ENGR-4300
Spring 2008
Test 1 CONFLICT

Name______ SOLUTION______________

Section________________________

Question 1 (25 points)___________

Question 2 (15 points)___________

Question 3 (20 points)___________

Question 4 (20 points)___________

Question 5 (20 points)___________

Total (100 points): ____________

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.
Question 1 – Resistive Circuits (25 points) (Test B)

Part 1: Voltages and currents.

1a) What is the voltage at point A in the figure above. (4 pt)

\[R_{23} = \frac{(1k \times 3k)}{(1k + 3k)} = 0.75k \Omega \]

\[V_A = \frac{6V \times 0.75k}{0.75k + 1.5k} = 2V \]

\[V_A = 2V \]

1b) What is the current through R2? (3 pt)

\[V_{R2} = V_A = 2V \]

\[I_{R2} = \frac{2V}{1k} = 2mA \]

\[I_{R2} = 2mA \]
Question 1, Part 2: Equivalent circuits:

2a) What is the total resistance seen by the source VS in the figure above?(6 pt)

\[R_{23} = \frac{1 \text{k} \times 1.5 \text{k}}{1 \text{k} + 1.5 \text{k}} = 0.6 \text{k} \]
\[R_{234} = 0.6 \text{k} + 3 \text{k} = 3.6 \text{k} \]
\[R_{t} = \frac{1 \text{k} \times 3.6 \text{k}}{1 \text{k} + 3.6 \text{k}} = 0.782 \text{k} \]
\[R_{\text{total}} = 782 \Omega \]

2b) If VS=5V, what is the current out of this source? (2 pt)

\[I = \frac{5 \text{V}}{782 \Omega} = 6.4 \text{mA} \quad I=6.4\text{mA} \]

2c) If VS=5V, what is the voltage at point A in this circuit? (3 pt)

\[V_{A} = \frac{5(3 \text{k})}{(0.6 \text{k} + 3 \text{k})} = 4.17 \text{V} \quad V_{A}=4.167\text{V} \]

2d) If VS=5V, what is the current through R2? (3 pt)

\[V_{R2} = 5 \text{V} - 4.167 \text{V} = 0.833 \text{V} \quad I_{R2} = \frac{0.833}{1.5 \text{k}} = 0.56 \text{mA} \quad I_{R2}=0.56\text{mA} \]
Question 1, Part 3: color code

3a) Resistors are found to have the color bands listed below. For each state the resistance. (4 pt)

Yellow-Violet-Orange $47k \Omega$

Brown-Red-Brown 120Ω

3b) Extra credit: If a resistor has color bands of Yellow-Violet-Yellow-Silver, what is the significance of the Silver band? (1 point)

 EXTRA: +/- 10% tolerance
Question 2 – Filters (15 points) (Test B)

Part 1: Filters, Using Rs=0Ω
1a) Let Rs=0Ω Redraw the circuit above for very low frequencies. Label points Va and Vb on your diagram. (3 pt)

1b) Let Rs=0Ω What is Va at very low frequencies? (2 pt)

\[V_a = 0V \]

1c) Let Rs=0Ω Redraw the circuit above for very high frequencies. Label points Va and Vb on your diagram. (3 pt)
1d) Let $R_s=0\Omega$ What is V_a at very high frequencies? (2 pt)

 \[\text{Since } R_s=0\Omega, \ V_a=8V\]

1e) Let $R_s=0\Omega$ If V_a is considered the output, what type of filter is this? (1 point)

 \[\text{High Pass Filter}\]

Part 2: Filters using $R_s=10k\Omega$

2a) Let $R_s=10k\Omega$ Referring to your picture in part 1a, what is V_b at very low frequencies? (2 pt)

 \[V_b = 0V\]

2b) Let $R_s=10k\Omega$ Referring to your picture in part 1c, what is V_b at very high frequencies? (2 pt)

 \[V_b = \frac{8(20k)}{(10k+20k)} = 5.33V \ \ V_b=5.33V\]
1a) What is the transfer function for the circuit? You must simplify. (6 pt)

\[Z_{out} = \frac{j \omega L_1 \cdot R_1}{j \omega L_1 + R_1} \quad H(j \omega) = \frac{Z_{out}}{Z_{in}} = \frac{j \omega L_1 \cdot R_1}{j \omega L_1 + R_1 + j \omega L_1 \cdot R_1} \]

\[H(j \omega) = \frac{(j \omega R L_1)(j \omega C_1)}{(j \omega L_1 + R_1) + (j \omega R L_1)(j \omega C_1)} \]

\[H(j \omega) = \frac{- \omega^2 R_1 L_1 C_1}{j \omega L_1 + R_1 - \omega^2 R_1 L_1 C_1} \]

