Fields and Waves I

Lecture 1

I ntroduction to Fields and Waves

K. A. Connor

Electrical, Computer, and Systems Engineering Department Rensselaer Polytechnic Institute, Troy, NY

These Slides Were Prepared by Prof. Kenneth A. Connor Using Original Materials Written Mostly by the Following:

- Kenneth A. Connor - ECSE Department, Rensselaer Polytechnic I nstitute, Troy, NY
- J. Darryl Michael - GE Global Research Center, Niskayuna, NY
- Thomas P. Crowley - National Institute of Standards and Technology, Boulder, CO
- Sheppard J. Salon - ECSE Department, Rensselaer Polytechnic Institute, Troy, NY
- Lale Ergene - ITU Informatics Institute, Istanbul, Turkey
- J effrey Braunstein - Chung-Ang University, Seoul, Korea

Materials from other sources are referenced where they are used.
Those listed as Ulaby are figures from Ulaby's textbook.

Overview

- Why study E\&M?
- Introduction to transmission lines

Why Study E\&M?

- Some good sources
- http://www.ece.northwestern.edu/ecefacul ty/taflove/WhyStudy. pdf Some info from this document follows. (Taflove)
- Others?

Why take Fields and Waves?

- E and B are fundamental to Electrical Engineering
- if you have "V", there is an "E"
- if you have " l ", there is a " B "

V is Voltage
I is Current
E is Electric Field Intensity B is Magnetic Flux Density

Relationship with Circuit Theory

- Circuit Theory uses simplified (lumped) Models of components

The model, however, does not include:

- Details on how the components work
- Components are not made up of C,L,R
- Distributed Properties for example Transmission Lines
- Electromagnetic Waves - like μ Waves, Radio Waves, Optics
- Applications such as Capacitive Sensors
- Noise

Relationship with Circuit Theory

Many of these effects are more important at High Frequency

Need to be considered when designing for High Speed Applications

Current technology (with High Speed Computers) enables accurate circuit simulation

Simulation Packages include:
a) SPICE (from UC Berkeley)
b) SABER (systems approach)

- Accurate simulation requires understanding of " components" and interactions
- Interactions also need to be described by Models
- Models are obtained by an understanding of EM Fields

Question: Why do companies spend resources on developing models?

Why Study E\&M?

Microwave energy scattering from missile antenna radome.

Why Study E\&M?

- The bedrock of introductory circuit analysis, Kirchoff's current and voltage laws, fail in most high-speed circuits. These must be analyzed using E\&M theory. Signal power flows are not confined to the intended metal wires or circuit paths.
- Microwave circuits typically process bandpass signals at frequencies above 3 GHz . Common circuit features include microstrip transmission lines, directional couplers, circulators, filters, matching networks, and individual transistors. Circuit operation is fundamentally based upon electromagnetic wave phenomena.
- Digital circuits typically process low-pass pulses having clock rates below 2 GHz . Typical circuits include densely packed, multiple planes of metal traces providing flow paths for the signals, dc power feeds, and ground returns. Via pins provide electrical connections between the planes. Circuit operation is nominally not based upon electromagnetic wave effects.
- The distinction between the design of these two classes is blurring.

Why Study E\&M?

- False-color visualization (right) illustrating the coupling and crosstalk of a high-speed logic pulse entering and leaving a microchip embedded within a conventional dual in-line integrated-circuit package (left). The fields associated with the logic pulse are not confined to the metal circuit paths and, in fact, smear out and couple to all adjacent circuit paths.

Exp: Transmission Lines

(You will work on this in the future)

The same signal passes through the short cable to channel 2 and the long cable (60100 meters) to channel 1.

Lumped Transmission Line

Exp 5: Transmission Lines

- What is observed?
- Input and output look largely the same
- Phase shift between input and output
- Output signal is somewhat smaller than input on the long cable
- When the terminating resistor is removed, the signal changes
- The wires have finite resistance ($\sim 50 \mathrm{~m} \Omega /$ meter)
- What can we conclude from this?
- Wire resistance is low so, for shorter cables, we can consider transmission lines to be lossless
- What else?

