ECSE 2100 - Fields and Waves I
 Fall 2008
 Homework \#1

1. For the following wave expressions, indicate if the wave is standing or traveling. If the wave is traveling, find the direction of propagation and the velocity.
a) $\sin (500 t+0.3 x)$
b) $\cos \left(1.5 \times 10^{5} t-6 \times 10^{-1} z\right)$
c) $\cos (120 t) \sin (50 x)$
2. Find the phasor representation of the following expressions
a) $v(t)=4 \cos \left(\omega t-\frac{2 \pi}{3}\right)$
b) $v(t)=2.5 \sin \left(\omega t+\frac{\pi}{3}\right)$
c) $v(t)=8 \sin \left(\omega t+\frac{2 \pi}{3}\right)+8 \cos \left(\omega t-\frac{\pi}{3}\right)$
3. Find the time domain expression for the following phasors.
a) $\tilde{V}=3.5+j 1.5 \mathrm{~V}$
b) $\tilde{V}=2.0 e^{j \frac{\pi}{4}} V$
4. A wave is described by $v(t, z)=3.5 e^{-\alpha z} \sin \left(2 \pi \times 10^{8} t-12 \pi z\right) V$. Find the frequency, wavelength and velocity. At $\mathrm{z}=2 \mathrm{~m}$ the magnitude is measured as 1 V . Find the attenuation constant.
