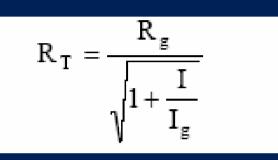
EPOW-6860 : Surge Phenomena in Electric Power Engineering

Final Presentation

Jason L. Frasier frasij@rpi.edu

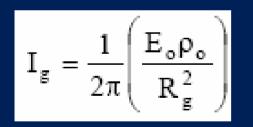
International Power System Transients Conference

- Held every 2 years since 1995
- "...promoting the study of power systems transients by offering a platform of scientific and technical excellence for its presentation..."
- Over 100 papers from 2007 meeting

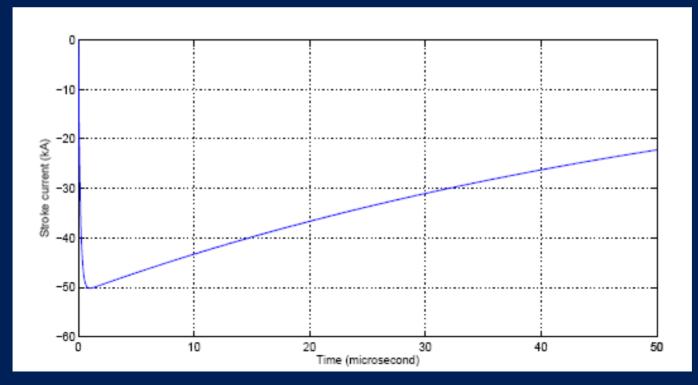

Tower Footing Resistance

- Tower Voltage Effects
 - -Surges
 - -Insulation Needs
 - \$ & Protection
- Grounding
 - -Variable Soil Conditions
 - Proper Grounding

Standard Footing Resistance Values

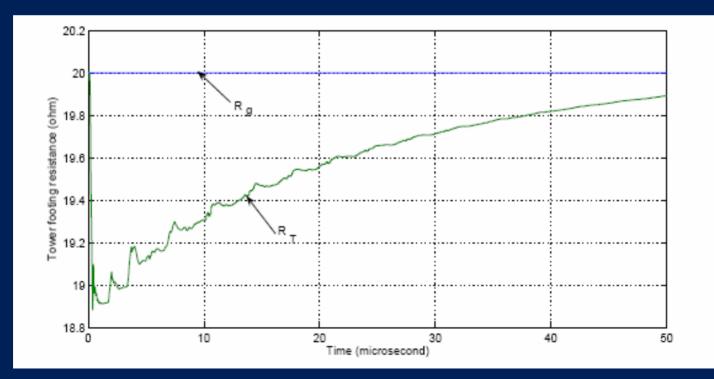

Specific resistivity of soil (ohms/cm3)	Resi	stance (ohms)
	Up to 330 kV	400/500 kV
Up to 10 ⁴	10	10
10 ⁴ up to 5 *10 ⁴	15	13
5*10 ⁴ up to 10*10 ⁴	20	15
10*104	30	30

Transient Tower Footing Resistance Model


R_T is tower footing resistance (ohm), R_g is tower footing resistance at low current and low frequency (ohm),

- I is surge current into ground (kA),
- Ig is limiting current initiating soil ionization (kA).

 ρ_o is soil resistivity (ohm-meter), E_o is soil ionization gradient (about 300 kV/m). Transient Tower Footing Resistance Model (2)

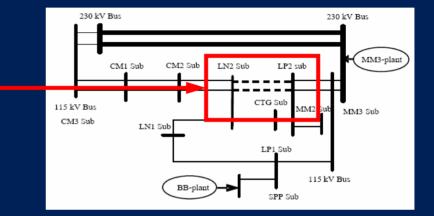

Typical Lightning Surge Current (Is)
 – Front t = 1.2 μS, Tail t = 50 μS

6

Transient Tower Footing Resistance Model (3)

