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Using a Spreadsheet to Solve Laplace’s Equation 
 
Shown below a spreadsheet used to determine the solution to Laplace’s equation in a 
simple 2D structure of the type we address in problem 2 of Lesson 2.6 .  Here the top, 
right, bottom and left boundaries are conductors held at 80, 70, 0 and 30 volts potential, 
respectively.  Such boundary conditions are established by setting the voltage in each cell 
(which represents a point on the boundary) equal to some fixed number.  At the cells in 
the empty space between the electrodes, the contents are set equal to the average of the 
four nearest neighboring cells.  For example, if the upper left cell is A1, the contents of 
cell B2 should be the formula =(B1+B3+A2+C2)/4 .  Such a formula should be in each 
cell of this type.   

80 80 80 80 
30 50 60 70 
30 30 40 70 
0 0 0 0 

 
Once all of the cells have been filled appropriately, then we must enable iteration to 
update the values in the cells until they come close to being equal to the average of their 
neighbors.  Go to Tools button and select Options.  Click on the Calculation tab.  Put a 
check mark in the box next to the word iteration.  Note the default values of the 
maximum iterations and the maximum change.   The iteration will run until it reaches 100 
or until the change becomes less than the maximum.  The iteration can either be 
automatic or manual.  Manual works better because you can control when it happens.  
Push key F9 to start the iteration.  The potential values shown in the table above result 
from very few iterations, since only four cells are involved.  The equipotentials for this 
structure are plotted below.  The lines are very crude because so few points were used.  
Also the cells in the corners are not used in the calculation, but show up in the plot.  
When we use Excel for this purpose, we have to accept that it was designed for 
something else.  Thus, there are certain oddities that appear in the results, particularly 
when they are plotted. In the plot below, the problem has been flipped over because that 
is the default view for the 3D plots.  You can actually turn the plot right side up by 
changing the view elevation to –90o instead of 90o for this plot. 
 

1 2 3 4
S1

S2

S3

S4

60-80

40-60

20-40

0-20

 



Fields and Waves I 
ECSE-2100                Spring 2000 

K. A. Connor                                                                                                                  Revised: 2/9/00 
Rensselaer Polytechnic Institute                                                                                Troy, New York, USA 
 

We can make this calculation much more accurate if we make the spreadsheet larger. We 
can also see how the process works better, since our small spreadsheet converged too 
fast. Doing this same problem again for an 11x11 array produces the following 
spreadsheet before any iterations are done. 
 

80 80 80 80 80 80 80 80 80 80 80 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 70 
0 0 0 0 0 0 0 0 0 0 0 

 
After one pass through all of the cells, it looks like:  
 

80 80 80 80 80 80 80 80 80 80 80 
30 41.25 44.063 44.766 44.941 44.985 44.996 44.999 45 55.625 70 
30 31.563 32.656 33.105 33.262 33.312 33.327 33.332 33.333 46.614 70 
30 29.141 29.199 29.326 29.397 29.427 29.439 29.443 29.444 43.39 70 
30 28.535 28.184 28.127 28.131 28.14 28.145 28.147 28.148 42.259 70 
30 28.384 27.892 27.755 27.721 27.715 27.715 27.715 27.716 41.869 70 
30 28.346 27.809 27.641 27.591 27.576 27.573 27.572 27.572 41.735 70 
30 28.336 27.786 27.607 27.549 27.531 27.526 27.525 27.524 41.69 70 
30 28.334 27.78 27.597 27.537 27.517 27.511 27.509 27.508 41.675 70 
30 21.459 19.185 18.57 18.402 18.355 18.341 18.338 18.336 32.503 70 
0 0 0 0 0 0 0 0 0 0 0 

 
After well over 100 iterations (which takes almost no real time): 
 

80 80 80 80 80 80 80 80 80 80 80 
30 54.557 64.042 68.376 70.716 72.194 73.249 74.008 74.346 73.671 70 
30 44.186 53.235 58.746 62.292 64.812 66.795 68.438 69.705 70.338 70 
30 38.952 45.966 51.081 54.895 57.967 60.681 63.242 65.699 67.975 70 
30 35.656 40.597 44.715 48.24 51.481 54.719 58.15 61.874 65.865 70 
30 33.074 36.052 38.944 41.866 45 48.562 52.768 57.78 63.611 70 
30 30.588 31.592 33.144 35.281 38.091 41.76 46.579 52.868 60.797 70 
30 27.687 26.583 26.758 28.025 30.321 33.811 38.919 46.316 56.711 70 
30 23.578 20.295 19.28 19.74 21.356 24.243 28.972 36.765 49.73 70 
30 16.329 11.738 10.329 10.297 11.121 12.831 15.961 22.042 35.443 70 
0 0 0 0 0 0 0 0 0 0 0 

 
The plot now looks somewhat better, but it is still kind of a strange problem. 
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By changing the view elevation to –90o, we get the correct plot. 
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Most of the problems we wish to address are more complicated than the one we just 
considered.  Also, even the simple parallel plate capacitor cannot be addressed in the 
same manner, since it does not have conductors on all sides.  For other cases, we need 
additional boundary conditions.  
 