1b) What are the simplified transfer function, the magnitude, and the phase of the circuit at low frequencies? (4 pt)

\[H_{LO}(j \omega) = \frac{- \omega^2 R_1 L_1 C_1}{R_1} = -\omega^2 L_1 C_1 \]

\[|H_{LO}| = 0 \quad \angle H_{LO} = \pi \]

(We know phase is positive because of the graph.)
1c) What are the simplified transfer function, the magnitude, and the phase of the circuit at high frequencies? (4 pt)

\[H_{HI}(j\omega) = \frac{-\omega^2 R \| L1C1}{\omega^2 R \| L1C1} = 1 \]

\[|H_{HI}| = 1 \quad \angle H_{HI} = 0 \]

Part 2: The phase and magnitude of the transfer function for this circuit are pictured below:

2a) Use the graph to determine the resonant frequency of the circuit (in Hertz). Show your work. (2 pt)

*from plot: \(f = 10^{3.55} = 3550 \text{Hz} \)

(Answers will vary. Student must use log scale to get reasonable answer for credit.)

2b) If the following input signal is applied to the circuit, what will be the amplitude and phase (in radians) of the output signal? [Please include all units.] (4 pt)

\[v_{in}(t) = A_{in}\sin(\omega t + \phi_{in}) = 500mV\sin(18850t + 2.09 \text{rad}) \]

\[\omega = 18850 \text{ rad/sec} \quad f=3000\text{Hz} \]

*from plot of \(|H|: \ |H| \text{ at } 3000\text{Hz} \text{ is } 1.7 \)

\[A_{out} = A_{in}\times(1.7) = (500mV)(1.7) = 850mV \]

*from plot of \(\angle H: \ \angle H \text{ at } 3000\text{Hz} = 110 \text{ degrees} = 1.92 \text{ rad} \)

*\(\phi_{out} = \phi_{in} + 1.92 = 2.09 + 1.92 = 4.01 \text{ rad} \) or -2.27 rad (both ok)

(Answers will vary depending upon value read from plot.)

\[A_{out} = 850mV \quad \phi_{out} = -2.27 \text{ rad} \]
Question 4 – Transformers and Inductors (20 points)

You are given the above transformer. You can assume the transformer is ideal, the coupling coefficient is 1, and the resistance of R1 is negligible compared to the resistance of R2. The plot below shows the input to the transformer at V1 and the output at V2. The output is the signal with the larger amplitude.

1) Give the values of the following for the input signal (smaller amplitude) shown. Give units for each. (7 pt)

- Amplitude (A): $1V$
- Frequency (f): $f = \frac{1}{143\text{us} - 107\text{us}}$
 $f = 27.8K \text{ Hz}$
- Angular frequency (ω): $\omega = 2\pi f = 175K \text{ rad/sec}$
- Phase (ϕ) relative to 100us: $\phi = -\alpha t_0 = -\omega t_0 = -(175k)(7 \mu) = -1.22 \text{ rad}$
- rms voltage (V_{rms}): $V_{rms} = \frac{1}{\sqrt{2}} = 0.707 \text{ V}$
- peak to peak voltage (V_{p-p}): $V_{p-p} = 2V$
- DC offset voltage (V_{DC}): $V_{DC} = 0\text{V}$

(These answers will vary depending upon the numbers they get form the plot.)

2) What is the most likely turns ratio of the transformer? (Express your answer as a whole number of turns.) (2 pt)

$Turns \text{ ratio} = 1V:8V = 1:8 \quad (a=8)$
3) If the primary inductor, L1, has an inductance of 1mH, what must the inductance of the secondary inductor, L2, be? (2 pt)

\[a = \sqrt{\frac{L_2}{L_1}} \quad 8 = \sqrt{\frac{x}{1m}} \quad L_2 = 64mH \]

4) If the impedance of the input inductor L1 is 250Ω, what is the value of R2? (3 pt)

\[Z_{in} = \frac{R_2}{a^2} \quad 250 = \frac{R_2}{8^2} \quad R_2 = 16k \Omega \]

