Fields and Waves I

Lecture 1

Introduction to Fields and Waves

K. A. Connor

Electrical, Computer, and Systems Engineering Department Rensselaer Polytechnic Institute, Troy, NY These Slides Were Prepared by Prof. Kenneth A. Connor Using Original Materials Written Mostly by the Following:

- Kenneth A. Connor ECSE Department, Rensselaer Polytechnic Institute, Troy, NY
 - J. Darryl Michael GE Global Research Center, Niskayuna, NY
- Thomas P. Crowley National Institute of Standards and Technology, Boulder, CO
- Sheppard J. Salon ECSE Department, Rensselaer Polytechnic Institute, Troy, NY
- Lale Ergene ITU Informatics Institute, Istanbul, Turkey
- Jeffrey Braunstein Chung-Ang University, Seoul, Korea

Materials from other sources are referenced where they are used. Those listed as Ulaby are figures from Ulaby's textbook.

30 August 2006

Overview

Why study E&M?

Introduction to transmission lines

Some good sources

- <u>http://www.ece.northwestern.edu/ecefacul</u> <u>ty/taflove/WhyStudy.pdf</u> Some info from this document follows. (Taflove)
- Others?

Why take Fields and Waves?

- E and B are fundamental to Electrical Engineering
- if you have "V", there is an "E"
- if you have "I", there is a "B"

V is Voltage E is Electric Field Intensity I is Current B is Magnetic Flux Density

Relationship with Circuit Theory

Circuit Theory uses simplified (lumped) Models of components

The model, however, does not include:

- Details on how the components work
 - Components are not made up of C,L,R
- Distributed Properties for example Transmission Lines
- Electromagnetic Waves like µWaves, Radio Waves, Optics
- Applications such as Capacitive Sensors
- Noise

30 August 2006

Relationship with Circuit Theory

Many of these effects are more important at High Frequency

Need to be considered when designing for High Speed Applications

30 August 2006

Fields and Waves I

Current technology (with High Speed Computers) enables accurate circuit simulation

Simulation Packages include: a) SPICE (from UC Berkeley) b) SABER (systems approach)

 Accurate simulation requires understanding of "components" and interactions

- Interactions also need to be described by Models
- Models are obtained by an understanding of EM Fields

Question: Why do companies spend resources on developing models?

30 August 2006

Fields and Waves I

Microwave energy scattering from missile antenna radome.

(Taflove)

30 August 2006

Fields and Waves I

- The bedrock of introductory circuit analysis, Kirchoff's current and voltage laws, fail in most high-speed circuits. These must be analyzed using E&M theory. Signal power flows are not confined to the intended metal wires or circuit paths.
 - Microwave circuits typically process bandpass signals at frequencies above 3 GHz. Common circuit features include microstrip transmission lines, directional couplers, circulators, filters, matching networks, and individual transistors. Circuit operation is fundamentally based upon electromagnetic wave phenomena.
 - Digital circuits typically process low-pass pulses having clock rates below 2 GHz. Typical circuits include densely packed, multiple planes of metal traces providing flow paths for the signals, dc power feeds, and ground returns. Via pins provide electrical connections between the planes. Circuit operation is nominally not based upon electromagnetic wave effects.
- The distinction between the design of these two classes is blurring.

(Taflove)

False-color visualization (right) illustrating the coupling and crosstalk of a high-speed logic pulse entering and leaving a microchip embedded within a conventional dual in-line integrated-circuit package (left). The fields associated with the logic pulse are not confined to the metal circuit paths and, in fact, smear out and couple to all adjacent circuit paths.

(Taflove)

Exp: Transmission Lines

The same signal passes through the short cable to channel 2 and the long cable (60-100 meters) to channel 1.

Lumped Transmission Line

Exp 5: Transmission Lines

What is observed?

