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Abstract— A time-reversal implementation of a transmit waveform
preconditioning scheme for optimal clutter rejection in radar imaging
is presented. Waveform preconditioning involves determining a map
on the space of transmit waveforms, and then applying this map
to the waveforms before transmission. Our work applies to antenna
arrays with an arbitrary number of transmit- and receive elements, and
makes no assumptions about the elements being co-located. Waveform
preconditioning for clutter rejection achieves efficient use of power and
computational resources by distributing power properly over a frequency
band and by eliminating clutter filtering in receive processing. By our
time-reversal implementation we avoid the need to obtain anexplicit
model for the environment in order to compute the preconditioning
operator.

I. I NTRODUCTION

In earlier work we introduced waveformpreconditioning of
transmit waveforms for optimal clutter rejection [1], [2].Here we
show howpreconditioningof transmit waveforms for optimal clutter
rejection can be performed using a time-reversal approach.Waveform
preconditioning involves determining a map on the space of transmit
waveforms, and then applying this map to the waveforms before
transmission. Explicit expressions for the preconditioning operator
involve the Green’s function for the background medium, as well as
second-order statistics for the target of interest and the clutter. Here
we show that the need for such explicit information can be avoided by
a time-reversal approach to computing the preconditioningoperator.

In radar applications the scene (everything in the radar beam) is
decomposed of three classes: objects of interest, objects which are not
of interest, and (known) background. Objects of interest are referred
to astargets, while those objects which are not of interest are referred
to as clutter. In this paper, scattering from clutter is an undesired
feature to be rejected by means of a waveform preconditioning
operator. Clutter rejection is an important task, as scattering from
clutter can overpower scattering from targets, thus rendering the
targets difficult to detect or image. Our primary application is radar
imaging. It should be clear, however, that our physics-based approach
is applicable to pulse-echo imaging in general,e.g. ultrasound
imaging, sonar imaging and microwave imaging.

The time-reversal principle is based on an invariance to changing
the sign of the temporal variable in the wave equation [3], [4]. It
has been used in many applications which involve wavepropagation,
e.g., ultrasound imaging [4], [5], [6], [7], underwater acoustics [8],
[9], radar imaging [10], [11], and microwave imaging [12]. Typically,
time-reversal applications work well in a multiple-scattering medium
and where explicit modeling of the medium is difficult due to its
complexity or due to random perturbations [7], [13], [14], [15].

We formulate the processing of radar data from an arbitrary
number of transmit- and receive-antennas in a stochastic framework.
In this sense our work is closely related to Yaziciet al. [2], where
an a priori stochastic characterization of the scattering distribution
was used to construct optimal waveforms for mono-static range-
Doppler imaging. We then show how we by re-transmitting our
scattering measurements can exploit the time-reversal principle to
determine the preconditioning operator without explicitly knowing
the envoronment.
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Fig. 1. An antenna array with two transmitting elements (circles) and ten
receiving elements (diamonds). The elements are placed at equidistant points
along a an arc with radius10λ. The target is indicated as a square with sides
of 1.5λ, while the region of interest is5λ×5λ around the target. This region
is filled with clutter. The solid straight line indicates thelocation of a reflective
mirror in our simple multipath scenario.

From a communications point of view, the radar transmit signal
which illuminates the target may be considered as a means for
establishing acommunications channel between the target and the
observer. In this language, the effect of a complex environment
is considered as part of this communications channel. The goal
is to design a filter which, when applied to the transmit signal,
virtually shapes the received signal in a desired manner. Thus, there
are obvious similarities between the ideas presented here for radar
imaging, and the existing literature onprecoding.[16], [17], [18]

II. PRELIMINARY NOTATION AND MODELING

A. Antenna array

We consider an antenna array consisting ofm transmitting
elements andn receiving elements. The placement of these elements
can be chosen arbitrarily,i.e., the location of each element may be
assigned independently of where the other elements are located. For
expository convenience we assume each element to behave like an
isotropic point antenna,i.e., radiation patterns from each element do
not exhibit any directivity.

In order to exploit the spatial diversity inherent in the antenna, it
is desirable to allow for transmitting different waveformsfrom each
element. Letsj(t) denote the waveform which emanates from the
jth element. We arrange the transmit waveforms in atransmit vector
s(t)

s(t) = [s1(t), . . . , sm(t)]T . (1)



2

Similarly, if the measured scattering at theith receive element is
denoted bymi(t), then the scattering which is collected by the array
may be arranged in ameasurement vectorm(t)

m(t) = [m1(t), . . . , mn(t)]T . (2)

B. Scattering model

The ability to distinguish targets depends on how much their
electromagnetic properties deviate from the background. We denote
this deviation by the reflectivity functionV (x). At an abstract level,
we denote byH(V ) the operator which maps the transmit vector
s(t) to the measurement vectorm(t)

m(t) = H(V )s(t). (3)

