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Materials from other sources are referenced where they are used.
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Overview

Henry Farny Song of the Talking Wire

= Review
= Voltages and Currents on Transmission Lines
= Standing Waves

= Input Impedance

= Lossy Transmission Lines

= Low Loss Transmission Lines
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Wavelength (A)
Peak

What do we know so far?

Trough Velocity (¢) .

it
frequency (v)
= Solutions look like Acos(a)t + ,32)
2
IB:Q:a) Ic = w /ug:_ﬂ-
U A
1 1
27T U= — =
w =2 = = Ve ue
2z U
Ll e c= e =t
Figure from
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Wavelength (A)
Peak

Phase Velocity

Phase = const gh -
g Velocity (¢)  pmeasurement

point for
frequency (v)

= A simple way to find the phase velocity
e |dentify some feature of the sine wave. For this we choose

constant phase at F ,BZ — const

e Determine it's velocity. Since the phase is a constant, we know

that
O 17 A
“(atF B)=0 0F B==0
5 (A7 ) p
7 A 9,
A S
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Phasor Notation

= For ease of analysis (changes second order partial
differential equation into a second order ordinary
differential equation), we use phasor notation.

f(z,t) = Acos(at F /&) = Re({Aeijﬁz}ejwt)
= The term in the brackets is the phasor.

f(2) = Ae™#
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Phasor Notation

= To convert to space-time form from the phasor form,
multiply by ~ @lJt  and take the real part.

f (z,t) = Re(Ae™ 7)) = Acos(at T fz)

= If Ais complex

A=|Ae!™

f(z,t) = Re(|Ale»e™el") = | Alcos(at ¥ 2 + 6, )
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What is the phasor of the time derivative?

v(z,t) = Re([v g I ]ej”t)

—v(z t) = —Re([v e ]e‘”t Mg{ Voe )Q{

Conyy Wit temwe

N 5&5—@ )
- R (el )

Q{(/\aséﬁ %% —=
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Transmission Lines

Incident Wave

Mismatched load

Reflected Wave

:> Standing wave due to interference
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Transmission Lines — Phasor Voltage Solution

Phasor Form of the Wave Equation:

2 2 :
oz 2 ot V=V+°eiJ'BZ
IR,

L

General Solution;

V =V'te 17ty ethhe
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Transmission Lines - Standing Wave Derivation

V =V'e v ettt

e .

Forward Wave Backward Wave

cos(w-t-f-2) TiveEpomAaN  S0S(@t+f-7)

V.., occurs when Forward and Backward Waves are in Phase
:> CONSTRUCTIVE INTERFERENCE
V., occurs when Forward and Backward Waves are out of Phase

min

:> DESTRUCTIVE INTERFERENCE
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Transmission Line Voltages and Currents (5 &
%w We @&(M\I\J‘VV-

4

= General Solution  |Vv(z) =V e ¥ +Vv e

ta-if _\j-atib + -
VA

0

i(2) =

= The latter expression is derived from S\A\
N

—jali(z) = (Z)

CCantwe easny
exp
mlnu;\mgn’?
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Reflection Coefficient Derivation —

A
Lo LT
+Von

Define the Reflection Coefficient:
- +
V| =\1L| Vi

Maximum Amplitude when in Phase: Vinax = MHL

" Vinax :’Vr;]r '(1+‘FL‘)
Similarly: Vinin = Nn: '(1_‘11‘)
: : _ Vmax _1+‘FL‘
ﬁndlng Wave Ratio (SWR) = V. = 1_‘11‘
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Another General Form for the Solution
Note that we

will be rewriting

N

g the solution in

= Using the reflection coefficient different forms

v(z) =V e ¥ 4T Ve

|(z)— e —FLZWe”ﬂZ

O 0
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Transmission Lines

N

Coaxial line

Zg

T

i Transmission line

Generator Load

Y Y.
Generator | Load
z=-I =0
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Reflection Coefficient o

q

g2 o t/
=5 2 |
R
Let z=0 at the LOAD
Y VA Y e A e

=V VT 9 \plhegt o /sad
=V"-(1+I)