- Input and output look largely the same
- Phase shift between input and output
- Output signal is somewhat smaller than input on the long cable
- When the terminating resistor is removed, the signal changes
- The wires have finite resistance (~ $50^{m\Omega}/meter$)
- What can we conclude from this?
 - Wire resistance is low so, for shorter cables, we can consider transmission lines to be lossless
 - What else?

Workspace: General Mathematical Form of Voltage & Current Waves

Transmission Lines

Connect to circuit theory Demonstrate the need to understand R, L, C, & G per unit length parameters Very useful devices (all EE, CSE, EPE students will use them someday) Can be easily analyzed to find electric and magnetic fields

Transmission Line

EXAMPLES:

- Power Lines (60Hz)
- Coaxial Cables
- Twisted Pairs
- Interconnects (approximates a parallel plate capacitor)
- All have two conductors

Transmission Line Effects

RELEVANT EFFECTS:

- Time Delays
- Reflections/Impedance Matching

TL effects more important at high **f** (or short **t**) and long lengths

 \vec{E} and \vec{H} effects are important for understanding

But, calculations use *V* and *I* for predicting effects

30 August 2006

Fields and Waves I

Model of SHORT SECTION:

L and C are distributed through the length of the cable

Model the full length as:

Does *L* -*C* combination behave like a cable? How would you know?

Time Delay ~ same as cable delay

When is model of *L* - *C* combination valid?

What is λ ?

Transmission Line Representation

30 August 2006

Fields and Waves I

Transmission Line Representation

Workspace – look at the general form of the solution $t \pm \frac{2}{4}$ = lc2-- <u>1</u> - <u>u</u> (|-25

30 August 2006

Fields and Waves I

76

C

Transmission Line Representation

Functions that move with velocity *u*

30 August 2006

Fields and Waves I

Using PSpice

 We can use PSpice to do numerical experiments that demonstrate how transmission lines work

PSpice

30 August 2006

Sine Waves

The form of the wave solution

$$A\cos\left(\omega t \mp \frac{\omega}{u}z\right) = A\cos(\omega t \mp \beta z)$$

 First check to see that these solutions have the properties we expect by plotting them using a tool like Matlab

Sine Waves

 $\cos\left(\omega t - \frac{\omega}{u}z\right) = \cos\left(2\pi ft - \frac{2\pi f}{u}z\right)$

The positive wave

30 August 2006

Solutions to the Wave Equation

Now we check to see that the sine waves are indeed solutions to the wave equation

$$\frac{\partial}{\partial t}\cos(\omega t - \beta z) = -\omega\sin(\omega t - \beta z) \qquad \frac{\partial}{\partial z}\cos(\omega t - \beta z) = -(-\beta)\sin(\omega t - \beta z)$$
$$\frac{\partial^2}{\partial t^2}\cos(\omega t - \beta z) = \omega^2\cos(\omega t - \beta z) \qquad \frac{\partial^2}{\partial z^2}\cos(\omega t - \beta z) = \beta^2\cos(\omega t - \beta z)$$

$$\frac{\partial^2}{\partial z^2} A\cos(\omega t - \beta z) = \frac{\beta^2}{\omega^2} \frac{\partial^2}{\partial t^2} A\cos(\omega t - \beta z) = \frac{1}{u^2} \frac{\partial^2}{\partial t^2} A\cos\left(\omega t - \frac{\omega}{u}z\right)$$

Solutions to the Wave Equation

• Thus, our sine wave is a solution to the voltage or current equation $\frac{\partial^2 V}{\partial z^2} = lc \frac{\partial^2 V}{\partial t^2}$

u = the speed of wave propagation
= the speed of light

30 August 2006

Velocity of Propagation

Hosfelt

- Inductance per unit length is 0.25 micro Henries per meter
- Capacitance per unit length is 100 pico Farads per meter

or 2/3 the speed of light

From Digi-Key (Carol Cable)

