Homework 2

Fields and Waves

Fall 2007
1.) Show that any function of $(x+c t)$ satisfies the wave equation.

Solution :
Let

$$
\begin{aligned}
& \mathrm{z}=x+c t \\
& \mathrm{~V}=f(x+c t)=f(z)
\end{aligned}
$$

The wave equation can be written as:

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{d^{2} V}{d t^{2}}=\frac{d^{2} V}{d x^{2}} \tag{i}
\end{equation*}
$$

\qquad
$\frac{d V}{d t}=\frac{d V}{d z} \frac{d z}{d t}$
$\frac{d z}{d t}=c$, therefore
$\frac{d V}{d t}=c \frac{d V}{d z}$
$\frac{d^{2} V}{d t^{2}}=\frac{d}{d t}\left(c \frac{d V}{d z}\right)=c^{2} \frac{d^{2} V}{d z^{2}}$ \qquad
$\frac{d V}{d x}=\frac{d V}{d z} \frac{d z}{d x}$
$\frac{d z}{d x}=1$
$\frac{d V}{d x}=\frac{d V}{d z}$
$\frac{d^{2} V}{d x^{2}}=\frac{d}{d x}\left(\frac{d V}{d z}\right)=\frac{d^{2} V}{d z^{2}}$ \qquad

From (ii) and (iii),

$$
\frac{d^{2} V}{d t^{2}}=c^{2} \frac{d^{2} V}{d x^{2}}, \text { which proves the wave equation. }
$$

2.a) Calculation: The inductance per unit length of a coaxial cable is $l=\left(\frac{\mu_{0}}{2 \pi}\right)\left\{\ln \frac{b}{a}+0.25\right\}$. For this problem you can ignore the internal effect (the 0.25) and use $l=\left(\frac{\mu_{0}}{2 \pi}\right)\left\{\ln \frac{b}{a}\right\}$. The capacitance per unit length is $c=\frac{2 \pi \varepsilon}{\ln \frac{b}{a}}$. See Appendix B for the values of permeability and permittivity of free space. For the coax cable in the lab (RG $58 \mathrm{~A} / \mathrm{U}$) there is polyethylene dielectric insulation with $\varepsilon_{r}=2.3$ and copper conductors with inner radius $a=0.4 \mathrm{~mm}$ and outer radius $b=1.4 \mathrm{~mm}$. To model a 4 meter section of the cable what values of L and C should we use? (As in the text, lower case l and c are per unit length and upper case L and C are total values.) Compare these values to the lumped circuit transmission lines in the lab; $l=2.5 \times 10^{-7} \mathrm{H} / \mathrm{m}, c=10^{-10} \mathrm{~F} / \mathrm{m}$. This should represent 80 meters of RG 58 by 20 sections.
We have seen that $V=V_{0} \cos (\omega s)$ where $s=t \pm z / u$ is a solution to $\frac{\partial^{2} V(z, t)}{\partial z^{2}}-l c \frac{\partial^{2} V(z, t)}{\partial t^{2}}=0 \quad$ Find the velocity, u, for the RG $58 \mathrm{~A} / \mathrm{U}$ cable. What is the time delay for the 4 meter section? What is the characteristic impedance of the cable?

Solution:

$$
\begin{aligned}
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \text { and } \epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
& l=\left(\frac{\mu_{0}}{2 \pi}\right)\left(\ln \frac{b}{a}\right)=2.5 \times 10^{-7} \mathrm{H} / \mathrm{m} \\
& c=\frac{2 \pi \epsilon_{r} \epsilon_{0}}{\ln \frac{b}{a}}=1.02 \times 10^{-10} \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

Each section would represent a $\frac{80 \mathrm{~m}}{20}=4 \mathrm{~m}$ long line.
The total values of L and C are given by :

$$
\begin{aligned}
& L=l \times \text { length of the section }=2.5 \times 10^{-7} \mathrm{H} / \mathrm{m} \times 4 \mathrm{~m}=1 \mathrm{mH} \\
& C=c \times \text { length of the section }=1.02 \times 10^{-10} \mathrm{~F} / \mathrm{m} \times 4 \mathrm{~m}=4.08 \times 10^{-10} \mathrm{~F} \\
& V=V_{0} \cos (\omega s)=V_{0} \cos \left(\omega t \pm \omega \frac{z}{u}\right)
\end{aligned}
$$

If

$$
\begin{equation*}
\frac{\partial^{2} V(z, t)}{\partial z^{2}}=-\frac{\omega^{2}}{u^{2}} V(z, t) \tag{iv}
\end{equation*}
$$

And, $\quad \frac{\partial^{2} V(z, t)}{\partial t^{2}}=-\omega^{2} V(z, t)$
For the voltage wave,

$$
\frac{\partial^{2} V(z, t)}{\partial z^{2}}-l c \frac{\partial^{2} V(z, t)}{\partial t^{2}}=0
$$

Using (iv) and (v) we have,

$$
\frac{-\omega^{2}}{u^{2}} V(z, t)+l c \omega^{2} V(z, t)=0
$$

Therefore,

$$
\frac{1}{u^{2}}=l c, u=\frac{1}{\sqrt{(l c)}}
$$

For an ideal co-ax,

$$
l=\left(\frac{\mu_{0}}{2 \pi}\right)\left(\ln \frac{b}{a}\right) \text { and } c=\frac{2 \pi \epsilon_{r} \epsilon_{0}}{\ln \frac{b}{a}}
$$

It follows that

$$
u=\frac{1}{\sqrt{(l c)}}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0} \epsilon_{r}}}
$$

Thus u depends only on the material properties if the line is ideal. Plugging in the numbers,

$$
u=1.98 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Time delay for the 4 m section would be

$$
t_{d}=\frac{d}{u}=\frac{4 \mathrm{~m}}{1.98 \times 10^{8} \mathrm{~m} / \mathrm{s}}=2.02 \times 10^{-8} \mathrm{~s}
$$

The characteristic impedance

$$
Z_{0}=\sqrt{\frac{L}{C}}=49.5 \Omega
$$

