Fields and Waves I

Lecture 2

Sine Waves on Transmission Lines
K. A. Connor

Electrical, Computer, and Systems Engineering Department Rensselaer Polytechnic Institute, Troy, NY

These Slides Were Prepared by Prof. Kenneth A. Connor Using Original Materials Written Mostly by the Following:

- Kenneth A. Connor - ECSE Department, Rensselaer Polytechnic Institute, Troy, NY
- J. Darryl Michael - GE Global Research Center, Niskayuna, NY
- Thomas P. Crowley - National Institute of Standards and Technology, Boulder, CO
- Sheppard J. Salon - ECSE Department, Rensselaer Polytechnic Institute, Troy, NY
- Lale Ergene - ITU Informatics Institute, Istanbul, Turkey
- J effrey Braunstein - Chung-Ang University, Seoul, Korea

Materials from other sources are referenced where they are used.
Those listed as Ulaby are figures from Ulaby's textbook.

Overview

Henry Farny Song of the Talking Wire

- Review
- Voltages and Currents on Transmission Lines
- Standing Waves
- Input Impedance
- Lossy Transmission Lines
- Low Loss Transmission Lines

Transmission Line Representation

$$
\begin{gathered}
V(z+\Delta z)-V(z)=-L \frac{\partial I}{\partial t} \square-l \cdot \frac{\partial I}{\partial t}=\frac{\Delta V}{\Delta z}=\frac{\partial V}{\partial z} \\
l \cdot \Delta z
\end{gathered}
$$

Transmission Line Representation

Similarly, $\quad \frac{\partial I}{\partial z}=-c \cdot \frac{\partial V}{\partial t}$ looks like $\quad \frac{\partial V}{\partial z}=-l \cdot \frac{\partial I}{\partial t}$

$$
\frac{\partial^{2} V}{\partial z^{2}}=\frac{\partial}{\partial z}\left(-l \cdot \frac{\partial I}{\partial t}\right)=-l \cdot \frac{\partial}{\partial t}\left(\frac{\partial I}{\partial z}\right)=l c \frac{\partial^{2} V}{\partial t^{2}} \text { Wave Eqn }
$$

$$
m^{2} \frac{\partial^{2} V}{\partial z^{2}}=l c \frac{\partial^{2} V}{\partial t^{2}} \quad \overline{s^{2}}
$$

These are functions
Solutions are: $f\left(t \pm \frac{z}{u}\right)$ that move with velocity u

$$
\frac{s^{2}}{m^{2}}
$$

Fields and Waves I

$$
\beta=\frac{w}{u}
$$

Functions that move with velocity \mathbf{u}

Workspace - look at the general form of the solution

$$
\begin{array}{cc}
\frac{\partial^{2} f}{\partial z^{2}}=l c \frac{\partial^{2} f}{\partial t^{2}} & f\left(t \pm \frac{z}{u}\right) \\
\frac{\partial f}{\partial z}=f^{\prime}\left(-\frac{1}{u}\right) & \frac{\partial f}{\partial t}=f^{\prime} \quad \square \\
\frac{\partial^{2} f}{\partial z^{2}}=f^{\prime \prime}\left(\frac{z}{u}\right) \\
\left.\frac{1}{u^{2}}\right) & \frac{\partial^{2} f}{\partial t^{2}}=f^{\prime \prime} \\
l c & \partial r \\
u=\frac{1}{\sqrt{l c}}
\end{array}
$$

Some Numerical Experiments

- PSpice can be used to do simple numerical experiments that demonstrate how transmission lines work

PSpice

Computer-Based Tools

- When you use a program like PSpice, applets, or any handy tools available online ... remain skeptical.
- Do not assume that the answers are correct.
- Apply crude plausibility checks.
- Know the assumptions and limitations of the tools you are using.
- Test all tools on problems you can solve other ways or with tools you have already tested.
- Use even sometimes incorrect tools as long as errors are recognized.

Pig from http://www. cincinnatiskeptics.org

PSpice Example

- Let us return to the configuration shown above and simulate it using PSpice
- List some conclusions from this exercise.
- ?
- ?
- ?

