Preparation Assignments

Due Monday, October 7

Determine the total charge in a hollow sphere with inner radius, a, outer radius, b, and a charge density $\rho(r, \theta, \phi)=\rho_{o} r\left[\mathrm{C} / \mathrm{m}^{3}\right]$.

Determine the total charge of on a spherical shell located at radius, $r=c$, with a surface charge density of $\rho(r, \theta, \phi)=-\rho_{o}\left[\mathrm{C} / \mathrm{m}^{2}\right]$.

What is the relationship between, a, b, and, c such that the total volume charge is equal and opposite to the total surface charge?

Due Wednesday, October 9

In the above figure, the two charges are located at $x=-a$ and $x=a$.
Using the known electric field pattern for a point charge, determine the electric field on the x -axis and on the y -axis. Use superposition.

Due Thursday, October 10

For the above figure, using the known potential for a point charge, determine the potential (voltage) as a function of position on the x -axis and on the y -axis. Use superposition.

Using the relationship between electric field and potential (voltage), verify your results from Wednesday's prep assignment.