	Imped- Ca ance (Ω)	pacitance pF/FT (pF/M)	Digi-Key Part No							
	50 30. 50 31.8	00 (98.43) 80 (104.34)	W300-X- C1178-X-	NE N						
Conductor Core Size Jacket O.D. (AWG) Type Inch (mm)	Shield Type	Nomir O.D Inch (r	nal Imped-). ance mm) (Ω)	Capacitance pF/FT (pF/M)	Digi-Key Part No		(X = N Pri 100 ft. (†, ◊)	o. of Ft. F ice Per R 500 ft. (#)	Per Roll) oll 1000 ft. (#)	General Cable Part No.
20 (Solid BC) Black PVC 0 116 (2 05)	95% TC Braid	RG-58	(95) 50	30.00 (98.43)	W300-X	ND	34.01	92 58	185 16	C1166
20 (19X.0071)(TC) Black PVC 0.116 (2.95)	95% TC Braid	0.195 (4	.95) 50	31.80 (104.34)	C1178-X	ND NEW!	29.88	_	182.79	C1178.21.01
20 (19X32)(TC) Gray PVC 0.100 (2.54)	100% Flexfoil + 81% TC	Braid 0.186 (4	.72) 50	25.40 (83.34)	C5779-X	-ND NEW!	31.03	—	193.02	C5779.41.10
19 (Solid BC) Flexguard/White 0.100 (2.54)	95% TC Braid	0.100 (4	19 50	20.00 (00.01)	C2510 V	AD NEW!	56.40	_	410.24	C2510 41 02

30 August 2006

RG

Type

58/U

58/U

58/U Thinnet

58/U Plenum 58/U Plenum

Fig.

1

1 2

1

Fields and Waves I

From Elpa (Lithuania)

Purpose: Computer Networks, radiocommunication systems and other.

Name	RG58U
Code	490503
Packing	100m
In box	6×100m=600m
Center conductor	0,81mm BC
Dielectric	2,9mm PE
Shielding Poil	AL/PE
Outer conductor	96x0,12mm TC
Jacket	5mm PVC
Weight	20kg/600m
Inner Conductor DC resistance	34Ω/km
Outer Conductor DC resistance	17Ω/km
Capacitance	95pF/m
Impedance	50±3Ω
Screening efficiency	>95dB
Min. bending radius	5 × diameter of cable
Velocity ratio	0,68

Capacitance Velocity ratio = .68

30 August 2006

Coaxial Cable Parameters

30 August 2006

Coaxial Cable Parameters

a = 0.4mm

- For RG58/U $\varepsilon = \varepsilon_r \varepsilon_o = 2.3 \varepsilon_o$ and b = 1.4 mm
- One can easily find the capacitance and μ = μ_o inductance per unit length. Note that when a parameter is unspecified, you should assume that is has the default value.

Workspace

Why don't the numbers vary by much?

Sine Waves $\cos\left(\omega t - \frac{\omega}{u}z\right) = \cos\left(2\pi ft - \frac{2\pi f}{u}z\right)$

• Consider one other property. What is the distance required to change the phase of this expression by 2π ? We just did this qualitatively. $\beta z = \frac{\omega}{u} z = \frac{2\pi f}{u} z = 2\pi$

This distance is called the wavelength or

$$\beta \lambda = \frac{\omega}{u} \lambda = \frac{2\pi f}{u} \lambda = 2\pi$$

 $\lambda = \frac{2\pi}{\beta} = \frac{u}{f}$

Sine Waves

• Solutions look like $A\cos(\omega t \mp \beta z)$

 $\beta = \frac{\omega}{u} = \omega \sqrt{lc} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$\lambda = \frac{2\pi}{\beta} = \frac{u}{f}$$

$$\mathcal{E} = \mathcal{E}_r \mathcal{E}_o \quad \mu = \mu_r \mu_o$$

Figure from http://www.emc.maricopa.edu/

30 August 2006

Fields and Waves I

Phasor Notation = $\cos \omega t + j \sin \omega t$ = $\cos \omega t + j \sin \omega t$

• For ease of analysis (changes second order partial differential equation into a second order ordinary differential equation), we use phasor notation. $f(z,t) = A\cos(\omega t \mp \beta z) = \operatorname{Re}\left(\left\{Ae^{\mp j\beta z}\right\}e^{j\omega t}\right)$ $f(z) = Ae^{\mp j\beta z}$

The term in the brackets is the phasor.