Sine Waves

- The form of the wave solution

$$
A \cos \left(\omega t \mp \frac{\omega}{u} z\right)=A \cos (\omega t \mp \beta z)
$$

- First check to see that these solutions have the properties we expect by plotting them using a tool like Matlab

Sine Waves

Apply frequency and wavelength analogy argument to show this is reasonable

$$
\cos \left(\omega t-\frac{\omega}{u} z\right)=\cos \left(2 \pi f t-\frac{2 \pi}{u} z\right)
$$

- The positive wave

Solutions to the Wave Equation

- Thus, our sine wave is a solution to the voltage or current equation

$$
\frac{\partial^{2} V}{\partial^{2}}=l c \frac{\partial^{2} V}{\partial^{2}}
$$

- if $\beta=\frac{\omega}{u}=\omega \sqrt{l c} \quad$ or $u=\frac{1}{\sqrt{l c}} \quad u=\frac{\omega}{\beta}$
- $u=$ the speed of wave propagation $=$ the speed of light

Sine Waves

$$
\cos \left(\omega t-\frac{\omega}{u} z\right)=\cos \left(2 \pi f t-\frac{2 \pi f}{u} z\right)
$$

- Consider one other property. What is the distance required to change the phase of this expression by 2π ? We just did this qualitatively.
- This distance is called the wavelength or

$$
\beta z=\frac{\omega}{u} z=\frac{2 \pi f}{u} z=2 \pi
$$

$$
\beta \lambda=\frac{\omega}{u} \lambda=\frac{2 \pi f}{u} \lambda=2 \pi \quad \lambda=\frac{2 \pi}{\beta}=\frac{u}{f}
$$

Sine Waves -- Summary

- Solutions look like $\quad A \cos (\omega t \mp \beta z)$

$$
\begin{array}{ll}
\beta=\frac{\omega}{u}=\omega \sqrt{l c}=\omega \sqrt{\mu \varepsilon}=\frac{2 \pi}{\lambda} \\
\omega=2 \pi f=\frac{2 \pi}{T} & u=\frac{1}{\sqrt{l c}}=\frac{1}{\sqrt{\mu \varepsilon}} \\
\lambda=\frac{2 \pi}{\beta}=\frac{u}{f} & \varepsilon=\varepsilon_{r} \varepsilon_{o} \quad \mu=\mu_{r} \mu_{o}
\end{array}
$$

Figure from http://www.emc. maricopa.edu/

$$
e^{j \omega t}=\cos \omega t+j \sin \omega t
$$

Phasor Notation

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

- For ease of analysis (changes second order partial differential equation into a second order ordinary differential equation), we use phasor notation.
$f(z, t)=A \cos (\omega t \mp \beta z)=\operatorname{Re}\left(\left\{A e^{\mp j \beta z}\right\} e^{j \omega t}\right)$
- The term in the brackets is the phaso?

Phasor Notation

- To convert to space-time form from the phasor form, multiply by $\quad e^{j \omega t}$ and take the real part.

$$
f(z, t)=\operatorname{Re}\left(A e^{\mp j \beta z} e^{j \omega t}\right)=A \cos (\omega t \mp \beta z)
$$

- If A is complex

$$
A=|A| e^{j \theta_{A}}
$$

$$
f(z, t)=\operatorname{Re}\left(|A| e^{j \theta_{A}} e^{\mp j \beta z} e^{j \omega t}\right)=|A| \cos \left(\omega t \mp \beta z+\theta_{A}\right)
$$

$$
R e e^{j \theta}=\cos \theta
$$

Transmission Lines

Mismatched load

Standing wave due to interference

Standing Waves

Reflectometer Calculator

Standing Waves

Reflectometer Calculator

Standing Waves

This may be wrong We will see shortly

Besser Associates

Standing Waves

Standing Waves

$\beta=\omega \sqrt{l c}$ Transmission Lines-s
Standing Wave Derivation

$$
(\omega t-\beta v)
$$

Phasor Form of the Wave Equation:

$$
\begin{array}{ll}
\frac{\partial^{2} V}{\partial z^{2}}=l \cdot c \cdot \frac{\partial^{2} V}{\partial t^{2}} & \text { where: } \\
\Rightarrow \frac{\partial^{2} V}{\partial z^{2}}=-\omega^{2} \cdot l \cdot c \cdot V & V=V^{\mp} \cdot e^{ \pm j \cdot \beta \cdot z} \\
\text { lossless }
\end{array}
$$

