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10 September 2006 Fields and Waves I 3
http://memory.loc.gov/ammem/index.html



10 September 2006 Fields and Waves I 4

Overview

Review
Voltages and Currents on Transmission Lines
Standing Waves
Input Impedance
Lossy Transmission Lines
Low Loss Transmission Lines

Henry Farny Song of the Talking Wire
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What do we know so far?

Solutions look like

β ω ω ω με π
λ

= = = =
u

lc 2

( )A t zcos ω βm
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u
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ε ε ε= r o μ μ μ= r o

Figure from http://www.emc.maricopa.edu/
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Phase Velocity

A simple way to find the phase velocity
• Identify some feature of the sine wave. For this we choose 

constant phase 

• Determine it’s velocity. Since the phase is a constant, we know 
that 

ω βt z constm =

( )∂
∂

ω β
t

t zm = 0 ω β ∂
∂

m
z
t

= 0
∂
∂

ω
β

z
t

u= =

Phase = const
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Phasor Notation

For ease of analysis (changes second order partial 
differential equation into a second order ordinary 
differential equation), we use phasor notation.

The term in the brackets is the phasor.

( ) { }( )f z t A t z Ae ej z j t( , ) cos Re= =ω β β ωm m

f z Ae j z( ) = m β
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Phasor Notation

To convert to space-time form from the phasor form, 
multiply by                  and take the real part.

If A is complex 

e j tω

( )f z t Ae e A t zj z j t( , ) Re( ) cos= =m mβ ω ω β

A Ae j A= θ

( )f z t Ae e e A t zj j z j t
A

A( , ) Re( ) cos= = +θ β ω ω β θm m
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Workspace

[ ]( )v z t V e eo
j z j t( , ) Re= − β ω

What is the phasor of the time derivative?

[ ]( )∂
∂

∂
∂

β ω

t
v z t

t
V e eo

j z j t( , ) Re ?= =−
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Transmission Lines

Incident Wave

Reflected Wave

Mismatched load

Standing wave due to interference
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Transmission Lines – Phasor Voltage Solution

Phasor Form of the Wave Equation:

Vcl
z
V

t
Vcl

z
V

2
2

2

2

2

2

2

⋅⋅⋅−=
∂
∂

⇒

∂
∂

⋅⋅=
∂
∂

ω

where:

zjeVV ⋅⋅±⋅= βm

General Solution: zjzj eVeVV ⋅⋅+−⋅⋅−+ += ββ
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Transmission Lines - Standing Wave Derivation

zjzj eVeVV ⋅⋅+−⋅⋅−+ += ββ

Forward Wave

)ztcos( ⋅−⋅ βω

Backward Wave

)ztcos( ⋅+⋅ βω

Vmax occurs when Forward and Backward Waves are in Phase

Vmin occurs when Forward and Backward Waves are out of Phase

CONSTRUCTIVE INTERFERENCE

DESTRUCTIVE INTERFERENCE

TIME DOMAIN
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Transmission Line Voltages and Currents

General Solution

The latter expression is derived from

v z V e V ej z j z( ) = ++ − − +β β

i z V e V e
Z

V
Z

e V
Z

e
j z j z

o o

j z

o

j z( ) =
−

= −
+ − − + +

−
−

+
β β

β β

− =j li z v z
z

ω ∂
∂

( ) ( )
Can we easily 
explain the 
minus sign?
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Workspace
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Reflection Coefficient  Derivation

Define the Reflection Coefficient:

+− ⋅= mLm VV Γ

Maximum Amplitude when in Phase:
−+ += mmmax VVV

)1(VV Lmmax Γ+⋅=∴ +

Similarly: )1(VV Lmmin Γ−⋅= +

Standing Wave Ratio (SWR) =
L

L

min

max

1
1

V
V

Γ
Γ

−
+

=
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Another General Form for the Solution