Phasor Notation

• To convert to space-time form from the phasor form, multiply by $e^{j\omega t}$ and take the real part. $f(z,t) = \operatorname{Re}(Ae^{\mp j\beta z}e^{j\omega t}) = A\cos(\omega t \mp \beta z)$

• If A is complex $A = |A|e^{j\theta_A}$

 $f(z,t) = \operatorname{Re}(|A|e^{j\theta_A}e^{\pm j\beta_z}e^{j\omega t}) = |A|\cos(\omega t \pm \beta z + \theta_A)$ Recio = coso

Example

20	Δ		20	n
.30		ILIST	- 70	06
U U	1100	1000	20	

30 August 2006

Fields and Waves I

30 August 2006

Fields and Waves I

30 August 2006

Normal

Click for Web: APPLICATION NOTES - MODELS - DESIGN TIPS - DATA SHEETS - S-PARAMETERS

30 August 2006

Fields and Waves I

Transmission Lines - Standing Wave Derivation

 $V = V^+ e^{-j \cdot \beta \cdot z} + V^- e^{+j \cdot \beta \cdot z}$

Forward Wave

Backward Wave

 $cos(\omega \cdot t - \beta \cdot z)$ TIME DOMAIN $cos(\omega \cdot t + \beta \cdot z)$

V_{max} occurs when Forward and Backward Waves are in Phase CONSTRUCTIVE INTERFERENCE

V_{min} occurs when Forward and Backward Waves are out of Phase DESTRUCTIVE INTERFERENCE

30 August 2006

Transmission Lines Formulas

- Fields and Waves I Quiz Formula Sheet
- In the class notes $v(z) = V_+ e^{-j\beta z} + V_- e^{+j\beta z}$

All are used in various handouts, texts, etc. There is no 30 Augustandard notation. Fields and Waves I 56

RG58/U Cable

• Assume 2 V_{P-P} 1.5MHz sine wave is launched on such a line. Find $\beta = \frac{\omega}{u} = \omega \sqrt{lc} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$ and λ $\mathcal{U} = \frac{2}{z} \subset = \frac{2}{z} \times 10^{5} \text{ m/s}$

211 (1.5×106)

2×108

Short Circuit Load

• For $Z_L = 0$, we have $\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o} = \frac{0 - Z_o}{0 + Z_o} = -1$

 $v(z) = V^{+}e^{-j\beta z} + \Gamma_{L}V^{+}e^{+j\beta z} = V^{+}\left(e^{-j\beta z} - e^{+j\beta z}\right)$

 $e^{+j\beta z} = \cos\beta z + j\sin\beta z$

 $e^{-j\beta z} = \cos\beta z - j\sin\beta z$

 $v(z) = -V^+ (j2\sin\beta z)$

30 August 2006

Fields and Waves I

Short Circuit Load

• Convert to space-time form $v(z,t) = \operatorname{Re}(v(z)e^{j\omega t}) = \operatorname{Re}(V^{+}(-j2\sin\beta z)e^{j\omega t})$

$$\operatorname{Re}\left(\left(-j2\sin\beta z\right)e^{j\omega t}\right) = \operatorname{Re}\left(-2\sin\beta z\left(j\cos\beta z - \sin\beta z\right)\right)$$

 $v(z,t) = 2V^+ \sin\beta z \sin\omega t$

Review

- Traveling Waves & Standing WavesPhasor Notation
- General Representation of Waves