General Solution:

$$
\frac{V=V^{+} e^{-j \cdot \beta \cdot z}+V^{-} e^{+j \cdot \beta \cdot z}}{\text { Fields and waves } 1^{\operatorname{tarting}} \text { ff }}
$$

$$
\begin{aligned}
& \text { Workspace } \\
& \frac{\beta^{2}=\omega^{2} l c}{-\omega^{2} l c \tilde{V} \quad \frac{\partial}{\partial t} \rightarrow j \omega} \\
& \tilde{V}=\underline{\tilde{V}^{+} e^{-j \beta z}}+\tilde{V}^{-} e^{+j \beta z} \\
& \frac{\partial \widetilde{V}}{\partial z}=\overline{\tilde{V}^{+}(-\beta \beta)} e^{-j \beta z} \\
& \begin{array}{l}
\frac{\partial z}{\partial z}=V^{+}(-\beta) c \\
\frac{\partial^{2} \tilde{V}}{\partial z}=\tilde{V}^{+}(-\beta)^{2} c^{-j z}=-\tilde{V}^{+} \beta^{2} e^{-j \beta z}
\end{array} \\
& \overline{\partial z^{2}}=-\beta^{2} V
\end{aligned}
$$

$$
\begin{gathered}
\text { Workspace } \\
\cos (\omega t-\beta z) \\
\frac{d z}{d t}=\frac{\omega}{\beta}(\omega t-\beta z) \\
=\omega-\beta \frac{d z}{d t}=0
\end{gathered}
$$

> Transmission Lines - Standing Wave Derivation

$$
V=V^{+} e^{-j \cdot \beta \cdot z}+V^{-} e^{+j \cdot \beta \cdot z}
$$

Forward Wave

$$
\cos (\omega \cdot t-\beta \cdot z) \quad \text { TIME DOMAIN } \quad \cos (\omega \cdot t+\beta \cdot z)
$$

Backward Wave
$\mathrm{V}_{\text {max }}$ occurs when Forward and Backward Waves are in Phase CONSTRUCTIVE INTERFERENCE
$\mathrm{V}_{\text {min }}$ occurs when Forward and Backward Waves are out of Phase \square DESTRUCTIVE INTERFERENCE

$$
\text { matched } V^{\prime}=0
$$

Transmission Lines Formulas $\frac{V(z)}{c(\eta)}=Z_{0}$

- Fields and Waves I Quiz Formula Sheet
- In the class notes

$$
v(z)=\underline{V_{+} e^{-j \beta z}}+V e^{z^{j j \beta z}}
$$

$$
i(z)=\frac{V_{+} e^{-j \beta z}-V e^{4 j \beta z}}{Z_{o}}=\frac{V_{+}}{Z_{o}} e^{-j \beta z}-\frac{V_{-}}{Z_{o}} e^{+j \beta z}
$$

- Note: $\quad V_{+}=V^{+}=V_{m}^{+} \quad V_{-}=V^{-}=V_{m}{ }^{-}$

All are used in various handouts, texts, etc. There is no standard notation.
Ross

$$
Z_{0}=50 \Omega
$$

$$
\frac{2 \pi\left(1.5 \times 10^{6}\right)}{2 \times 10^{8}}
$$

- Assume $2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} 1.5 \mathrm{MHz}$ sine wave is launched on such a line. Find $\beta=\frac{\omega}{u}=\omega \sqrt{l c}=\omega \sqrt{\mu \varepsilon}=\frac{2 \pi}{\lambda}$ and λ
- Answers?

$$
u=\frac{2}{3} c \cong 2 \times 10^{8 \mathrm{~m} / \mathrm{s}}
$$

$$
\begin{aligned}
& l=.25 \times 15^{-6} \mathrm{H} / \mathrm{m} \\
& c=100 \times 10^{-12} \mathrm{~F} / m \\
& \cos (\omega t-\beta z) \quad \frac{3 \pi}{200} \\
& \cos) \quad \beta z=2 \pi \\
& \text { Fields and waves i } \\
& =\lambda
\end{aligned}
$$

Reflection Coefficient Derivation

Define the Reflection Coefficient:

$$
V^{-}=V_{L} V^{t}
$$

$$
\left|V_{m}^{-}\right|=\left|\Gamma_{L}\right| \cdot\left|V_{m}^{+}\right|
$$

Maximum Amplitude when in Phase: $V_{\max }=\left|V_{m}^{+}\right|+\left|V_{m}^{-}\right|$

$$
\therefore V_{\max }=\left|V_{m}^{+}\right| \cdot\left(1+\left|\Gamma_{L}\right|\right)
$$

$$
\text { Similarly: } \quad V_{\min }=\left|V_{m}^{+}\right| \cdot\left(1-\left|\Gamma_{L}\right|\right)
$$

$$
\text { Standing Wave Ratio }(\underline{(S W R)})=\frac{V_{\max }}{V_{\min }}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|}=\frac{V^{+}\left(|+| \Gamma_{\varepsilon} 1\right)}{V^{+}\left(\left(f \Gamma_{\varepsilon}\right)\right)}
$$

