Homework 5

Fields and Waves I

Fall 2007

1. We have 2 solenoid coils. The outer one has N1 turns and a radius of R1 and the inner one has N2 turns and a radius of R2. They are parallel to each other and both are the same length 1, We can assume that $1 \gg \mathrm{R} 1$ or R2. The inner cylinder is filled with a magnetic material of relative permeability of 100 . Find the self inductance of each coil and the mutual inductance.

Inner cylinder:
$H_{2}=\frac{N_{2} I_{2}}{l}$
$B_{2}=\mu H_{2}=\mu_{0} \mu_{r} \frac{N_{2} I_{2}}{l}$
$\Phi_{2}=\int_{0}^{r_{2}} B_{2} \cdot d S=\pi r_{2}^{2} \mu_{0} \mu_{r} \frac{N_{2} I_{2}}{l}$
Outer cylinder:
$\Lambda_{2}=N_{2} \Phi_{2}=\pi r_{2}^{2} \mu_{0} \mu_{r} \frac{N_{2}^{2} I_{2}}{l}$
$\Lambda_{1}=N_{1} \Phi_{1}=\pi r_{2}^{2} \mu_{0} \mu_{r} \frac{N_{1}^{2} I_{1}}{l}+\pi \mu_{0} \frac{N_{1}^{2} I_{1}}{l}\left(r_{1}^{2}-r_{2}^{2}\right)$
$L_{2}=\frac{\Lambda_{2}}{I_{2}}=\pi r_{2}^{2} \mu_{0} \mu_{r} \frac{N_{2}^{2}}{l}$
$L_{1}=\frac{\Lambda_{1}}{I_{1}}=\pi \mu_{0} \frac{N_{1}^{2}}{l}\left(r_{2}^{2} \mu_{r}+\left(r_{1}^{2}-r_{2}^{2}\right)\right)$

Mutual inductance:
$\Phi_{12}=\int_{0}^{r_{2}} B_{1} \cdot d S=\pi r_{2}^{2} \frac{\mu_{0} \mu_{r} N_{1} I_{1}}{l}$
$\Lambda_{12}=N_{2} \Phi_{12}=\pi r_{2}^{2} \frac{\mu_{0} \mu_{r} N_{1} N_{2} I_{1}}{l}$
$L_{12}=\frac{\Lambda_{12}}{I_{1}}=\pi r_{2}^{2} \frac{\mu_{0} \mu_{r} N_{1} N_{2}}{l}$
2. A magnetic circuit is shown below. Assume that $\mu=\infty$ for the iron parts. Draw the equivalent circuit and evaluate the reluctances. Find the flux density in the three air gaps. Find the self and mutual inductances of the coils.

$$
\text { Area }=\mathrm{S}
$$

$R_{1}=\frac{g_{1}}{\mu_{0} S} \quad R_{2}=\frac{g_{2}}{\mu_{0} S} \quad R_{3}=\frac{g_{3}}{\mu_{0} S}$
$N_{1} I_{1}=\Phi_{1} R_{1}+\left(\Phi_{1}+\Phi_{2}\right) R_{2}$
$N_{2} I_{2}=\Phi_{2} R_{3}+\left(\Phi_{1}+\Phi_{2}\right) R_{2}$
$\Phi_{1}=\frac{N_{1} I_{1}}{R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}}, \quad \Lambda_{1}=\frac{N_{1}^{2} I_{1}}{R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}}$
$\Phi_{2}=\frac{N_{2} I_{2}}{R_{3}+\frac{R_{2} R_{1}}{R_{2}+R_{1}}}, \quad \Lambda_{2}=\frac{N_{2}^{2} I_{2}}{R_{3}+\frac{R_{2} R_{1}}{R_{2}+R_{1}}}$
$L_{1}=\frac{\Lambda_{1}}{I_{1}}=\frac{N_{1}^{2}}{R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}}$
$L_{2}=\frac{\Lambda_{2}}{I_{2}}=\frac{N_{2}^{2}}{R_{3}+\frac{R_{2} R_{1}}{R_{2}+R_{1}}}$
$\Phi_{12}=I_{1}\left(\frac{R_{2}}{R_{2}+R_{3}}\right), \quad \Lambda_{12}=N_{2} \Phi_{12}=\frac{N_{1} N_{2} I_{1}\left(\frac{R_{2}}{R_{2}+R_{3}}\right)}{R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}}$
$L_{12}=\frac{\Lambda_{12}}{I_{1}}=\frac{N_{1} N_{2}\left(\frac{R_{2}}{R_{2}+R_{3}}\right)}{R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}}$
3. In the figure below we have a current of $\mathrm{I}_{1}=10$ Amperes in the y direction. There is a loop with current $\mathrm{I}_{2}=15$ Amperes. Find the force on the loop.

No force on sides B and D.
On side A :
$F=i l \times B$
$F=(15 \mathrm{~A})(0.5 \mathrm{~m})\left(\frac{\mu_{0}(10 \mathrm{~A})}{2 \pi(0.1 \mathrm{~m})}\right)=150 \mu \mathrm{~N} \hat{a}_{x}$

On side C :
$F=(15 \mathrm{~A})(0.5 \mathrm{~m})\left(\frac{\mu_{0}(10 \mathrm{~A})}{2 \pi(0.3 \mathrm{~m})}\right)=50 \mu \mathrm{~N}-\hat{a}_{x}$

Total force:
$F=(15 \mathrm{~A})(0.5 \mathrm{~m})\left(\frac{\mu_{0}(10 \mathrm{~A})}{2 \pi}\right)\left(\frac{1}{0.1 \mathrm{~m}}-\frac{1}{0.3 \mathrm{~m}}\right)=100 \mu \mathrm{~N} \hat{a}_{x}$
4. In a cylindrical coordinate system the magnetic field in a conducting region is $H=\frac{4}{r}\left(1-(1+2 r) e^{-2 r}\right) \hat{a}_{\phi}$. Find the current density.
$J=\nabla \times H$
$J=\frac{1}{r}\left(\frac{\delta}{\delta r}(r H)\right) \hat{a}_{z}$
$J=\frac{1}{r}\left(\frac{\delta}{\delta r}\left(r\left(\frac{4}{r}\left(1-(1+2 r) e^{-2 r}\right)\right)\right)\right) \hat{a}_{z}$
$J=\frac{1}{r}\left(8^{-2 r}(1+2 r)-8 e^{-2 r}\right) \hat{a}_{z}$
$J=16 e^{-2 r} \hat{a}_{z}$