An explicit relationship between the reflectivity functionV and the
operatorH(V ) can be derived in terms of theGreen’s function
g(x,y, t) for the background medium. The Green’s function is the
response measured at positionx from an impulseδ(t) at position
y. The geometric layout of the antenna elements naturally plays an
important role here. Let therefore thejth transmit element be located
at positionzj , and theith receive element be located at positionxi.
In the current analysis we use a linear scattering model often known
as thedistorted-wave Born approximation.[19] If we define a(m×n)
matrix G(y, t) with matrix elements

Gij(y, t) =

�
g(zj, y, τ ′)∂2

t g(y, xi, t − τ ′)dτ ′, (4)

then

m(t) = H(V )s(t) =

�
G(y, t − τ )V (y)dy s(τ )dτ. (5)

Integration in Eq. (5) is understood to be element-wise.

C. Target and clutter

The above formalism allows us to utilize a physics-based model
for the background which in principle can have an arbitrary level of
detail. It is not reasonable, however, to expect that our background
model will account for all details of the scene except for thetarget. As
outlined in the introduction, this suggests that the reflectivity function
should be divided into two parts

V (x) = T (x) + C(x), (6)

where T (x) representstarget and C(x) representsclutter. Our
definition of clutter thus includes contrubutions due to a compromise
between model fidelity and tractability: deviations between the
background and our model for the background. Our real interest lies
in recoveringT , while suppressingC.

In our development we assume thatT (x) andC(x) are realizations
of second-order random fields with known first- and second-order
statistics. It should be clear that the background may be defined in
such a way that the first-order statistics of the reflectivityfunctions
are zero. Thus, without loss of generality, we will assume that the
processes have zero-mean and known auto-correlation functions

RT (y1, y2) = E �T (y1)T (y2)� (7)

RC(y1, y2) = E �C(y1)C(y2)�. (8)

Furthermore, we will assume that the fieldsT andC are statistically
independent,i.e.,

RV (y1, y2) = E �(T (y1) + C(y1))(T (y2) + C(y2))� (9)

= RT (y1, y2) + RC(y1, y2). (10)
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H(T )
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H
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T (x)

T (x) + C(x)

Fig. 2. Block diagram for the waveform preconditioning withthe operatorW .
Solid arrows indicate the signal path from waveform, through preconditioning
operator and then transmitted into an environment with system response
H(T + C). Dashed lines indicate the “ideal” signal path which is emulated
by applying the preconditioning operator.

In this work we choose to reject clutter in the minimum-mean-square-
error (MMSE) sense. To be more specific: under mild assumptions
about the transmit waveforms and the reflectivity functionswe can
show thatH(V ) is a Hilbert-Schmidt (HS) operator [20, Ch. 6.2].
Our goal is therefore to determine a linear operatorW which
minimizes∆(W )

∆(W) := ||H(T + C)W −H(T )||2HS. (11)

We achieve clutter rejection by employing the transmit waveform
Ws instead ofs. Our approach is illustrated in Fig. 2.

III. T HE PRECONDITIONING OPERATOR

In this section we will derive an explicit expression forW which
minimizes the error∆(W ) as defined in Eq. (11). In order for the
analysis to hold, we make certain assumptions about the transmit
waveforms and the scattering environment. These assumptions are
mild enough to be satisfied for any practical application.

First of all, we consider transmit waveforms which have finite
length, and which has sufficient spectral decay as a functionof
frequency. Let the temporal Fourier transfrom ofs(t) be denoted
by ŝ(ω). Sufficient asymptotic decay is guaranteed if we employ
the following weighted inner product on the space of transmit
waveforms [21]

〈s1, s2〉 =

� �
1 + ω6�

ŝ
H

2 (ω)ŝ1(ω)dω. (12)

HereH denotes conjugate transpose of the vector quantities. Second,
it is convenient to assume that no echoes emerge from outsidea
sufficiently large region,i.e., that the reflectivity function has compact
support.

Under the aforementioned assumptions about the waveforms and
scattering environment, we can show thatH(V ) is a HS operator [21].

Let {ek(t)} be a basis for the space of transmit vectors. The HS
norm ofH(V ) can be computed as [1]

||H(V )||2HS = �
k

�
e

H

k (t)E[H(V )∗H(V )]ek(t)dt. (13)

Here ∗ denotes the adjoint, andH denotes the conjugate transpose
of a vector.
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We now determine the operatorW which satisfies Eq. (11). If we
require that

∆(W + δW) − ∆(W) = O(||δW||2HS) (14)

for all perturbationsδW, we find that the optimum is

W = E[H(T + C)∗H(T + C)]−1E[H(T )∗H(T )]. (15)

This operator may be applied to any transmit vector to yield anew
transmit vector;W is a bounded linear operator on the space of
transmit vectors.