Tower Footing Resistance
 Dependency on Surge Current (I)

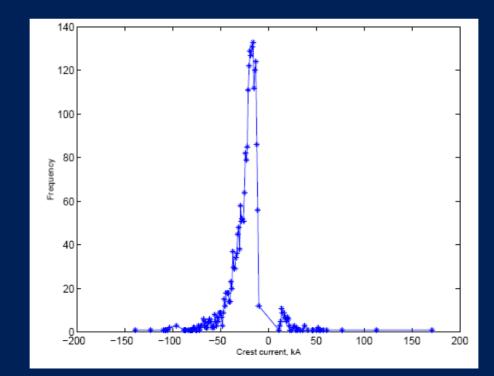
Insulator Flashover


- Stroke Current & Cross-arm Voltage
- Footing Resistance & Reflection/Refraction at Ground

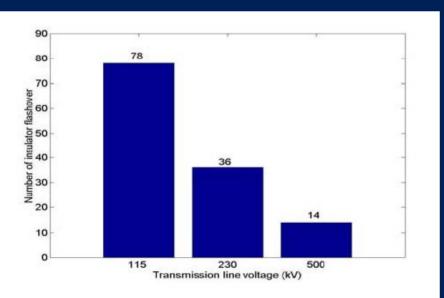
$$V_{fo} = K_1 + \frac{K_2}{t^{0.75}}$$

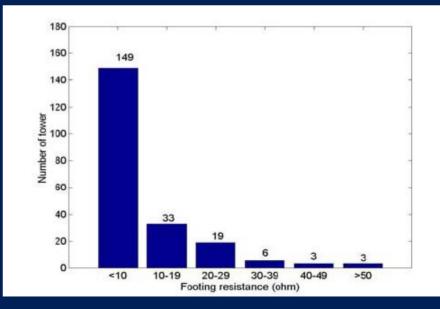
- V_{fo} is a flashover voltage (kV),
- K₁ is 400*L,
- K₂ is 710*L,
- L is insulator length, (meter),
- t is elapsed time after lightning stroke, μ s.

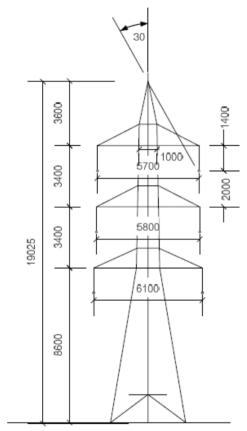
Footing Resistance Effects Case Study


- 115kV Circuit
- 73 Km Length
- 213 Towers (Steel)

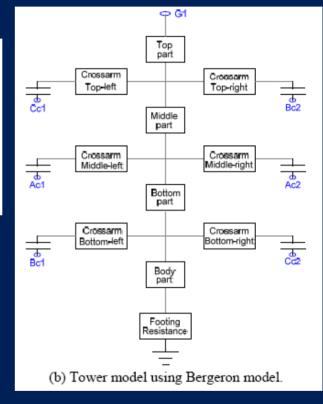
- 78 Flashover Events Between 1998-2003
 - 18 Insulator Failures (18% Rate)
- High Mountain Terrains
 - Variable Footing Resistances

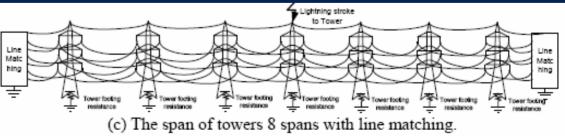

Footing Resistance Effects Case Study (2)


 Stroke Current Magnitude Data for Area (Statistical Distribution)


Footing Resistance Effects Case Study (3)

115kV Line Data -# of Flashovers Footing Resistance Distributions

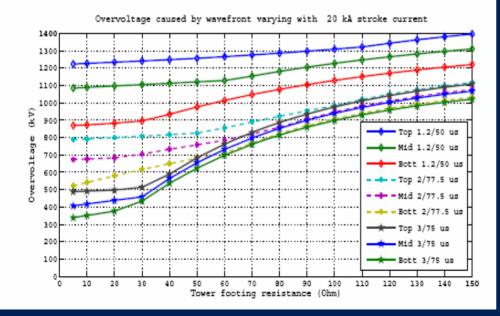

Transmission Line Model



(a) Double circuit with one over head ground wire.