\/IOWJ {/1(_

Toud

Co_Vve o nve v
load Z Z Z

0] 0] 0

(1-T,)
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Reflection Coefficient

= At the load

—)

10 September 2006
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Workspace L iz
o— ()
Two-port
V1 Circuit AL
o— o
— 9 — 9
Zin Zout
e e e
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2
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Workspace

N
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Workspace — Short Circuit Load

N
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Workspace — Open Circuit Load

TL,V

—

10 September 2006

DC,L// L,
L v e
2
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'

L~
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Short Circuit Load —

Z -Z, 0-Z
- For Z=0,we have [ =————%= > =-1

Lot Qb

V(Z) :V+e—jﬂz _I_FLv+e+j,BZ :V+(e—j,6’z _e-l—jﬂz)

) V() =V (j2sin )
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Short Circuit Load

= Convert to space-time form

v(z,t):Re(v(z)ej“’t) Re( ( JZSIn,Bz) Ja)t)

(( j2sin e ’”t) Re(— 2sin gz( j cos iz —sin fz))

|
V(z,t) = 2V 7 sin Bzsin at

= This Is a standing wave |
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Short Circuit Load

= What are the voltage maxima and minima?
v(z,t) =2V " sin fzsin gt

p%,_ @) ]‘(‘) 2270

= Where are they? (B: L A S ]
A A = Ay
22—
= The standing wave pattern is the envelope of this
function.
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Reflection

N

4

50 Q

1.5 MHz \~~

2 Vpp 4/\/\
)

Note that we are free to
choose either-the-load end
or the source end as z=0

10 September 2006

-— 80m —P
RG-58 93 Q
) )
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z'=80 z'=0
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Reflection Coefficient

= Determine the reflection coefficient at the load, FL and the
standing wave ratio, VSWR. Start with a short circuit load and then
consider a 25 Ohm load. Then do an open circuit and 93 Ohm
load.

= Assume that the forward traveling wave has an amplitude of 10
Volts. Sketch the standing wave pattern for voltage and current
for the short circuit load. Include numbers for amplitudes and
distances.

= Under what conditions do you get a voltage maximum at the load?
a minimum? Can you answer this in general?

= |If the load is a 3.3 nF capacitor, what is the reflection coefficient
at the load? Where is the location of the first minimum? To
answer this, we need a bit more development.
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First Sketch the Standing Wave Patterns by Hand

= The reflection coefficient

 0-50 - _25-50 1

= B = = ——=-0.333
b 0+ 50 ! - 25450 3

FL:oo—SO:1 FL:93—5O: 43 _ .03
o0 + 50 03+50 143
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Using Matlab for the Voltage Standing Wave Patterns

Standing Wave Pattem

Standing Wave Pattern

Meters

heters

Standing Wave Pattern

Standing Wave Pattern

heters

heters

30
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Current Standing Wave Patterns

= Can we use what we just displayed to find
the current standing wave patterns?

* Yes, because the reflection coefficient for
current is always just the negative of the
voltage reflection coefficient
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Standing Wave Pattern

We have just seen that:

Minimum occurs at LOAD for  Z; — 0

Is it also true that:

Maximum occurs at LOAD for ZL —> 0

Or, in general, that:

—
I >0 =74, >Z, Max at LOAD
~— IF Z, is REAL
I <0 = L, <Z, Min at LOAD
I
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Standing Wave Pattern

If z=L at LOAD and z=0 at SOURCE,

Phase of the

F( YA ) — FL . e‘]?y reflection coefficient

=|r, |- e e 12AD)

When Phase = r, the FIRST MINIMUM occurs

0--2-B-(L-2)=r
10 Other MINs are displaced

= (L-2)=J Lq Y
/4
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A Repeat of HW2 Experiment (600kHz)