Dielectric-Dielectric Boundary 
 
For a boundary between two dielectric regions, we will rewrite the condition for the 
normal component of  D in terms of the voltages as 
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 is the derivative of the voltage normal to the boundary.  In finite difference 
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 where V is the voltage at a cell on the boundary, V1 is the voltage at 
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the nearest cell in region 1 and ∆  is the spacing between the cells.  The normal boundary 

condition can thus be written as ( ) ( )ε ε1 1 2 2V V V V− = − .  Combining terms gives us 

V
V V

=
+
+

ε ε
ε ε

1 1 2 2

1 2

.  For example, at a horizontal boundary between two dielectrics, the cell 

formula would be based on this expression rather than being set equal to the average of 
its neighbors.   
 
Line of Symmetry 
 
For a parallel plate capacitor or for a symmetric structure that contains an exactly vertical 
or horizontal electric field line, we know that the equipotentials must be perpendicular to 
the boundary of the problem.  That means the boundary cells should be set equal to their 
immediate neighbor in a direction perpendicular to the boundary.  Shown below is a 
parallel plate capacitor configuration, with 100 volts on the top plate and -100 volts on 
the bottom plate.  There have been no iterations of this spreadsheet. 
 

100 100 100 100 100 100 100 100 100 100 100 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 
0 25 25 25 25 25 25 25 25 25 0 

-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 
 
The cells showing 25 volts all have the formula setting them equal to the average of their 
neighbors.  The cells showing 0 are set equal to their immediate neighbor, since we know 
that the equipotentials must be horizontal.  For example, cell A2 is set equal to cell B2 
and cell K2 is set equal to J2.  These cells show a value of 0 because they were defined 
before the interior cells.  After many iterations, the spreadsheet converges to the solution 
we expect. 
 

100 100 100 100 100 100 100 100 100 100 100 
80 80 80 80 80 80 80 80 80 80 80 
60 60 60 60 60 60 60 60 60 60 60 
40 40 40 40 40 40 40 40 40 40 40 
20 20 20 20 20 20 20 20 20 20 20 

3E-13 3E-13 3E-13 3E-13 3E-13 3E-13 3E-13 3E-13 3E-13 3E-13 3E-13 
-20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 
-40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 
-60 -60 -60 -60 -60 -60 -60 -60 -60 -60 -60 
-80 -80 -80 -80 -80 -80 -80 -80 -80 -80 -80 

-100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 
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Note that the middle equipotential never converges exactly to zero, but it will get 
arbitrarily close if we let the iterations continue forever.  The equipotential plot also looks 
very good in this case.  The lines are so straight that the look like the grid lines. 
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Finally, we need to address how we use this information to figure out capacitance.  Let us 
look at a problem similar to the coaxial structure of Lesson 2.6 – a square cross-section 
coaxial cable with 100 volts on the center conductor and a grounded outer conductor.  
The solved spreadsheet (11x11) looks like: 
 

0 0 0 0 0 0 0 0 0 0 0 
0 4.736 9.472 13.95 17.4 18.62 17.4 13.95 9.472 4.736 0 
0 9.472 19.2 28.93 37.03 39.67 37.03 28.93 19.2 9.472 0 
0 13.95 28.93 45.53 62.14 65.99 62.14 45.53 28.93 13.95 0 
0 17.4 37.03 62.14 100 100 100 62.14 37.03 17.4 0 
0 18.62 39.67 65.99 100 100 100 65.99 39.67 18.62 0 
0 17.4 37.03 62.14 100 100 100 62.14 37.03 17.4 0 
0 13.95 28.93 45.53 62.14 65.99 62.14 45.53 28.93 13.95 0 
0 9.472 19.2 28.93 37.03 39.67 37.03 28.93 19.2 9.472 0 
0 4.736 9.472 13.95 17.4 18.62 17.4 13.95 9.472 4.736 0 
0 0 0 0 0 0 0 0 0 0 0 

 
Since this is up-down symmetric, the plot of the equipotentials looks fine. 
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To determine the capacitance, we need to know the total charge on one of the  
conductors.  We will choose to look at the outer conductor for this purpose, since the 
potentials near larger objects are more accurately determined.  To find the charge we 
need the surface charge density.  To get the charge density we need the electric flux 
density D and to get D we need the electric field E.  At any point on the outer conductor, 
we can approximate E by subtracting the voltage at the neighboring cell from the voltage 
at the boundary and dividing by the separation distance of the cells.  

ρ ε εs n n

neighbor boundary
D E

V V
= = =

−

∆
 

where for each boundary cell, the neighboring cell is the closest cell in the direction 
normal to the boundary.  For example, for cell D1, the neighboring cell is D2.  ∆ is the 
distance between cells.  We could find the surface charge density at each point and 
multiply it by the small area represented by the boundary of each cell and then add them 
up to find the total charge Q.  However, there is an easier way.  If we find the average 
surface charge density for the outer boundary, then we need only multiply this number by 
the total area of the conductor to obtain the total charge.  The good news is that the 
average function is standard in spreadsheets.  If we take the average of  the voltages 
neighboring the outer conductor, we get 12.193.  Since the boundary voltages are all zero, 
this number is the average difference voltage.  Now divide this number by the cell 
separation (let that be 1mm so that the cable is 10mmx10mm).  Then we have 
ρ εs = 12193 .  The area per unit length for this cable is .04m2.  Thus the capacitance is  

C
Q

V
= = ≈

12193 0 04
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5

ε
ε

( . )
 

For a cylindrical coaxial cable with similar dimensions, C =






≈
2

5
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πε

ε
ln

, so the answer is 

plausible.  


