

Cheetah PNA RCS and Antenna Measurement System

System Planning Corporation Jeffrey B. Floyd Andreas C. Schultheis

Agenda

- Why the Cheetah System
- What is the Cheetah System
- The Agilent PNA Network Analyzer
- Cheetah Noise Figure Measurements
- Cheetah NERCS
- Cheetah Dynamic Range
- Cheetah System Measurement Timing
- Cheetah Control and Processing Software
- Reliability
- Summary

Why the Cheetah System

- Agilent introduced its new line of network analyzers in 2001 – the PNA (Performance Network Analyzer)
 - Now on revision B
 - New features in the PNA allow the PNA to outperform older VNA's such as the HP8510 and HP8530.

Why the Cheetah System

- With the PNA, the following specifications are able to be improved upon:
 - Noise Figure
 - Sensitivity
 - Dynamic Range
 - Measurement Speed
 - Built-in Synthesizer

Why the Cheetah System

- With the PNA, a low-cost system can be configured for either RCS or Antenna Measurements.
- Direct RF measurements can be made without having to add external synthesizers and/or remote mixers

What is the Cheetah System

What is the Cheetah System

- The Cheetah is a gated CW or CW RCS and Antenna Measurement System
- It utilizes the following major components:
 - Agilent PNA
 - SPC RF Gating Boxes, SPC Phase Modulator, SPC Power Amplifiers
 - CompuQuest 1541/1532 RCS and Antenna Data Acquisition and Data Analysis Processing Software

Cheetah Block Diagram

What is the Cheetah System

- Frequency Coverage
 - Standard 2-18 GHz
 - Low band 0.1-2.0 GHz
 - High bands to 67 GHz
- Transmit Power
 - Standard 2-18 GHz +23 dBm
 - Medium Power 10 watts
 - High Power 1-2 kW

Cheetah Noise Figures

- The PNA has an inherently high noise figure
- In order to minimize the system noise figure, low noise preamplifiers and a receive gate switch are added in front of the PNA
- Theoretical and measured performance were then performed

Cheetah Noise Figures

- The "Y" factor method was used to then compute the noise figure of the system.
- Utilizing high bandwidth (2-18 GHz) low noise preamps the noise figure was measured at approximately 2 dB.
- Next setting the duty factor to 14%, we measured a drop in the noise floor of 8.5 dB compared to the theoretical value of 8.54 dB.

Cheetah Noise Equivalent RCS

Cheetah Dynamic Range

Cheetah System Measurement Timing

- The PNA timing is dependent on the following factors
 - Frequency Span \rightarrow Number of Band Crossings
 - Frequency Steps
 - Frequency Settling
 - Retrace
 - IF Bandwidth
- Measurement Time
 - Number of polarizations
 - Rotator Angle Extent
 - Angle Increment

Cheetah System Measurement Timing

- As an example
 - Frequency Span \rightarrow 2-18 GHz
 - Frequency Step $\rightarrow 50 \text{ MHz}$
 - Angle Extent \rightarrow 360 degrees
 - Angle Increment $\rightarrow 0.1$ degrees
 - Number of polarizations $\rightarrow 2$
 - IF Bandwidth \rightarrow 1 kHz
- Recorded measurement time
 - 66 minutes

Cheetah Control and Processing Software

- CompuQuest evolved Quest 1541/1532 RCS and Antenna Data Acquisition and Processing Software Package
- The 1541 has been used for other systems such as the HP-8510, -8530, -8720, -8757, and -8566, the SA2090 and SA1790
- Interface to the PNA is via DCOM (Ethernet), which provides extremely fast data communications.

Cheetah GUI

Quest 1532 Cheetah Contr	rest 1532 Cheetah Control ver 1.79.6 (10.16.2003)					
Main Screen Frequency Parameters Calibration Processing Rot/Ant Configure						
Run Name				Measurement	© Analysis	
Start <u>P</u> NA Averages	1	Source Pow	er Enable 1 -10.00	Current Project	Browse	
IF Bandwidth	7000 🔽	Source Power	2 0.00	Gate Time Ga	iting OFF	
PRF (kHz)	424.900	Source Atte Source Port 1	nuation 10	Control	erator 1	
Tx Delay (ns)	20	Source Port 2	0			
Tx Width (ns) Rx Delay (ns) Rx Width (ns)	20 58 10	Rx Attenuation (A Rx Attenuation (B) 0	Batch Mode	Define Browse	
Start 1 2.000	Stop 6.000	Steps Integ 279 1	Pol HH	Store <u>R</u> aw Data	3	
Frequency Table Mode Step (Segment)				Setups default.set		
Start <u>C</u> ollection		CHEET	CHEETAR		it Program	
Ready				Simulation Mode	3:55:56 PM	

Typical Cheetah Presentation

Cheetah Reliability

- The PNA has a predicted MTBF of 40,000 hours
- The Digital Pulse Unit is on the order of 50,000 hours
- The Transmit/Receive RF Gating Units have a total MTBF of 21,900 hours
- Thus the total MTBF is >14,000 hours

Summary

- The Agilent PNA provides the following new capabilities
 - Flexible IF Bandwidth
 - Segmented Waveforms
 - High dynamic range, low noise floor
 - Built-in Synthesizer
- Coupled to the CompuQuest evolved 1541/1532 Data Acquisition and Analysis Package
 - Data Collection and Processing in a single package
 - Pioneer Compatible

Summary

- SPC designed Transmit and Receive RF Gating Units
 - Broad range of power options, frequency options, phase modulation and specialized implementations
- SPC is an Agilent Channel Partner
 - Allows direct access to Agilent engineering groups
 - Allows for a direct communications path back to Agilent for inclusion of customer feedback for upgrades and changes that may be required to better support this community.