= What did you see at the 20 nodes?
e Time Delay
e Amplitude

= Did any of you try an open or short circuit?
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Change the Frequency to 1.5MHz

a.p= (£-=3“ Kl.SKlO"f' =\m np:wlne
vV — L

Dls'\'dnc,c bd‘u:eem maxr and min 2 37#‘"—" 32 k = 074*

(32
Dns‘l'a.nce \oc.'l‘uiee.n 2 max img . @
- -5
b MR- a;.«-z., = G370 = o301

VSWR = |+—l|"| m — S? "\lﬂ‘\el" than meas ured

valve
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Volis P-P

05F | »=— 93 ohm load N K
& - =0  open circuit load o
e}
0 T T T ] | | _ L l I
0 2 4 6 8 10 12 14 16 18 20
2 T T T T ! H- o T 1 T
_}G-—- T
‘,.D"' S
.E).-"
15 e’ Q .
re
o ol
<L /
1 - »# MM £ . 2 » ) ;- » _ .
% ~ s ﬁi A
= ’
\Q o S
05 N Y g —— 50 ohm load A
Q, R - "
~ & — =0  shortcircuit load D
D‘ i 1 1 1 | 1 1 ] 1
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Capacitive Load?

N

o
15+
%
o
g r
[=]
-2
D5k
3 — 3.3 nF load
0 1 1 1 1 | | 1 |
0 2 4 B a8 10 12 14 16 18 20
node #
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Capacitive Load

= Now we can answer the question about where the first
minimum is located for a capacitive load.

1,
' > 1- jaCZ —aCZ
r, = Jal)c _ 1o Jeks, :1exp[tan1( AL ZD
JaC
2 L2 L —2ab
a-jb_a-jba-jb_a’-j2ab—b _(a 40 )exp(tan (az—bz) o (tan‘l( —2ab D
a+jb a+jpa—jb  al+b? a’ +b? = b a? —b?
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Capacitive Load

= For the specific case here

1,

joC  ° - j322-50
he="7 T _i322+50

= 4z T seer

JaC

A6 A  —-.63627
4 2r 4 4
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Standing Wave Pattern for Capacitive Load

Standing YWawve Pattern

Reflection
Coefficient

[ = 11063627
| =

Yiolts

Load End

-A0 -40 -30 =20 -10
Meters

41
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PSpice — Input Impedance

= For the same source and line, but different load:

10 September 2006

R1

VOFF =0
VAMPL = 1@
FREQ = 1meg

VOFF =0
VAMPL = 1@
FREQ = 1meg

AN
50
T1
V1 L
SN i
- v 300
1 T
-0 -0
R2
AN
50
T2
V2 L
ROR (L
N vV 50
o ==
=0 =0
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Changing the Load

= The voltages and currents at the input change - the
Input impedance changes.

AN A ™ AN AN AN AN

ov

st N

-5.0V M
0 V(T2:A+) o V(T2:B+)

1ov

k| ZARY /1N JARN /1 N \
N / \‘ A Ay e \‘ A N\ 4 \\ A )
A4 ~— NI/ e NS ~

N

. Y 7 N 7 \ 7
7
74

=10V

10.0us 10.5us 11.0us 11.5us 12.0us 12.5us 13.0us
0 V(T1:A+) o V(T1:B+)
Time
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Changing the Length and Line Properties

= From the standing wave patterns or the
expressions for the voltages and the currents
on the line, we can see that the ratio of the
voltage to the current will depend on the
length of the line and the line properties.
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Workspace iy iz

Two-port °

Circuit va

V(M:\ﬂﬂ ﬁ et G%)
:VJ‘—C?)@%((,‘,VLQ Zﬁ)
vak)
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Input Impedance

V.
What does  Z;; =—" , look like?

When Z, is complex, sois I", . To address the input
Impedance, we need to generalize the reflection
coefficient.

Vo.ethrove
1_, 7 - :_.ej.z.lg.z

Define;
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Another Form for the General Solution

= Using the Generalized Reflection Coefficient

v(z) =V e ¥ (1+ I'(z))

+

|(z)_ e (1 F(z))

O

10 September 2006

g
Vm ‘\1(3%
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Input Impedance

Previously, we have seen:

V(2)=V'(2)+V (2) =V " e 7. (1+T(2))

What about I?