Using the reflection coefficient

v z V e V ej z
L

j z( ) = ++ − + +β βΓ

i z V
Z

e
V

Z
e

o

j z L

o

j z( ) = −
+

−
+

+β βΓ

Note that we 
will be rewriting 
the solution in 
different forms
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Transmission Lines

Both from Ulaby
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Reflection Coefficient 

Let z=0 at the LOAD

)1(

00

L

jj
load

V

VV

eVeVV

Γ+⋅=

+=

⋅+⋅=⇒

+

−+

⋅⋅+−⋅⋅−+ ββ

( )I V
Z

V
Z

V
Zload

o

L

o o
L= − = −

+ + +Γ
Γ1
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Reflection Coefficient

At the load
V
I

Zload

load
L=

( )

( )

V
V
Z

ZL

o
L

L

+

+

+

−
=

1

1

Γ

Γ

ΓL
L o

L o

Z Z
Z Z

=
−
+

This is a key 
relationship
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Workspace

Zin = ? Zout = ?
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Workspace



10 September 2006 Fields and Waves I 22

Workspace – Short Circuit Load
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Workspace – Open Circuit Load
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Short Circuit Load

For ZL=0, we have ΓL
L o

L o

o

o

Z Z
Z Z

Z
Z

=
−
+

=
−
+

= −
0
0

1

( )v z V e V e V e ej z
L

j z j z j z( ) = + = −+ − + + + − +β β β βΓ

e z j zj z+ = +β β βcos sin
e z j zj z− = −β β βcos sin

( )v z V j z( ) sin= − + 2 β
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Short Circuit Load

Convert to space-time form

This is a standing wave

( ) ( )( )v z t v z e V j z ej t j t( , ) Re ( ) Re sin= = −+ω ωβ2

( )( ) ( )( )Re sin Re sin cos sin− = − −j z e z j z zj t2 2β β β βω

v z t V z t( , ) sin sin= +2 β ω
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Short Circuit Load

What are the voltage maxima and minima?

Where are they? 

The standing wave pattern is the envelope of this 
function.

v z t V z t( , ) sin sin= +2 β ω
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Reflection

93 ΩRG-58

80 m

z=0 z=80
z'=0z'=80

50 Ω

~
2 Vpp

1.5 MHz

Note that we are free to 
choose either the load end 
or the source end as z=0
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Reflection Coefficient

Determine the reflection coefficient at the load,       and the 
standing wave ratio, VSWR. Start with a short circuit load and then 
consider a 25 Ohm load. Then do an open circuit and 93 Ohm 
load.
Assume that the forward traveling wave has an amplitude of 10 
Volts.  Sketch the standing wave pattern for voltage and current
for the short circuit load.  Include numbers for amplitudes and 
distances.  
Under what conditions do you get a voltage maximum at the load? 
a minimum? Can you answer this in general?
If the load is a 3.3 nF capacitor, what is the reflection coefficient 
at the load?  Where is the location of the first minimum? To 
answer this, we need a bit more development.

ΓL
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First Sketch the Standing Wave Patterns by Hand

The reflection coefficient

ΓL =
−
+

= − = −
25 50
25 50

1
3

0 333.ΓL =
−
+

= −
0 50
0 50

1

ΓL =
∞ −
∞ +

=
50
50

1 ΓL =
−
+

= = +
93 50
93 50

43
143

0 3.
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Using Matlab for the Voltage Standing Wave Patterns
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Current Standing Wave Patterns

Can we use what we just displayed to find 
the current standing wave patterns?