5) Write an expression in the form, \(i(t) = I_{max} \sin(\omega t + \phi) \), that represents the current through the load resistor, R2, as a function of time. [Assume again that the phase is defined relative to 100us.] (3 pt)

\[i(t) = I_{max} \sin(\omega t + \phi) \quad V=1R \quad 8V = I^*(16K) \quad I=0.5mA \quad \omega=175K \text{ rad/s} \quad \phi = -1.22 \text{ rad} \]

\[i(t) = 0.5mA \sin(175K t - 1.22 \text{ rad}) \]

(These answers will vary. If they substitute \(\phi \), \(\omega \), and the amplitude of the voltage correctly from part 1), then this is correct.)

6) Assume the inductor, L1, is a long, thin coil with a length of 8.5 cm and 38 turns. If the radius of the transformer core is 0.5 cm, what material is the core most likely made of? [Assume there is no mutual inductance.] (3 pt)

Some values for \(\mu \)
- Air \quad 1.257\times10^{-6} \text{ H/m}
- Ferrite U M33 \quad 9.42\times10^{-4} \text{ H/m}
- Nickel \quad 7.54\times10^{-4} \text{ H/m}
- Iron \quad 6.28\times10^{-3} \text{ H/m}
- Ferrite T38 \quad 1.26\times10^{-2} \text{ H/m}
- Silicon GO steel \quad 5.03\times10^{-2} \text{ H/m}
- Supermalloy \quad 1.26 \text{ H/m}

\[L = \frac{\mu N^2 \pi r^2}{d} \quad 1m = \frac{\mu(38)^2 \pi (0.005)^2}{(0.085)} \quad \mu = 7.49\times10^{-4} \text{ H/m} \quad \text{Material} = \text{nickel} \]
Question 5 – PSpice, Instrumentation and Components (20 points) Quiz B

Part A: Given the scope setup shown below (w/ Channel 1 at 500mV/division, Channel 2 at 500mV/division and the timebase at 250µsec/div):

a) What are the peak-peak amplitudes and the frequency of the two signals shown (5 pt)?

\[V_{p-p} \text{ of the top signal (channel 1): } 1.0V \]

\[V_{p-p} \text{ of the bottom signal (channel 2): } 500mV \]

Frequency: \[Freq = 1/500\mu s = 2k\ Hz \]

DC offset of top signal (channel 1): \[0V \]

DC offset of bottom signal (channel 2): \[0V \]
b) The two scope traces were produced using a function generator and a circuit built with up to four 1K ohm resistors. Draw a schematic for a circuit that would produce the input (ch1) and output (ch2) signals shown on the previous page. You can use all or some of the resistors. The schematic does not need to show the scope connections. (3 pt)

![Schematic Diagram](image)

c) Show how you would wire the circuit in part b on the protoboard below. Assume the function generator has already been connected to the board using banana plugs. (2 pt)

![Protoboard Diagram](image)

d) On the figure above, indicate the location you would place the scope probes to get the signals shown in the scope picture for part A. Name the leads as follows: ADC1 (ADC 1 +), GND1 (ADC 1 -/GND), ADC2 (ADC 2 +), and GND2 (ADC2 -/GND). (2 pt)

e) In the circuit you created, is the input impedance of the oscilloscope (in comparison to the value of the resistors) a significant influence on the circuit? Why or why not? (2 pt)

The input impedance of the oscilloscope is of relatively little significance. It is on the order of three orders of magnitude larger than the resistors, which means that they have around 1000 times more influence on the circuit. If I make a voltage divider it becomes clearer:

With oscilloscope: \[R = \frac{(1k)(1M)}{(1k+1M)} = 0.999k \]

Without oscilloscope: \[R = 1k \]
Part B: You have created a circuit in PSpice to produce the following output.

\[\begin{array}{ccccccccccc}
0s & 50us & 100us & 150us & 200us & 250us & 300us & 350us & 400us & 450us & 500us \\
\hline
0V & -1.2V & 1.2V & \hline
\end{array} \]

a) Here is the circuit you used to create the signals. Fill in the boxes with the missing information. (4 pt)

\[\begin{array}{c}
V1 \\
\hline
R1 10k \\
R2 5k \\
0 \\
\end{array} \]

b) Indicate on the schematic above where you would place the voltage probes to produce signal A and signal B. Indicate which is which. (Do not use differential probes.) (2 pt)