V? (z) Vo(2) A
Z  Z

O 0 0]

1(2) = e 177 (1-T(2))

Also, _
r(z)=r, -e2At-2)

10 September 2006 Fields and Waves |

48



Input Impedance

Form the Ratio (the generalized impedance):

V()
@ 1-T() &

We are primarily interested in z=0 value

e treat connection to rest of circuit as 2 port with,
1+T(z=0)
1-T(z=0)
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Input Impedance

After lots of algebra, one can show:

Z +]-Z,-tan(f-L)
L, +]-Z -tan(f-L)

. (z=0)=Z,-

Special Case example: Z, =0 (short circuit)

2 =0y=z, QLoD o

i Zo+j@tan(/8'l—)
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Input Impedance - SHORT CIRCUIT

v
AN Can change Z;, by
changing these two
parameters

* Fix B, vary L - different effects

- Vary B, fix L - get same effects hote-that L 1s fe

length of the
Transmission Line
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Input Impedance — Short Circuit

= For varying frequency, the input impedance is imaginary
and can achieve any value.

Imaginary Input Impedance
e e ) B

k00

400

200

0

-200

-400

-600

A0 i i i i i i i i i
0

Frequency w10
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Input Impedance - TL

Consider some other cases

80 Q | =80 m
.
q
1V Peak TV'“ RG 58
q
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Input Impedance - TL

Open Circuit Case

Lop=-00

Z iz, tan(pLy
ZL:Z L+J . .

*Z,+-Z, tan(B-L)

small
b %c, & ’)‘zo C"\““L(gkw
— %O -)&%(@L

Z, =932 - lots of complex algebra, but straight forward
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Using the Input Impedance

We know Z,, (z=0) - treat as 2-PORT

80 2

Voltage
1V Zi, Vin Divider

s 2
Power = % Re&in <1 }= % Re{vi” Vi } = % Re{’vin }
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Using the Input Impedance

In a Lossless Transmission Line, P;, flows into
the Transmission Line and it is dissipated at the
LOAD n _1 MZ

in — 2 ZL
What is the voltage at the load?

V(z)=V*-e 7. (1+T(2))
V(z=0)=V, =V"-e /. (1+T(z =0))
V+ s Vin
1+1°(0)

Can then plug back and get the full phasor expression
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Using the Input Impedance

= The full form of the voltage
V(z) =V e ¥ fv et

= All information is now available to determine the
voltage and current everywhere on the line. You will
be doing this on the project.
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Special Cases

= Recall that the standing wave pattern repeated every
half wavelength. Thus, we expect that this will also
happen for Z,, First, consider the trivial case of L=0.

Z + ) tanpl
" Z, + jZ, tan AL

Ly =< Z

= Now let the line be a half wavelength long

Z +0
°Z,+0

27w A
tan AL = tan(75j = tan(z) =0 Z =7 Z,
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Special Cases

= Thus, for a line that is exactly an integer number of
half wavelengths long

Z, =2,

In

= Thus, if you have a transmission line with the wrong
characteristic impedance, you can match the load to
the source by selecting a length equal to a half
wavelength.
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Special Cases

= |If the line is an odd multiple of a quarter wavelength,
we also get an interesting result.

7 -7 Z, +)Z, tan AL _z JZ,tanpL Z
"% Z o +jZ, tan AL jZ, tanp  Z,

2
tan AL = tan—”i — tan = 5
A4 2
= Thus, such a transmission line works like an impedance

transformer and has a real input impedance.
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Today’s Major Result i1 iz

O 0
Two-port
v o
4 ! Circuit ve
o0—— 0

= |Input Impedance

L +]-Z, -tan(f-L)
L, +]-Z -tan(f-L)

L. (z=0)=Z,-

Vg@) Coaxial line Ru

Generator Load
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