Yes, because the reflection coefficient for 
current is always just the negative of the 
voltage reflection coefficient
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Standing Wave Pattern

Maximum occurs at LOAD for

Minimum occurs at LOAD for

∞→LZ

0ZL →

Or, in general, that:

0L >Γ 0L ZZ >⇒ Max at LOAD

0L <Γ 0L ZZ <⇒ Min at LOAD
IF ZL is REAL

We have just seen that:

Is it also true that:
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Standing Wave Pattern

If z=L at LOAD and z=0 at SOURCE,

)zL(2j
L e)z( −⋅⋅⋅−⋅= βΓΓ

)(2 zLjj
L ee −⋅⋅⋅−⋅ ⋅⋅Γ= Γ βθ

When Phase = π, the FIRST MINIMUM occurs 

( ) πβθΓ =−⋅⋅− zL2

( ) λ
π

θλ Γ ⋅
⋅

+=−⇒
44

zL
Other MINs are displaced 
by λ/2

Phase of the 
reflection coefficient
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A Repeat of HW2 Experiment (600kHz)

What did you see at the 20 nodes?
• Time Delay
• Amplitude

Did any of you try an open or short circuit?
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Change the Frequency to 1.5MHz
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Continuing
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Capacitive Load?
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Capacitive Load

Now we can answer the question about where the first 
minimum is located for a capacitive load.

( )
ΓL

o

o

o
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o

j C
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j CZ
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=
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ω
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−
+

=
−
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−
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=
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⎠⎟
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⎠⎟
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Capacitive Load

For the specific case here

ΓL

o

o

jj C
Z

j C
Z

j
j

j e=
−

+
=

− −
− +

= − − = −

1

1
32 2 50
32 2 50

0 4 0 91 1 0 6362ω

ω

π.
.

. . .

L z− = + = +
−

= − =
λ θ

π
λ λ π

π
λ λ λ λ

4 2 4
6362
4 4

1591 0 09Γ . . .
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Standing Wave Pattern for Capacitive Load

Reflection 
Coefficient

ΓL
je= −1 0 6362. π

Load End
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PSpice – Input Impedance

For the same source and line, but different load:

0

R1

50

RL1

300V

T1

0

V

0

T2
V2

FREQ = 1meg
VAMPL = 10
VOFF = 0 RL2

50

V1

FREQ = 1meg
VAMPL = 10
VOFF = 0

R2

50

V

0

V
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Changing the Load

The voltages and currents at the input change the 
input impedance changes.

           Time

10.0us 10.5us 11.0us 11.5us 12.0us 12.5us 13.0us
V(T1:A+) V(T1:B+)

-10V

0V

10V
V(T2:A+) V(T2:B+)

-5.0V

0V

5.0V

SEL>>
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Changing the Length and Line Properties

From the standing wave patterns or the 
expressions for the voltages and the currents 
on the line, we can see that the ratio of the 
voltage to the current will depend on the 
length of the line and the line properties. 
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Workspace
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Input Impedance

What does 
in

in
in I

VZ = , look like?

When ZL is complex, so is . To address the input
impedance, we need to generalize the reflection 
coefficient.

Define:
zj

zj

zj

e
V
V

eV
eV

z ⋅⋅⋅
+

−

⋅⋅−+

⋅⋅+−

⋅=
⋅

⋅
=Γ β

β

β
2)(

z2j
L e ⋅⋅⋅⋅= βΓ if z =0 at LOAD

ΓL
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Another Form for the General Solution

Using the Generalized Reflection Coefficient

( )v z V e zj z( ) ( )= ++ − β 1 Γ

( )i z V
Z

e z
o

j z( ) ( )= −
+

− β 1 Γ



10 September 2006 Fields and Waves I 48

Input Impedance

Previously, we have seen:

))(1()()()(ˆ zeVzVzVzV zj Γ+⋅⋅=+= ⋅⋅−+−+ β

What about I?