Transmission Lines - Standing Wave B'érivation

Distance between Maxpand Min is $\lambda / 2$

Assume $V^{ \pm}$are real (will be complex if the load is complex)

Forward Phase is $=-j \cdot \beta \cdot z$
Backward Phase is $=\quad+j \cdot \beta \cdot z$

Difference in Phase is $=-2 \cdot j \cdot \beta \cdot z$
Varies by 2π (distance between maxima)
$\therefore 2 \cdot \beta \cdot \Delta z=2 \cdot \pi \quad \square \Delta z=\frac{\pi}{\beta}=\frac{\pi}{2 \cdot \pi / \lambda}=\frac{\lambda}{2}$

Reflection Coefficient Derivation

Let $\mathrm{z}=0$ at the LOAD

$$
\begin{aligned}
& \Rightarrow V_{\text {load }}=V^{+} \cdot e^{-j \cdot \beta \cdot 0}+V^{-} \cdot e^{+j \cdot \beta \cdot 0} \\
& =V^{+}+V^{-} \\
& =V^{+} \cdot\left(1+\Gamma_{L}\right)
\end{aligned}
$$

Need a relationship between current and voltage:

$$
\frac{\partial V}{\partial z}=-l \cdot \frac{\partial I}{\partial t} \quad \Rightarrow \frac{\partial V}{\partial z}=-j \cdot l \cdot \omega \cdot I
$$

Reflection Coefficient Derivation

$$
\begin{aligned}
& I=-\frac{1}{j \cdot \omega \cdot l} \cdot \frac{\partial V}{\partial z} \\
&=-\frac{1}{j \cdot \omega \cdot l} \cdot\left(-j \cdot \beta \cdot V^{+} \cdot e^{-j \cdot \beta \cdot z}+j \cdot \beta \cdot V^{-} \cdot e^{+j \cdot \beta \cdot z}\right) \\
&=\frac{\beta}{\omega \cdot l} \cdot\left(V^{+} \cdot e^{-j \cdot \beta \cdot z}-V^{-} \cdot e^{+j \cdot \beta \cdot z}\right) \\
& \therefore I=\frac{\omega \cdot \sqrt{l \cdot c}}{\omega \cdot l} \cdot\left(V^{+} \cdot e^{-j \cdot \beta \cdot z}-V^{-} \cdot e^{+j \cdot \beta \cdot z}\right) \\
&=\frac{V^{+}}{\sqrt{\frac{l}{c}}} \cdot e^{-j \cdot \beta \cdot z}-\frac{V^{-}}{\sqrt{\frac{l}{c}}} \cdot e^{+j \cdot \beta \cdot z} \quad=\frac{V^{+}}{\sqrt{\frac{l}{c}} \cdot e^{-j \cdot \beta \cdot z}-\frac{V^{+} \cdot \Gamma_{L}}{\sqrt{\frac{l}{c}}} \cdot e^{+j \cdot \beta \cdot z}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { At LOAD: } \frac{V}{I}=Z_{L} \longleftarrow \frac{V(\text { load })}{i(\text { lo ad })}=Z_{L}
\end{aligned}
$$

Use derived terms of V and I at $z=0$ (position of the LOAD)

$$
\begin{array}{ll}
e^{-j \beta t} & \left(\frac{V^{+}}{\sqrt{1 / c}}-\frac{V^{+} \cdot \Gamma_{L}}{\sqrt{l / c}}\right)^{-1} \cdot \underbrace{\left(V^{+}+\Gamma_{L} \cdot V^{+}\right)}=Z_{L} \\
e^{+j \beta z} & Z_{L}=\sqrt{\frac{l}{c} \cdot\left(\frac{1+\Gamma_{L}}{1-\Gamma_{L}}\right)} \text { Note that } Z_{0}=\sqrt{\frac{l}{c}} \\
O R \quad \Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad \underbrace{J_{2}} \quad
\end{array}
$$