Workspace: General Mathematical Form of Voltage \& Current Waves

Transmission Lines

- Connect to circuit theory
- Demonstrate the need to understand R , $\mathrm{L}, \mathrm{C}, \& \mathrm{G}$ per unit length parameters
- Very useful devices (all EE, CSE, EPE students will use them someday)
- Can be easily analyzed to find electric and magnetic fields

Transmission Line

Fundamental Purpose of TL

EXAMPLES:

- Power Lines (60Hz)
- Coaxial Cables
- Twisted Pairs
- Interconnects (approximates a parallel plate capacitor)
- All have two conductors

Transmission Line Effects

RELEVANT EFFECTS:

- Time Delays
- Reflections/Impedance Matching

TL effects more important at high \boldsymbol{f} (or short \boldsymbol{t}) and long lengths
\vec{E} and \vec{H} effects are important for understanding

But, calculations use V and Ifor predicting effects

Transmission Line Model

Cables have both L and C :

2 wire example:

Transmission Line Model

Model of SHORT SECTION:

\boldsymbol{L} and \boldsymbol{C} are distributed through the length of the cable

Model the full length as:

....etc.

Transmission Line Model

Does L-C combination behave like a cable? How would you know?

Time Delay ~ same as cable delay

Transmission Line Model

When is model of $\boldsymbol{L}-\boldsymbol{C}$ combination valid?

- need Δz small $\quad \square \Delta z \ll \lambda$

What is λ ?

Transmission Line Representation

As $\Delta z \Rightarrow 0 \quad$ limit

$$
\frac{V(z+\Delta z)-V(z)}{\underline{l} \cdot \Delta z}
$$

Transmission Line Representation

Similarly, $\quad \frac{\partial I}{\partial z}=-c \cdot \frac{\partial V}{\partial t}$

$$
\frac{\partial^{2} V}{\partial z^{2}}=\frac{\partial}{\partial z}\left(-l \cdot \frac{\partial I}{\partial t}\right)=-l \cdot \frac{\partial}{\partial t}\left(\frac{\partial I}{\partial z}\right)=l c \frac{\partial^{2} V}{\partial t^{2}}
$$

Obtain the following PDE: $\quad \frac{\partial^{2} V}{\partial z^{2}}=l c \frac{\partial^{2} V}{\partial t^{2}}$
These are functions
Solutions are: $f\left(t \pm \frac{Z}{u}\right)$ that move with velocity u

Workspace - look at the general form of the solution

$$
\begin{array}{cc}
\frac{\partial^{2} f}{\partial z^{2}}=l c \frac{\partial^{2} f}{\partial t^{2}} & f\left(t \pm \frac{z}{u}\right) \\
\frac{\partial f}{\partial z}=f^{\prime}\left(-\frac{1}{u}\right) & \frac{\partial f}{\partial t}=f^{\prime} \\
\frac{\partial^{2} t}{\partial t}=f^{\prime \prime}\left(\frac{z}{u}\right) \\
\frac{u^{2}}{\partial z^{2}} & \frac{\partial^{2} f}{\partial \cdot l^{2}}=f^{\prime \prime} \\
\frac{1}{u^{2}}=l c & \partial r \\
u=\frac{1}{\sqrt{l c}}
\end{array}
$$

Transmission Line Representation

Functions that move with velocity u
Example: $\cos \left(\omega t \pm \frac{\omega}{u} z\right)$

Using PSpice

- We can use PSpice to do numerical experiments that demonstrate how transmission lines work

PSpice

Sine Waves

- The form of the wave solution

$$
A \cos \left(\omega t \mp \frac{\omega}{u} z\right)=A \cos (\omega t \mp \beta z)
$$

- First check to see that these solutions have the properties we expect by plotting them using a tool like Matlab

Sine Waves

$$
\cos \left(\omega t-\frac{\omega}{u} z\right)=\cos \left(2 \pi f t-\frac{2 \pi f}{u} z\right)
$$

- The positive wave

Workspace

$$
\begin{array}{lc}
\cos \left(\omega t-\omega \frac{z}{u}\right)= & \cos \left(2 \pi f t-2 \pi f \frac{z}{u}\right) \\
\cos (\omega t) & \cos \left(2 \pi f \frac{z}{u}\right) \\
2 \pi f=\omega & \frac{u}{f}=\lambda \\
f=\frac{1}{T} & \cos (\underbrace{\frac{2 \pi}{\omega}}_{\beta} z) \\
\cos \left(\frac{2 \pi}{\tau} t\right) &
\end{array}
$$