IV. T IME -REVERSAL PRECONDITIONING

In [21], we further evaluatedW from Eq. (15) in terms of the
correlation functions for target and clutter as defined in Eqns. (7)
and (8). This lead to an explicit expression for the preconditioning
operator. However, it required us to obtain information about the
second-order statistics of target and clutter, as well as the Green’s
function for the background medium. Here we will outline a different
approach which allows us to estimate the preconditioning operator
from scattering measurements directly.

First, from Eq. (5) we see thatH(T + C) = H(T ) + H(C). We
use this fact to write

H(T ) = H(T + C) −H(C). (16)

Inserting Eq. (16) into Eq.(15) we arrive at

W = I − E[H(T + C)∗H(T + C)]−1E[H(C)∗H(C)]. (17)

The significant difference between Eq. (15) and (17) is that in
Eq. (17) we have replacedE[H(T )∗H(T )]by E[H(C)∗H(C)]. This is
important, asH(T ) corresponds to scattering from a target without
the presense of clutter, and is infeasible to measure. On theother
hand, H(C) corresponds to scattering from clutter. This can be
observed at times when there is no target present.

By definition m(t) = H(C)s(t). Furthermore, if we interchange
the roles of transmitters and receivers, and transmitm(−t), this
corresponds to employing the transpose of the matrix kernelG in
Eq. (5), i.e.,

q(t) =

�
GT(y, t − τ )C(y)dy m(−τ )dτ. (18)

Observe also that if we take the inner product betweenH(C)s(t)
and an elementf (t) in L2(R), then by the Plancherel’s identity

〈f ,H(C)s〉 =

�
f̂

H(ω)Ĝ(y, ω)C(y)dyŝ(ω)dω. (19)

Here ˆ is used to indicate temporal Fourier transform. If we now
reorganize the matrix-vector multiplication

〈f ,H(C)s〉 =

� �
ĜH(y, ω)f̂ (ω)�H

C(y)dyŝ(ω)dω (20)

=

� �
ĜT(y, ω)f̂(ω)�H

C(y)dyŝ(ω)dω. (21)

Now we insert the expression for the inner product on the space of
transmit waveforms from Eq. (12), and see that

〈f ,H(C)s〉 = 〈H(C)∗f , s〉S, (22)

where the temporal Fourier transform of the adjointH(C)∗ applied
to f is �

1

1 + ω6

�
ĜT(y, ω)f̂(ω)� C(y)dy. (23)

We should now point out that complex conjugation in the temporal
frequency domain corresponds to time-reversal in the time-domain.

Hence, by comparing Eqns. (18) and (23), we conclude thatH(C)∗

applied tof is computed by re-transmitting a time-reversed version
of f , and then time-reversing the corresponding measured scattering.
In order to end up in the right space, we apply a zero-phase filter
with freqency responce1/(1 + ω6).

Under the assumption that there is no target present in the scene,
the following algorithm will allow us to obtainH(C)∗H(C) applied
to a transmit vectors:

1) Transmit waveforms(t) and obtain measurementm(t).
2) Interchange the role of transmitters and receivers
3) Transmit waveformm(−t) and obtain measurementp(t).
4) Get q(t) = H(C)∗H(C)s by applying the zero-phase filter

with temporal frequency response1/(1 + ω6) to p(−t).

Averaging over repeated evaluations will produce the expected
value E[H(C)∗H(C)]s. Iterative application of this algorithm al-
lows us to determine the eigenvalues/eigenvectors{(λk, uk)} of
E[H(C)∗H(C)], e.g., by a power-method.

The same procedure will allow us to determine the eigenval-
ues/eigenvectors{(σk, vk)} of E[H(T + C)∗H(T + C)]if a target is
present in the scene. Finally, the preconditioning operator in Eq. (17)
applied tos is found as

Ws = s − �
l

�
k

λk

σl

〈s,uk〉〈uk, vl〉vl.

Loosely speaking,W emphasizes the parts ofs residing the
subspaces in which the signal-to-clutter ratio is high [1].

V. NUMERICAL SIMULATION

In order to demonstrate the clutter-suppression obtained with our
waveform preconditioning operator, we have performed a setof
numerical simulations. In these simulations we want to recover the
targetT from scattering measurements made with two transmitters
and ten receivers. The transmitters and receivers were placed equally
spaced on an arc around the target. This simulation setup is illustrated
in Fig. 1.

From the two transmitters we transmitted short chirp signals:
transmitter 1 emitted a linear up-chirp, while transmitter2 emanated a
linear down-chirp. All dimensions of the experiment were normalized
according to a unit length scaleλ.

