Due: 3 May 2005

Transmission Lines

1. Multiple Choice (More than one answer can be correct.)

- a) The VSWR (standing wave ratio):
 - a) is a measure of the match between the source impedance and line impedance
 - b) may be equal to 1
 - c) is a measure of the match between the load impedance and line impedance
 - d) may be equal to 0

b) The impedance of a lossless transmission line depends on

- a) material properties
- b) voltage
- c) geometry
- d) current

c) If the total voltage as a function of position on a transmission line is: $V_I = V^+ e^{-j\beta z} + V^+ e^{j\beta z}$

- a) The load is an open circuit
- b) The transmission line is lossless
- c) $\Gamma_{\rm L}$ = -1
- d) VSWR = ∞ (infinity)

d) The characteristic impedance of typical cable TV transmission line is

- a) 93 Ω
- b) 50 Ω
- c) 75 Ω
- d) 300 Ω

2. For the following expressions state if the wave is a standing or traveling wave, explain. If it is a traveling wave give the direction. For either case give the wavelength. C_0 is an arbitrary constant.

- a) $C_0 \sin(1000t + \pi/2) \cos(3000x + 4)$
- b) C_ocos(4000t+375y+11)

3.

A component on a printed circuit board sends a 5 [V], 0.5 [ns] pulse down a 10 [cm] long transmission line. The circuit is shown in the figure. Assume that the line is lossless.

a) Draw a reflection (bounce) diagram illustrating the circuit behavior. Include all appropriate numbers. Model the behavior until after the signal gets to the load for the third time (i.e. 3 reflections off the load and 2 off the generator).

b) Plot the voltages at the load and the input as a function of time. Be sure to include all numerical values on the axis.

Page 2

Electrostatics

4 . Multiple Choice (More than one answer can be correct.)

a) The capacitance of two fixed conductors with free space between them:

- a) increases if the voltage difference between the conductors decreases
- b) increases if the magnitude of the charge on the conductors increases
- c) increases if a dielectric material is placed between the conductors
- d) increases if the stored electric energy W_E increases
- **b**) Which of the following are always continuous across a material boundary?
 - a) Tangential electric field, \vec{E}_{t}
 - b) Normal electric field, \vec{E}_n
 - c) Tangential electric flux, \vec{D}_t
 - d) Voltage, V

c) Which of the following differential operations result in a scalar (\vec{A} is an arbitrary vector, f is an arbitrary scalar)

- a) the divergence $\nabla \cdot \vec{A}$
- b) the gradient ∇f
- c) the curl $\nabla \times \vec{A}$
- d) the Laplacian, $\nabla^2 f$

d) The field inside a cube with sides of length *a* is $\vec{E} = E_x \hat{a}_x + E_y \hat{a}_y$. The stored energy in this region is:

Page 3

a)
$$\frac{1}{2} \varepsilon (E_x + E_y) a^3$$

b) $\frac{1}{2} \varepsilon (E_x + E_y)^2 a^3$
c) $\frac{1}{2} \varepsilon (E_x^2 + E_y^2) a^3$
d) 0

1

5. Use the finite difference approximation to estimate the voltages at the four points shown in the figure.

Page 4

6. A coaxial cable is constructed using two insulating materials. There is a voltage V_0 on the inner conductor and the outer conductor is grounded. The charge per unit length on the inner conductor is $\rho_l [C/m]$.

a) Determine the electric field \vec{E} in the region $a \le r \le c$

b) Determine the voltage (potential), *V* at all points in the same region, $a \le r \le c$

Page 5

c) Determine the capacitance, C per unit length of this cable?

1

Magnetic Fields

7. Multiple Choice (More than one answer can be correct.)

a) Which of the following is true regarding the magnetic properties of materials:

- a) relative permeability can be less than 1
- b) relative permeability can be greater than 10000
- c) plastic makes an excellent core for a transformer
- d) it is possible to make frogs levitate

b) For Beakman's Motor:

- a) The field due to the current in the coil may be approximated as a solenoid type of field
- b) The battery internal resistance wasn't negligible in the circuit analysis
- c) The movie brought tears to my eyes; I can't wait for the sequel
- d) The oscilloscope impedance is approximately the same magnitude as the resistive components in the circuit (wire, paper clips, etc.)

Page 6

- c) For a current carrying wire with a uniform current density:
 - a) $\nabla \cdot \vec{B} = 0$ inside the wire
 - b) $\nabla \cdot \vec{B} = 0$ outside the wire
 - c) $\nabla \times \vec{H} = 0$ inside the wire
 - d) $\nabla \times \vec{H} = 0$ outside the wire

d) Hysteresis:

- a) describes the nonlinear relationship between \vec{H} and \vec{B}
- b) describes the nonlinear relationship between \vec{E} and \vec{D}
- c) applies to ferromagnetic materials
- d) applies to dielectric materials

8. A circular conductor of radius $r_0 = 1$ [cm] has an internal field $\vec{H} = \frac{10^4}{r} (\frac{1}{a^2} sinar - \frac{r}{a} cosar) \hat{a}_{\phi}$ [A/m] where $a = \frac{\pi}{2r_0}$. Find the total current in the conductor

conductor.

9. A toroidal magnet is constructed using a rectangular cross section toroidal core around which N turns of wire carrying a current I are wound. The permeability of the core is $\mu >> \mu_0$.

a) Find the magnetic field, \vec{B} everywhere?

- b) Determine the magnetic flux, ψ linked by the wires?
- c) Determine the total magnetic field energy, W_m stored in the core material

Page 7

d) Determine the inductance of the toroid, *L* from your answer to (c)

EM Waves

10. Multiple Choice

- a) A transverse EM wave in free space
 - a) is traveling with the speed of light ($c=3x10^8 m/s$)
 - b) has a magnetic field which is parallel to the direction of propagation
 - c) has an intrinsic impedance of 377 Ohms
 - d) has electric and magnetic fields perpendicular to each other
- **b**) Complex permittivity
 - a) should be considered when conductivity is finite in a dielectric
 - b) is independent of frequency
 - c) has only a real part if the medium is lossless
 - d) is a function of skin depth

c) A plane wave in free space is normally incident on a lossy dielectric material

- a) at the location of the boundary, the electric field in both regions must be the same
- b) at the location of the boundary, the magnetic field in both regions must be the same
- c) the magnitude of the reflection coefficient will be greater than 1
- d) a current density will be induced in the bulk of the material

d) Polarization

- a) describes the state (e.g. circular, linear, etc) of the wave
- b) describes the locus of the tip of \vec{E}
- c) depends on the phase difference between two orthogonal components of the \vec{E}
- d) depends on the ratio of the magnitudes of two orthogonal components of the \vec{E}

11. A plane wave is normally incident on distilled water ($\sigma \approx 0$, $\varepsilon_r = 80$). Find the reflection and transmission coefficients.

12. The electric field phasor of a uniform plane wave traveling in a lossless medium with an intrinsic impedance of 188.5 [Ω] is given by $\tilde{E} = 10e^{-j4\pi y} \hat{a}_z$ [mV/m]. Determine

- a) The associated magnetic field phasor \widetilde{H}
- b) The instantaneous expression for \vec{E} if the medium is non-magnetic ($\mu = \mu_0$)
- c) The instantaneous expression for \vec{H} if the medium is non-magnetic $(\mu = \mu_0)$

EXTRA CREDIT

For a single uniform plane wave in a lossless medium, show that the average Poynting vector \vec{S} , equals the product of the average energy density times the phase velocity.