Class 1 Tower

TABLE I : PARAMETER OF TRAN	SMISSION LINE USED IN THIS STUDY.
Tower type	Member
Normal Span Length	350 m
Conductor	477 MCM. ACSR /Dia. 21.80 mm
Overhead Ground Wire	3/8 GSW(HS) /Dia. 9.144 mm
Sag of Conductor and overhead ground wire	10.62/7.66 m
Insulator type/BIL	Pin type/550kV
Insulator Number of disc/Length of one string	8,9/1500,1900 mm
Tower footing resistance	3,49,48,40,10,21,58 ohm

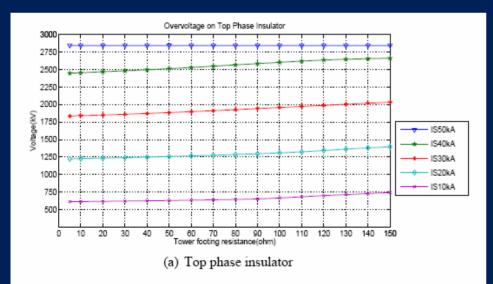


Simulations

- Model Insulators as 80 pF Capacitors with Parallel Switches
- PSCAD & TFlash
 EPRI HV Lab in Lenox, MA
- Compare Effects of Footing Resistance with Lightning Stroke Front Time, Magnitude of Lightning Stroke, and Tower Structure

Simulation Results – Lightning Stroke Front Time

↓Is Front Time = ↑V ↑V ↑Flashovers


TABLE II : OVERVOLTAGE WITH VARYING FRONT TIME OF STROKE

	Wave front 2/77.5 us							Wave front 3/75 us						
Tower footing resistance (ohm)	at stroke Is 20 kA				strol 40 k			strol 20 k		at stroke Is 40 kA				
(omn)	Тор	Miđ	Bott	Тор	Mid	Bott	Тор	Miđ	Bott	Тор	Miđ	Bott		
5	х	х	х	х	х	х	х	х	х	х	х	х		
10	х	х	х	х	х	х	х	х	Х	х	х	х		
20	х	х	х	х	х	х	х	х	х	х	х	х		
30	х	х	х	х	х	х	х	х	х	х	х	х		
40	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
50	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
60	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
70	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
80	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
90	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
100	х	х	х	\checkmark	х	х	х	х	х	\checkmark	х	х		
110	х	х	х	\checkmark	х	х	\checkmark	х	х	\checkmark	х	х		
120	х	х	х		х	х		х	х	\checkmark	х	х		
130	\checkmark	х	х	\checkmark	х	х	\checkmark	х	х	\checkmark	х	х		
140	\checkmark	х	х	\checkmark	х	х	\checkmark	х	х	\checkmark	х	х		
150	\checkmark	х	х	\checkmark	х	х		х	х	\checkmark	х	х		