Solutions to the Wave Equation

- Now we check to see that the sine waves are indeed solutions to the wave equation
$\begin{array}{ll}\frac{\partial}{\partial z} \cos (\omega t-\beta z)=-\omega \sin (\omega t-\beta z) & \frac{\partial}{\partial z} \cos (\omega t-\beta z)=-(-\beta) \sin (\omega t-\beta z) \\ \frac{\partial^{2}}{\partial^{2}} \cos (\omega t-\beta z)=\omega^{2} \cos (\omega t-\beta z) & \frac{\partial^{2}}{\partial^{2}} \cos (\omega t-\beta z)=\beta^{2} \cos (\omega t-\beta z)\end{array}$
$\frac{\partial^{2}}{\partial^{2}} A \cos (\omega t-\beta z)=\frac{\beta^{2}}{\omega^{2}} \frac{\partial^{2}}{\partial^{2}} A \cos (\omega t-\beta z)=\frac{1}{u^{2}} \frac{\partial^{2}}{\partial^{2}} A \cos \left(\omega t-\frac{\omega}{u} z\right)$

Solutions to the Wave Equation

- Thus, our sine wave is a solution to the voltage or current equation

$$
\frac{\partial^{2} V}{\partial z^{2}}=\operatorname{lc} \frac{\partial^{2} V}{\partial^{2}}
$$

- if $\beta=\frac{\omega}{u}=\omega \sqrt{l C} \quad$ or $\quad u=\frac{1}{\sqrt{l C}}$
- $u=$ the speed of wave propagation
$=$ the speed of light

Velocity of Propagation

- Check for RG58/U Cable
- Inductance per unit length is 0.25 micro Henries per meter
- Capacitance per unit length is 100 pico Farads per meter

$$
u=\frac{1}{\sqrt{l C}}=\frac{1}{\sqrt{\left(0.25 \times 10^{-6}\right)\left(100 \times 10^{-12}\right)}}=\frac{1}{\sqrt{25 \times 10^{-18}}}=\frac{10^{9}}{5}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

or 2/3 the speed of light

From Digi-Key (Carol Cable)

Fig.	$\begin{gathered} \text { RG } \\ \text { Type } \\ \hline \end{gathered}$	Conductor Size (AWG)	Jacket Type	$\begin{gathered} \text { Core } \\ \text { O.D. } \\ \text { Inch }(\mathrm{mm}) \\ \hline \end{gathered}$	Shield Type	$\begin{gathered} \text { Nominal } \\ 0 . D . \\ \text { Inch }(\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Imped- } \\ \text { ance } \\ (\Omega) \end{array} \\ \hline \end{array}$	Capacitance pF/FT (pF / M)	Digi-Ke) Part No		$\begin{aligned} & \quad \mathrm{X}=\mathrm{N} \\ & \mathrm{Pr} \\ & 100 \mathrm{ft.} \\ & (\mathrm{p}, \stackrel{)}{ } \end{aligned}$. of Ft. ce Per 500 ft . (\#)	er Roll) oll 1000 ft (\#)	General Cable Part No.
RG-58														
1	58/N	20 (Solid BC)	Black PVC	0.116 (2.95)	95\% TC Braid	0.195 (4.95)	50	30.00 (98.43)	W300-X	ND	34.01	92.58	185.16	C1166
1	58/N	20 (19X.0071)(TC)	Black PVC	0.116 (2.95)	95\% TC Braid	0.195 (4.95)	50	$3180(104.34)$	C.1178. ${ }^{\text {a }}$	ND NEW!	29.88	-	182.79	C1178.21.01
2	58/U Thinnet	20 (19×32)(TC)	Gray PVC	0.100 (2.54)	100\% Flextoil + 81\% TC Braid	0.186 (4.72)	50	25.40 (83.34)	C5779-X	-ND NEW!	31.03	-	193.02	C5779.41.10
1	58/U Plenum	20 (19X32)(TC)	Flexguard/White	0.100 (2.54)	100\% Flextoil + 95\% TC Braid	0.165 (4.19)	50	26.00 (85.31)	C3579-10	000-ND NEW!	-	-	525.25	C3579.41.02
1	58/U Plenum	19 (Solid BC)	Flexguard/White	0.102 (2.59)	95\% TC Braid	0.161 (4.09)	50	25.00 (82.00)	C3519-X	-ND NEW!	56.49	-	419.34	C3519.41.02

From Elpa (Lithuania)

Coaxial Cable Parameters

- Capacitance $c=\frac{2 \pi \varepsilon}{\ln \frac{b}{a}} F / m$

(a) Coaxial line
- Inductance

$$
l=\frac{\mu}{2 \pi} \ln \frac{b}{a} H / m
$$

$$
\begin{aligned}
\varepsilon_{o}= & \frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} / \mathrm{m} \\
& \varepsilon=\varepsilon_{r} \varepsilon_{o}
\end{aligned}
$$

$$
\begin{gathered}
\mu_{o}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
\mu=\mu_{r} \mu_{o}
\end{gathered}
$$

Coaxial Cable Parameters

$$
a=0.4 \mathrm{~mm}
$$

- For RG58/U $\varepsilon=\varepsilon_{r} \varepsilon_{o}=2.3 \varepsilon_{o} \quad$ and

$$
b=1.4 \mathrm{~mm}
$$

- One can easily find the capacitance and $\mu=\mu_{o}$ inductance per unit length. Note that when a parameter is unspecified, you should assume that is has the default value.