Short Circuit Load

- For $Z_{L}=0$, we have $\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=\frac{0-Z_{o}}{0+Z_{o}}=-1$
$v(z)=\underline{V^{+} e^{-j \beta z}}+\Gamma_{L} V^{+} e^{+j \beta z}=V^{+}\left(e^{-j \beta z}-e^{+j \beta z}\right)$

$$
\begin{aligned}
& e^{+j \beta z}=\cos \beta z+j \sin \beta z \\
& e^{-j \beta z}=\cos \beta z-j \sin \beta z
\end{aligned}
$$

$$
v(z)=-V^{+}(j 2 \sin \beta z)
$$

Short Circuit Load

- Convert to space-time form

$$
\begin{gathered}
v(z, t)=\operatorname{Re}\left(v(z) e^{j \omega t}\right)=\operatorname{Re}\left(V^{+}(-j 2 \sin \beta z) e^{j \omega t}\right) \\
\operatorname{Re}\left((-j 2 \sin \beta z) e^{j \omega t}\right)=\operatorname{Re}(-2 \sin \beta z(j \cos \beta z-\sin \beta z)) \\
v(z, t)=2 V^{+} \sin \beta z \sin \omega t
\end{gathered}
$$

- This is a standing wave

Short Circuit Load

- What are the voltage maxima and minima?

$$
v(z, t)=2 V^{+} \sin \beta z \sin \omega t
$$

- Where are they?
- The standing wave pattern is the envelope of this function.

Lumped Transmission Line

4 September 2006

Lumped Transmission Line

Input Not Shown

Both
Outputs
Shown

Lumped Transmission Line

Input is BNC
Output is both BNC and Banana Plugs (for some loads)

Lumped Transmission Line Experiment

- Treat the lumped version just like the reel of cable. (Connectors are opposite so you will need connector cables.)
- Monitor the output of the function generator on one channel
- Monitor the voltages on each node (one at a time) on the other channel. You can use just the signal (red) lead, since the ground (black) lead is connected through the other cables. Use the voltage cursors to obtain $V_{p_{-} p}$ for each node. Record your values and plot with Excel, Matlab, etc.

Lumped Transmission Line Numerical Experiment (Not required)

- Use PSpice to set up the standard transmission line, matched and not
- Look at the output for a variety of frequencies
- Set up the lumped line in PSpice (more work) and repeat
- Use the lumped line model to show the standing wave pattern
- Will there be any obvious differences between the physical and numerical experiments?

Workspace

$$
\begin{aligned}
z & =z_{0} e^{j \theta_{z}} \\
& =x+j y
\end{aligned}
$$

$$
z_{0}=\sqrt{x^{2}+y^{2}}
$$

$$
\theta_{z}=\operatorname{atan} \frac{y}{x}
$$

$$
\begin{gathered}
\text { Workspace } \quad \frac{\partial}{\partial t} e^{j \omega t}=i j \omega e^{j \omega t} \\
V(z)=V^{t} e^{-j \beta t}+V e^{+j \beta t} \\
\frac{\partial i}{\partial t}=-c \frac{\partial V}{\partial t} \quad \frac{\partial V}{\partial t}=-e \frac{\partial i}{\partial t} \\
c \operatorname{cop} / \text { lengh } / \begin{array}{l}
\text { end/ength } \\
\frac{\partial}{\partial t} \rightarrow j \omega \quad \quad \frac{\partial V}{\partial t}=-j \omega l i
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \text { workspace } \beta=\omega \sqrt{l c} \quad z_{0}=\frac{\omega l}{\beta}=\frac{\omega l}{\omega \sqrt{c c}} \\
& i=\frac{-1}{j \omega l} \frac{\partial V}{\partial t} \\
& V
\end{aligned} \begin{aligned}
& V+e^{-j \beta t}+V^{-} e^{+j \beta t} \\
& \frac{\partial V}{\delta t}=V^{+}(-j \beta) e^{-j \beta t}+V^{-}(+i \beta) e^{+j j^{\beta t}} \\
& i(z)=V^{+} \frac{j \beta}{t \omega l} e^{-j \beta z}-j \omega^{j} e^{+j \beta t} V^{-} \\
&=\frac{V^{+}+\omega}{z_{0}} e^{-j \beta t}-\frac{V-}{z_{0}} e^{+j \beta z}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vorkspace } \\
& V(z)=V^{+} e^{-j p z}+V^{-} e^{+j} j^{\beta z} \\
& i(z)=\frac{v^{+}}{z_{0}} e^{-j \beta z}-\frac{v^{-}}{z_{0}+j} e^{+j z} \\
& Z_{0}=\sqrt{\frac{l}{c}} \quad \beta=w \sqrt{l c} \\
& V^{-}=\Gamma_{L} V^{+}
\end{aligned}
$$

Workspace

$$
\beta=\frac{2 \pi}{\lambda}
$$

Workspace

Workspace

Workspace

Workspace