√: flashover X: no flashover

Simulation Results – Lightning Stroke Magnitude

↑Is & ↑R_T = ↑V
↑V ↑Flashovers

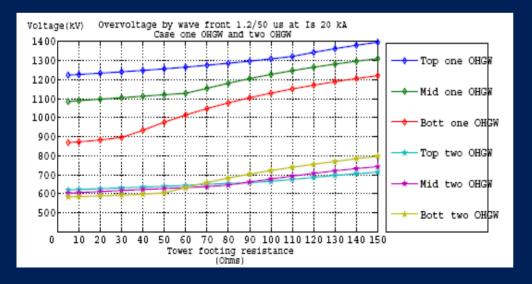


TABLE III : OVERVO								OR	VITH	I DIFI	FERE	NT	
	N	IAGI	ITU					chor	r				
Tower footing	Overvoltage Flashover at stroke at stroke at stroke												
resistance		201			at stroke Is 30 kA			401		at stroke			
(ohms)	Тор	Mid	Bott	Тор	Miđ	Bott	Тор	Mid	Bot	Тор	l lid	Bott	
5	х	Х	х	х	Х	х	Х	х	Х	\checkmark	х	х	
10	Х	Х	Х	Х	Х	Х	Х	Х	Х	\checkmark	x	х	
20	Х	Х	х	х	Х	х	Х	Х	Х	\checkmark	х	х	
30	х	Х	х	х	х	х		Х	Х	\checkmark	х	х	
40	Х	Х	х	х	х	х		х	Х	\checkmark	х	х	
50	Х	Х	х	\checkmark	Х	х		Х	Х	\checkmark	х	х	
60	х	Х	х	\checkmark	х	х		Х	Х	\checkmark	x	х	
70	х	Х	х	\checkmark	х	х		Х	Х	\checkmark	x	х	
80	Х	Х	х	\checkmark	Х	х		Х	Х	\checkmark	х	х	
90	Х	Х	х	\checkmark	Х	х		Х	Х	\checkmark	х	х	
100	\checkmark	Х	х	\checkmark	х	х		Х	Х	\checkmark	х	х	
110	\checkmark	Х	х	\checkmark	х	х		Х	Х	\checkmark	х	\checkmark	
120	\checkmark	Х	Х		Х	Х		Х	Х	\checkmark	х	\checkmark	
130	\checkmark	Х	х	\checkmark	Х	Х		Х	Х	\checkmark	х	\checkmark	
140	\checkmark	Х	х	\checkmark	Х	х		Х	Х	\checkmark	х	\checkmark	
150	\checkmark	Х	Х		Х	Х		Х	Х	\checkmark	x	\checkmark	
1.2.1		~		-		-		-					