))(1()()()(ˆ ze
Z
V

Z
zV

Z
zVzI zj

ooo

Γ−⋅⋅=−= ⋅⋅−
+−+

β

Also,
)zL(j2

L e)z( −⋅⋅⋅−⋅= βΓΓ
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Input Impedance

)(
)(1
)(1

)(ˆ
)(ˆ

zZ
z
zZ

zI
zV

o =
Γ−
Γ+

⋅=

Form the Ratio (the generalized impedance):

We are primarily interested in z=0 value

• treat connection to rest of circuit as 2 port with,

)0(1
)0(1)0(

=Γ−
=Γ+

⋅==
z
zZzZ oin
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Input Impedance

After lots of algebra, one can show:

)tan(
)tan()0(

LZjZ
LZjZZzZ

Lo

oL
oin ⋅⋅⋅+

⋅⋅⋅+
⋅==

β
β

Special Case example: ZL=0 (short circuit)

)tan(
)tan(0
)tan(0)0( LZj

LjZ
LZjZzZ o

o

o
oin ⋅⋅⋅=

⋅⋅⋅+
⋅⋅⋅+

⋅== β
β
β
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Input Impedance - SHORT CIRCUIT

)tan()0( LZjzZ oin ⋅⋅⋅== β

Can change Zin by 
changing these two 
parameters

• Fix β, vary L - different effects
• Vary β, fix L - get same effects Note that L is the 

length of the 
Transmission Line
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Input Impedance – Short Circuit

For varying frequency, the input impedance is imaginary 
and can achieve any value.
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Consider some other cases

80 Ω l   = 80 m

RG 58 Z
L

~1 V Peak Vin

Input Impedance - TL
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Input Impedance - TL

Open Circuit Case

)tan(
)tan(

LZjZ
LZjZZZ

Z

Lo

oL
oL

L

⋅⋅⋅+
⋅⋅⋅+

=

∞=

β
β

ZL = 93Ω - lots of complex algebra, but straight forward

small

small
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Using the Input Impedance

We know Zin (z=0) - treat as 2-PORT

1 V

80 Ω

Zin Vin
Voltage 
Divider

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧ ×

=×= ∗∗

∗
∗

in

2
in

in

inin
inin Z

V
Re

2
1

Z
VVRe

2
1IVRe

2
1Power
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In a Lossless Transmission Line, Pin flows into 
the Transmission Line and it is dissipated at the 
LOAD

What is the voltage at the load?

))(1()(ˆ zeVzV zj Γ+⋅⋅= ⋅⋅−+ β

))0(1()0(ˆ =Γ+⋅⋅=== ⋅⋅−+ zeVVzV zj
in

β

)0(1 Γ+
=⇒ + inVV

Can then plug back and get the full phasor expression

L

2
L

in Z
V

2
1P ⋅=

Using the Input Impedance
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The full form of the voltage

All information is now available to determine the 
voltage and  current everywhere on the line. You will 
be doing this on the project.

V z V e V ej z j z( ) = ++ − − +β β

Using the Input Impedance
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Special Cases

Recall that the standing wave pattern repeated every 
half wavelength. Thus, we expect that this will also 
happen for Zin. First, consider the trivial case of L=0.

Now let the line be a half wavelength long

Z Z Z jZ L
Z jZ L

Zin o
L o

o L
L=

+
+

=
tan
tan

β
β

( )tan tan tanβ π
λ

λ πL = ⎛
⎝⎜

⎞
⎠⎟

= =
2

2
0 Z Z Z

Z
Zin o

L

o
L=

+
+

=
0
0
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Special Cases

Thus, for a line that is exactly an integer number of 
half wavelengths long

Thus, if you have a transmission line with the wrong 
characteristic impedance, you can match the load to 
the source by selecting a length equal to a half 
wavelength.  

Z Zin L=
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Special Cases

If the line is an odd multiple of a quarter wavelength, 
we also get an interesting result. 

Thus, such a transmission line works like an impedance 
transformer and has a real input impedance. 

Z Z Z jZ L
Z jZ L

Z jZ L
jZ L

Z
Zin o

L o

o L
o

o

L

o

L

=
+
+

= =
tan
tan

tan
tan

β
β

β
β

2

tan tan tanβ π
λ

λ πL = = → ∞
2

4 2
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Today’s Major Result

Input Impedance

)tan(
)tan()0(

LZjZ
LZjZZzZ

Lo

oL
oin ⋅⋅⋅+

⋅⋅⋅+
⋅==

β
β


