Preparation Assignments

Due Wednesday, August 28

For a lossless line, what is the inductance, l, and capacitance, c, of a 75Ω transmission line with velocity of propagation of 0.75 c ?

What is the transmission delay of 100 meters of that line?
At 15 MHz , how long is the line in wavelengths, λ.

Due Thursday, August 29

Defining the direction of propagation on a transmission line as the positive z-direction, determine the voltage and current time domain expressions of the forward propagating waves for a $10 \mathrm{~V}, 10 \mathrm{MHz}$ source attached to a $0.83 \mathrm{c}, 75 \Omega$ line.

Due Monday, September 2

Using classical mechanics to describe the hydrogen atom, an electron orbiting a proton nucleus, determine the magnetic radiation from a single atom. You may use any atomic distances and orbital velocities you find in the literature.

Due Wednesday, September 4

Determine the phasor notations of the expressions from the $8 / 29$ assignment.
When is the reflection coefficient negative?
Can the reflection coefficient be imaginary?
When is the reflection coefficient zero?

When is the magnitude of the reflection coefficient 1 ?