Workspace

- Why don't the numbers vary by much?

Sine Waves $\cos \left(\omega t-\frac{\omega}{u} z\right)=\cos \left(2 \pi f t-\frac{2 \pi f}{u} z\right)$

- Consider one other property. What is the distance required to change the phase of this expression by 2π ? We just did this qualitatively.

$$
\beta z=\frac{\omega}{u} z=\frac{2 \pi f}{u} z=2 \pi
$$

- This distance is called the wavelength or

$$
\beta \lambda=\frac{\omega}{u} \lambda=\frac{2 \pi f}{u} \lambda=2 \pi \quad \lambda=\frac{2 \pi}{\beta}=\frac{u}{f}
$$

Sine Waves

- Solutions look like $A \cos (\omega t \mp \beta z)$

$$
\begin{array}{ll}
\beta=\frac{\omega}{u}=\omega \sqrt{l c}=\omega \sqrt{\mu \varepsilon}=\frac{2 \pi}{\lambda} \\
\omega=2 \pi f=\frac{2 \pi}{T} & u=\frac{1}{\sqrt{l c}}=\frac{1}{\sqrt{\mu \varepsilon}} \\
\lambda=\frac{2 \pi}{\beta}=\frac{u}{f} & \varepsilon=\varepsilon_{r} \varepsilon_{o} \quad \mu=\mu_{r} \mu_{o}
\end{array}
$$

Figure from http://www.emc.maricopa.edu/

Phasor Notation $e^{\cos \theta+j \sin \theta}$

- For ease of analysis (changes second order partial differential equation into a second order ordinary differential equation), we use phasor

$$
\begin{gathered}
f(z, t)=A \cos (\omega t \mp \beta z)=\operatorname{Re}\left(\left\{A e^{\mp j \beta z}\right\} e^{j \omega t}\right) \\
f(z)=A e^{\mp j \beta z}
\end{gathered}
$$

- The term in the brackets is the phasor.

Phasor Notation

- To convert to space-time form from the phasor form, multiply by $e^{j \omega t}$ and take the real part. $f(z, t)=\operatorname{Re}\left(A e^{\mp j \beta z} e^{j \omega t}\right)=A \cos (\omega t \mp \beta z)$
- If A is complex $\quad A=|A| e^{j \theta_{A}}$

$$
\begin{gathered}
f(z, t)=\operatorname{Re}\left(|A| e^{j \theta_{A}} e^{\mp j \beta z} e^{j \omega t}\right)=|A| \cos \left(\omega t \mp \beta z+\theta_{A}\right) \\
\operatorname{Re} e^{j \theta}=\cos \theta
\end{gathered}
$$

Example

Example

$$
\begin{aligned}
& \frac{\partial}{\partial t}() e^{j \omega t} \\
& \frac{(j \omega)}{\left.\frac{\partial^{2}}{\partial t^{2}} \rightarrow(j \omega)^{2}\right) e^{, \omega t}=-\omega^{2}}
\end{aligned}
$$

Transmission Lines

Mismatched load

Reflected Wave

Standing wave due to interference

Standing Waves

Standing Waves

Standing Waves

Standing Waves

Standing Waves

$(\omega t-\beta z)$

Phasor Form of the Wave Equation:

$$
\begin{array}{ll}
\frac{\partial^{2} V}{\partial z^{2}}=l \cdot c \cdot \frac{\partial^{2} V}{\partial t^{2}} & \text { where: } \\
\Rightarrow \frac{\partial^{2} V}{\partial z^{2}}=-\omega^{2} \cdot l \cdot c \cdot V & V=V^{\mp} \cdot e^{ \pm j \cdot \beta \cdot z}
\end{array}
$$

