

Designing a Small Planar Antenna for Agricultural Sensor Network

Wonbin Hong Purdue University

Overview

Agricultural Sensor Network
 Usage of Smart Sensor Network
 Antenna/Packaging
 System Design Requirements

Antenna Design
 Design Approach
 Methods
 Results

Smart Sensor Network?

♦ How big is it?

Microstrip vs. Dipole Antenna

- Why use a microstrip antenna?
- Size and operating frequency

c = wavelength/frequency

Planar Antenna

Design Approach

Inverted L antenna

•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		·	·	٠	·	·	·	·	٠	·		·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠
		·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·
		·					·			·			·		·						·			·		·	·		·	·				·		·		·	•
•		•	ŀ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		·		•	·											·																							
•		·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·
				٠					٠					٠					٠					٠					٠					٠					•

Inverted F antenna (PIFA)

÷	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	
· ·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	·	·	·	·	٠	•		·	·	٠	
· ·		·	·	·	•	·	•	·	•	·	·	•	•	·			•	·	•	·		•	•	•	·	·	·	·	·	·	·	•	·	·	·	÷			•	•	•	
· ·	·	·	·	·	·	·	•	·	·	·	·	·	•	·	•	·	•	·	·	·	·		·	•	·	·	·	·	·	·	·	·	·	·	·	·	•		•	·	·	
•	•	•	•	•	÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•		·	·	·	L		·	·	·	·		·	·	·	•	÷	·	•	·	·	÷	•	·	·	·		·	•	•	·		•	•	·	·	÷	•		·	·	÷	
•																																										
•		·	·	·		·	·	·	·	·	·	•	·	•			·	·	·	·				•	·	·	·	·	•	·			•	·	·				•	·	•	
· ·	•	·	·	·	•	·	•	·	•	•	•	·	•	·	•	•	•	·	•	·	·	•	·	•	·	•	•	•	·	·	·	·	·	·	·	·	•		•	·	•	
· ·	·	·	·	·	·	·	•	·	·	·	·	·	·	·	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	•	·	·	
•	٠	·	·	·	•	•	•	·	•	•	٠	•	•	•	•	٠	•	·	•	•	٠	•	·	•	·	٠	•	•	•	·	٠	•	•	·		٠	•	•	•	•	•	
· ·	•	•	·	·	•	·		·	•	•	•	•	•	•		•		•	•	•	•	•	•	•	·	•	•	•	•	·			•	·	•	•				•	•	
· ·	·	·	·	·	·	·	·	·	·	·	·	•	·	·	•	•	·	•	·	·	·	•	·	•	·	·	·	·	·	·	•	·	•	·	·	·	•		•	•	•	
·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	•	·	
	÷	÷	÷	÷	Ċ	÷	÷	÷			÷	÷	÷		÷	÷	÷			÷	÷	÷	÷	÷	÷	÷				÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	

Designing the PIFA

• Coupling – Magnetic vs. Electric

•	•	•	•	•	•		•	•
•	•	•	•	•	•	•	•	•
-	•							
•	•				ŀ		•	•
•					ŀ	•	•	•
•	•		$\left \cdot \right $	ŀ	ŀ		•	•
•	•	•				•	•	•

- Matching with the 50 Ω port

Designing the PIFA

Results with capacitive coupling
 Bandwidth
 Radiation Efficiency

Antenna Parameters:

Beam Area	5.823e+000	sr
Directivity	2.158e+000	
Radiated Power	4.445e-002	ឃ
Accepted Power	6.533e-002	W
adiation Efficiency	6.804e-001	
Max. U(theta,phi)	7.633e-003	W/sr

Efficiency and Bandwidth

 Efficiency and Radiation resistance

Efficiency =
$$\frac{R_R}{R_R + R_{Loss}}$$

Bandwidth and Q
Bandwidth ~1/Q

High-Q

000

PIFA with Capacitive Load

- Smaller I → greater impedance (Z = cot(BI))
 → smaller capacitance
 → Counter the reduction
- Length can be reduced dramatically

Coupling Two Resonators

- Electrically couple two resonators to increase the bandwidth
 - → Creates two resonant frequencies
- Parameters determining the coupling
 - Gap between the two plates
 - Distance between the shorted walls
 - Capacitive feed

•		·	•		·	·	·	÷	·	·	·	·	·			·		·		·		·	·	·		·	·	·		·	÷	·		·	·
							ele	cti	rcal	ly o	cou	ple	d																						
•		·		۰.	-	-												·		٠		·	·	·	٠		·			٠	·	·		•	٠
			2	-																															
~	~	<	·																																
		X	_																																—
	.	1	. –		•		•			•	•	•	•			·	·	•	•	•		•	•	•		•	•	•	•	•		•	·	·	·
	۰,	/	·	•	•	1	·		•	•	·	·	·		•	·	·	·	•	•		·	·	·	•	·	•	·	•	·	•	·	·	·	•
2					•		_			•					•										•										•
							I .																												
•	•	•	•	•	•		l.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
•	•	·	•	•	·		Ŀ	•	•	·	·	•	·	•	•	·	·	·	·	·	•	·	·	·	•	·	·	·	·	·	•	·	·	·	•
•	·	·	•		٠	•	·		•	٠	·	·	·		٠	·	·	·	·	٠		·	·	·	٠	·	•	·	•	٠		·	·	·	٠

Results

- Not enough coupling
- Radiation Efficiency is sufficient – 84 percent
- Possible Solutions?
 - Usage of patch antennas with slots
 - Lumped element chip resistor?

Acknowledgment

 Prof. William J. Chappell Bosui Lui Xun Gong ♦ James Brad Dodson ◆ Mike R. Arens Chin-Lung Yang "D" Sivaprakasapillai