As a target we chose a square with sides1.5λ × 1.5λ. From this
target model we constructed a target spectrum as if the target were
a realization of a stationary random field. A high-frequencyversion
of the stationary stochastic target model was then constructed and
used to simulate different realizations of the surroundingclutter. This
construction is explained further in Yaziciet al. [22]. The compact
support of the clutter was imposed by applying a spatial mask. For
our purpose we used a region of5λ × 5λ around the target. Finally,
the radius of the arc on which the antenna elements were placed was
set to 10λ.

The preconditioning operator was constructed according toEq. (24)
from 50 estimated eigenvalues and eigenvectors forE[H(C)∗H(C)]
and E[H(T + C)∗H(T + C)] by a Monte-Carlo approach. The
spatial discretization for each scattering simulation was15 samples
per wavelengthλ.

The signal-to-clutter ratio (SCR) in our simulations was set to
−6 dB, when defined according to

SCR = 10 log �� E �|T (x)|2�dx� E[|C(x)|2]dx � . (24)

The performance of the preconditioning was then evaluated by
observing the square error in the reconstructed image when compared
to the true reflectivity function. The mean-square-error (MSE) was
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Fig. 3. Target with clutter (left) and reconstruction of target from clutter-free
scattering (right)
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Fig. 4. Reconstruction results for a single realization of clutter. Left: image
from scattering with original chirp waveform. Right: imagefrom scattering
with preconditioned chirp waveform

estimated by averaging over 10 clutter realizations. We computed the
MSE according to

MSE(W) = 10 log �� E �|[H−1H(T + C)W](x) − T (x)|2�dx� E[|T (x)|2]dx � .

(25)

We used an imaging reconstruction algorithm which is based on
minimising the MSE of the final image.[21] The images were
reconstructed on a grid with 10 samples per wavelength.

Figure 3 shows the target embedded in clutter, as well as a
reconstructed image based on scattering without clutter. The MSE
is in this case was 3.5 dB.

Figure 4 show reconstruction results for scattering with clutter.
Preconditioning of the transmit waveform improves image quality
from 8.9 dB to 4.3 dB when measured using the MSE defined in
Eq. (25).

Figure 5 shows the spectrum of one of the transmit waveform that
were employed in this experiment.

VI. D ISCUSSION AND CONCLUDING REMARKS

In this work we have separated the reflectivity function intotwo
distinct classes:target and clutter. The clutter essentially produces
unwanted scattering which in turn degrades the final result of the
reconstructed image. If scattering from clutter can be removed
from the measurement, the end result will be improved. Our
preconditioning operator can be applied to any set of transmit vectors
in order to optimally reject scattering from clutter in the MMSE sense.

In previous implementations we have employed information about
the scene in the form of the Green’s function. This Green’s function
was used to map second-order statistics of the clutter and target to the
space of transmit vectors and thereby construct the preconditioning
operator. Here we avoid explicitly using the environment model by
instead evaluating the operators by a time-reversal approach.

We address the problem of optimally modifying the transmit
waveform when the transmit power is limited. Obviously, after
preconditioning the resulting waveform may not have the same
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Fig. 5. Spectrum magnitude (right) for the original waveform, and for the
preconditioned waveform.

strength. However, this is trivially amended by proper normalization
of the preconditioned waveform. As a result, the transmit vector will
contain the same amount of power, but will minimize scattering from
clutter.

When we perform clutter rejection we identify a transmit-vector
subspace where the signal-to-clutter (SCR) ratio is high. The fact that
the signals which are employed at each transmitter are transmitted
simultaneously, and that they are not orthogonal imply thatthere is a
great deal of ambiguity in the data with respect to the correct time-of-
flight for a given echo. We therefore have limited ability to determine
the correct source-reciever pair for a given echo. As we are forming
the images using a our limited-angle tomographic approach,we do
not rely on the ability to resolve the source-reciever ambiguity.[21]

An important feature of the preconditioning approach is the
improved SCR of the scattering. Hence, for a fixed total transmit
power, the SCR may be improved in the final image. Alternatively,
for a given signal-to-noise ratio in the final image the totaltransmit
power can be reduced. This is of interest in applications where it
is desirable to keep the transmit power as low as possible,e.g., to
reduce transmitter vulnerability/detectability.

The underlying propagation model which we have used for this
work is derived from a scalar wave equation. This is a commonly-
used model for many radar applications where polarization effects
may be ignored. In order to get explicit expressions in termsof
Green’s functions, a linearized scattering model was used,namely
the distorted-wave Born approximation (DWB). Note, however, that
the operator norm which we used to determined the preconditioning
operator will make sense also without the DWB. The time-reversal
principle also holds in other pulse-echo applications. Ourwork
therefore has applications also in other areas such as ultrasound, sonar
and microwave imaging.
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