General Solution:

$$
V=V^{+} e^{-j \cdot \beta \cdot z}+V^{-} e^{+j \cdot \beta \cdot z}
$$

$$
\begin{aligned}
& \text { Workspace } \begin{array}{l}
\beta^{2}=\omega^{2} l c \\
\frac{\partial^{2} \tilde{U}}{\partial t^{2}}=-\omega^{2} l c \tilde{V} \\
\tilde{V}=\tilde{V}^{+} e^{-j \beta z}+\tilde{V} e^{+j} \beta z \\
\frac{\partial \tilde{V}}{\partial z}=\tilde{V}^{+}(-\beta \beta) e^{-j \beta z} \\
\frac{\partial^{d^{2}} \tilde{V}}{\partial z^{2}}=\tilde{V}^{+}(-, j)^{2} c^{-j \beta z}=-\tilde{V}^{+} \beta^{2} e^{-j \beta t}=-\beta^{2} \tilde{V}
\end{array}
\end{aligned}
$$

Workspace

$$
\begin{aligned}
& \frac{d}{d t}(\omega t-\beta z) \\
&=\omega-\beta \frac{d z}{d t}=0 \\
& \frac{d z}{d t}=\frac{w}{\beta}
\end{aligned}
$$

Transmission Lines - Standing Wave Derivation

$$
V=V^{+} e^{-j \cdot \beta \cdot z}+V^{-} e^{+j \cdot \beta \cdot z}
$$

Forward Wave
$\cos (\omega \cdot t-\beta \cdot z) \quad$ TIME DOMAIN $\quad \cos (\omega \cdot t+\beta \cdot z)$

Backward Wave
$\mathrm{V}_{\text {max }}$ occurs when Forward and Backward Waves are in Phase CONSTRUCTIVE INTERFERENCE
$\mathrm{V}_{\text {min }}$ occurs when Forward and Backward Waves are out of Phase DESTRUCTIVE INTERFERENCE

Transmission Lines Formulas

- Fields and Waves I Quiz Formula Sheet
- In the class notes $\quad v(z)=V_{+} e^{-j \beta z}+V_{-} e^{+j \beta z}$

$$
\begin{aligned}
& i(z)=\frac{V_{+} e^{-j \beta z}-V_{-} e^{+j \beta z}}{Z_{o}}=\frac{V_{+}}{Z_{o}} e^{-j \beta z}-\frac{V_{-}}{Z_{o}} e^{+j \beta z} \\
& V_{+}=V^{+}=V_{m}^{+} \quad V_{-}=V^{-}=V_{m}^{-}
\end{aligned}
$$

- Note:

All are used in various handouts, texts, etc. There is no

RG58/U Cable

$$
\frac{2 \pi\left(1.5 \times 10^{6}\right)}{2 \times 10^{8}}
$$

- Assume $2 \mathrm{~V}_{\text {P-p }} 1.5 \mathrm{MHz}$ sine wave is launched on such a line. Find $\beta=\frac{\omega}{u}=\omega \sqrt{l c}=\omega \sqrt{\mu \varepsilon}=\frac{2 \pi}{\lambda}$ and λ

$$
u=\frac{2}{3} c \triangleq 2 \times 10^{8 \mathrm{~m} / \mathrm{s}}
$$

- Answers?

$$
\begin{array}{ll}
l=.25 \times 15^{-6} \mathrm{H} / \mathrm{m} & \frac{3 \pi}{200} \\
c=100 \times 10^{-12} \mathrm{~F} / \mathrm{m} &
\end{array}
$$

Short Circuit Load

- For $Z_{L}=O$, we have $\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=\frac{0-Z_{o}}{0+Z_{o}}=-1$

$$
v(z)=V^{+} e^{-j \beta z}+\Gamma_{L} V^{+} e^{+j \beta z}=V^{+}\left(e^{-j \beta z}-e^{+j \beta z}\right)
$$

$$
\begin{aligned}
& e^{+j \beta z}=\cos \beta z+j \sin \beta z \\
& e^{-j \beta z}=\cos \beta z-j \sin \beta z
\end{aligned}
$$

$$
v(z)=-V^{+}(j 2 \sin \beta z)
$$

Short Circuit Load

- Convert to space-time form

$$
\begin{gathered}
v(z, t)=\operatorname{Re}\left(v(z) e^{j \omega t}\right)=\operatorname{Re}\left(V^{+}(-j 2 \sin \beta z) e^{j o t}\right) \\
\operatorname{Re}\left((-j 2 \sin \beta z) e^{j o t}\right)=\operatorname{Re}(-2 \sin \beta z(j \cos \beta z-\sin \beta z)) \\
v(z, t)=2 V^{+} \sin \beta z \sin \omega t
\end{gathered}
$$

Review

- Traveling Waves \& Standing Waves
- Phasor Notation
- General Representation of Waves

