 
the force experienced by each conductor and is this result reasonable? 
Explain your answer.  

 
Forces between currents traveling in opposite directions are in a direction that would 
increase the distance between the conductors. The force per unit length for a wire 
carrying the given current due to the field from the other is ILB or a number which is 
almost exactly equal to the one from FEMM. This calculation is done in the spreadsheet 
in the yellow area. 
 
 
Note: The point of this problem is to assess the quality of the solution for the field. Be 
sure your discussion includes more than just brief comments.  