√: flashover X: no flashover

Simulation Results – Structure of Tower

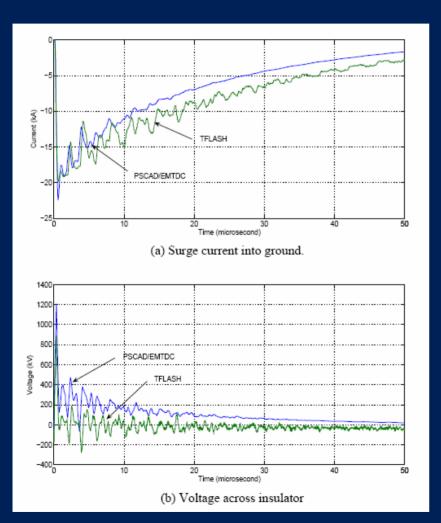

1 GW vs. 2 GW
Flashover Dependent On: I, R_T, & # of GW

TABLE IV : OVERV	OLT?			WO (JLAT	OR W	TTH (ONE	JHG	W
						oltag	ge Fla	ashov	ver			
Tower footing resistance	0	ase o HGV	W	0	Case one OHGW			ase tv HGV	N	Case two OHGW		
(ohm)		strol 20 k			at stroke Is 40 kA			strol 20 k		at stroke Is 40 kA		
	Тор	Mid	Bott	Тор	Miđ	Bott	Тор	Mid	Bott	Тор	Mid	Bott
5	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
20	Х	Х	Σ	А	Х	Х	Х	Х	Х	Х	Х	Х
30	Х	Х	Σ		Х	Х	Х	Х	Х	Х	Х	Х
40	Х	Х	Σ		Х	Х	Х	Х	Х	Х	Х	Х
50	Х	Х	Σ		Х	Х	Х	Х	Х	Х	Х	Х
60	Х	Х	Σ		Х	Х	Х	Х	Х	Х	Х	Х
70	Х	Х	Σ		Х	Х	Х	Х	Х	Х	Χ	Х
80	Х	Х	Σ		Х	Х	Х	Х	Х	Х	Х	
90	А	Х	Σ		Х	Х	Х	Х	Х	Х	Х	
100		Х	Σ		Х	Х	Х	Х	Х	Х	Χ	
110		Х	Σ		Х	Х	Х	Х	Х	Х	Х	
120		Х	Σ		Х	Х	Х	Х	Х	Х	Х	\checkmark
130		Х	Σ		х	Х	Х	Х	Х	Х	Х	
140	\checkmark	Х	Σ	\checkmark	Х	Х	Х	Х	Х	Х	Х	
150		Х	Σ		Х	Х	Х	Х	Х	Х	Χ	
√: flashover X: no	nas	nov	er									

TABLE IV : Over voltage et as nover at instituted with one OHGW

PLSCAD vs. TFLASH

	ison simulation results between PSCAD and TFlash. Over Voltage Flashover											
Tower footing	Case	Case PSCAD Case PSCAD Case TFlash Case TF										
resistance		strol			t strol			strol			t strol	
(ohm)	Is	s 20 k	A	Is	60 k	A	Is	20 k	A	Is	s 60 l	A
	Тор	Mid	Bott	Тор	Mid	Bott	Тор	Mid	Bott	Тор	Mid	Bot
5	Х	Х	Х	$\overline{\mathbf{A}}$	х	Х	Х	х	х		Х	Х
10	Х	Х	Х	$\overline{\mathbf{A}}$	х	Х	Х	х	х		Х	Х
20	Х	Х	Х		х	Х	х	х	х		х	Х
30	Х	Х	Х		х	Х	х	х	х		Х	Х
40	х	Х	Х		х	Х	х	х	х		х	Х
50	х	х	Х		х	Х	Х	х	х		х	Х
60	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х
70	х	Х	Х		х	Х	х	х	х		х	Х
80	Х	Х	Х		х		х	х	х		х	Х
90	Х	Х	Х		х		х	х	х		х	Х
100		Х	Х		х		х	х	х		х	Х
110	\checkmark	Х	Х		х		х	х	х		х	Х
120	\checkmark	Х	Х	\checkmark	х		х	х	х		х	Х
130		Х	Х	$\overline{\mathbf{A}}$	х		х	х	х		Х	V
140		Х	Х	$\overline{\mathbf{A}}$	х		\checkmark	х	х		х	
150	\checkmark	х	Х	$\overline{\mathbf{A}}$	х		\checkmark	х	х		х	

Conclusions

R_T Can Affect Insulator Failure

↓Is Front Time = ↑Failures
↑Is Magnitude = ↑Failures
↑# of GW = ↓Failures

Software Results

References

- Professor Connor's Website, <u>http://hibp.ecse.rpi.edu/%7Econnor/education/Surge/</u>
- International Conference on Power System Transients (IPST) Website, <u>http://www.ipst.org/</u>
- Florida State University, Power System Transients Course Website, <u>www.eng.fsu.edu/~tbaldwin/eel5270/public/</u>
- ULG Transmission & Distribution Department, Paper on "Basic Design and Construction aspects of Transmission Lines"
- P.Yadee & S.Premrudeepreechacharn, IPST 2007 Conference, "Analysis of Tower Footing resistance Effected Back Flashover Across Insulator in a Transmission System", <u>http://www.ipst.org/techpapers/2007/ipst_2007/papers_IPST2007/Session1_2/290.pdf</u>
- T&D Article on EPRI's TFLASH Program, <u>http://tdworld.com/news/power_striking_back_power/</u>
- A.Greenwood, "Electrical Transients in Power Systems", Second Edition, John Wiley and Sons, Inc, Canada, 1991