Homework 7
 Fields and Waves I

Fall 2007

1. For copper the conductivity is $\sigma_{c u}=5.7 \times 10^{7} \mathrm{~S} / \mathrm{m}$. and for Teflon
$\sigma_{\text {teflon }}=3.0 \times 10^{-9} \mathrm{~S} / \mathrm{m}$. At 1 MHz show that one is a "good conductor" and one is a "good insulator".

Solution :

Copper :

$$
\frac{\sigma}{\omega \epsilon}=\frac{5.8 \times 10^{7}}{2 \pi \times 10^{6} \times \frac{1}{36 \pi} \times 10^{-9}}=1.04 \times 10^{12} \gg 1
$$

So copper is a good conductor.
Teflon :

$$
\frac{\sigma}{\omega \epsilon}=\frac{3 \times 10^{-9}}{2 \pi \times 10^{6} \times 2.1 \times \frac{1}{36 \pi} \times 10^{-9}}=2.57 \times 10^{-5} \ll 1
$$

So Teflon is a good insulator.
2. Find the magnetic field in free space if the electric field is given by $E=E_{m} \sin (\alpha x) \cos (\omega t-\beta z) \hat{a}_{y}$.
Show that in order for these fields to satisfy Maxwell's equations we must have $\alpha^{2}+\beta^{2}=\mu_{0} \varepsilon_{0} \omega^{2}$
In phasor notation,

$$
\begin{gathered}
E^{\sim}=E_{m} \sin (\alpha x) e^{-j \beta z} \\
\nabla \times E^{\sim}=-j \omega \mu H^{\sim} \\
\nabla \times E^{\sim}=\left(-\frac{\partial E_{y}}{\partial z}\right) x^{\rightarrow}+\left(\frac{\partial E_{y}}{\partial x}\right) z^{\rightarrow} \\
=\left(j \beta E_{m} \sin \alpha x e^{-j \beta z}\right) x^{\rightarrow}+\left(\alpha E_{m} \cos \alpha x e^{-j \beta z}\right) y^{\rightarrow} \\
H^{\sim}=-\frac{\beta}{\mu_{0} \omega}\left(E_{m} \sin \alpha x e^{-j \beta z}\right) x^{\rightarrow}+\frac{j \alpha}{\mu_{0} \omega}\left(E_{m} \cos \alpha x e^{-j \beta z}\right) z^{\rightarrow} \\
H=-\frac{\beta}{\mu_{0} \omega}\left(E_{m} \sin \alpha x \cos (\omega t-\beta z)\right) x^{\rightarrow-}-\frac{\alpha}{\mu_{0} \omega}\left(E_{m} \cos \alpha x \sin (\omega t-\beta z)\right) z^{\rightarrow}
\end{gathered}
$$

Also,

$$
\begin{gathered}
\nabla \times H^{\sim}=j \omega \epsilon E^{\sim} \\
\frac{j \beta^{2}}{\omega \mu_{0}} E_{m} \sin \alpha x+\frac{j \alpha^{2}}{\mu_{0} \omega} E_{m} \sin \alpha x e^{-j \beta z}=j \omega \epsilon\left(E_{m} \sin \alpha x e^{-j \beta z}\right)
\end{gathered}
$$

Therefore,

$$
\alpha^{2}+\beta^{2}=\mu_{0} \epsilon_{0} \omega^{2}
$$

3. Determine the polarization of the following waves
$E=1 \cos (\omega t+\beta z) \hat{a}_{x}+1 \sin (\omega t+\beta z) \hat{a}_{y}$
$E=1 \cos (\omega t+\beta z) \hat{a}_{x}-1 \sin (\omega t+\beta z) \hat{a}_{y}$
$E=1 \cos (\omega t+\beta z) \hat{a}_{x}-2 \sin \left(\omega t+\beta z-45^{0}\right) \hat{a}_{y}$
Solution :
a) Since $\left|E_{x}\right|=\left|E_{y}\right|$, and the phase angle between the two components is 90 the polarization is circular
At $\mathrm{z}=0, \omega \mathrm{t}=0$,

$$
\begin{aligned}
& E=E_{x} \\
& E=E_{y}
\end{aligned}
$$

At $\mathrm{z}=0, \omega \mathrm{t}=\pi / 2$
Therefore the direction of rotation of phase is anti-clockwise.
Direction of propagation is along -z. So the polarization is left circular.
b) Since $\left|E_{x}\right|=\left|E_{y}\right|$, and the phase angle between the two components is 90 the polarization is circular
At $\mathrm{z}=0, \omega \mathrm{t}=0$,

$$
E=E_{x}
$$

At $\mathrm{z}=0, \omega \mathrm{t}=\pi / 2$

$$
E=-E_{y}
$$

Therefore the direction of rotation of phase is clockwise.
Direction of propagation is along -z. So the polarization is right circular.
c) Since $\left|E_{x}\right| \neq\left|E_{y}\right|$, the polarization is elliptical.

At $\mathrm{z}=0, \omega \mathrm{t}=0$,

$$
E=E_{x}
$$

At $\mathrm{z}=0, \omega \mathrm{t}=\pi / 4$

$$
E=-E_{y}
$$

Therefore the direction of rotation of phase is clockwise.
Direction of propagation is along -z. So the polarization is right elliptical.
4. A wave is traveling in a material with relative permittivity $=2$ and a frequency of 3 GHz . Find the phase velocity, wave impedance and wavelength.

$$
\begin{gathered}
v_{p}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{2} \sqrt{\mu_{0} \epsilon_{0}}}=\frac{3 \times 10^{8}}{\sqrt{2}}=2.12 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\lambda=\frac{v_{p}}{f}=2.12 \times \frac{10^{8}}{3 \times 10^{9}}=7.07 \times 10^{-2} \mathrm{~m} \\
\eta=\frac{\sqrt{\mu}}{\sqrt{\epsilon}}=266.45 \Omega
\end{gathered}
$$

