ENGR-4300

Spring 2009
Test 1

Name

\qquad

Section: 1(MR 8:00am) 2(TF 2:00pm) 3(MR 6:00pm) (circle one)

Question I (20 points) \qquad
Question II (20 points) \qquad
Question III (20 points) \qquad
Question IV (20 points) \qquad
Question V (20 points) \qquad

Total (100 points) \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.

Question I - Circuit Analysis (20 points)

1) (2 pts) What is the value of R23, the parallel combination of R2 and R3?

$$
\mathrm{R} 23=\mathrm{R} 2 \times \mathrm{R} 3 /(\mathrm{R} 2+\mathrm{R} 3)=7 \mathrm{k} \times 42 \mathrm{k} /(7 \mathrm{k}+42 \mathrm{k})=6 \mathrm{k}
$$

2) (3 pts) What is the value of R456, the parallel combination of R4, R5 and R6?

$$
\begin{aligned}
& 1 / \mathrm{R} 456=1 / \mathrm{R} 4+1 / \mathrm{R} 5+1 / \mathrm{R} 6=1 / 20 \mathrm{k}+1 / 6 \mathrm{k}+1 / 30 \mathrm{k}=0.00025 \\
& \mathrm{R} 456=1 / 0.00025=4 \mathrm{k}
\end{aligned}
$$

3) (3 pts) Find the total resistance attached to the 50 V supply.

$$
\mathrm{Rtotal}=\mathrm{R} 1 \times(\mathrm{R} 23+\mathrm{R} 456) /(\mathrm{R} 1+(\mathrm{R} 23+\mathrm{R} 456)=10 \mathrm{k} \times 10 \mathrm{k} /(10 \mathrm{k}+10 \mathrm{k})=5 \mathrm{k}
$$

4) (3 pts) Find the total current from the 50 V supply into the circuit.

$$
\text { Itotal }=\mathrm{V} / \text { Rtotal }=50 / 5 \mathrm{k}=10 \mathrm{~mA}
$$

5) (4 pts) Find voltage point A using the voltage divider equation.

6) (4 pts) How much current is flowing through R 4 , the 20 k resistor?

$$
\mathrm{I}_{\mathrm{R} 4}=20 \mathrm{~V} / 20 \mathrm{k}=1 \mathrm{~mA}
$$

7) (1 pt) What would the voltage at A be if the 10 k resistor R1 were removed from the circuit?

The voltage would not change since the voltage at the top of the voltage divider would still be 50 V
$\mathrm{V}_{\mathrm{A}}=20 \mathrm{~V}$

Question II - Filters (20 points)

The following circuits consist of a sinusoidal source, resistors, capacitors, and inductors. V1 and V2 are the sinusoidal sources and R1 and R3 are internal impedances. Analyze all with appropriate simplification for the impedances.

1) (3 pts) Redraw circuit A at low frequencies

$\mathrm{H}=0$ (not needed in answer)
2) (3 pts) Redraw circuit B at low frequencies

$\mathrm{H}>=1$ (not needed in answer)
3) (3 pts) Redraw the circuit A at high frequencies

$$
\mathrm{H}>=1 \text { (not needed in answer) }
$$

4) (3 pts) Redraw circuit B at high frequencies

$\mathrm{H}=0$ (not needed in answer)
5) (4 pts) Create a rough sketch of the magnitude of the transfer function of Circuit A as a function of frequency (Hz). You need only to show the general shape, not the phase. Indicate on the graph
where the resonant frequency is located and show its numerical value.

-1 if did not remember or mention the possibility of resonance for both graphs

6) (2 pts) Create a rough sketch of the magnitude of the transfer function of Circuit B as a function of frequency (Hz). You need only to show the general shape, not the phase. Indicate on the graph where the resonant frequency is located and show its numerical value.

did not remember resonance: point is already taken above

7) (2 pts) The following graph is the source voltage for either V1 (Circuit A) or V2(Circuit B). Given the knowledge of corner and/or resonant frequencies, which circuit (A or B) would cause Vout to be of much less amplitude than V1 or V2 (input voltage)?
No points for continuation of errors above!

Frequency of graph is $1 / 100 u s=10 K$. According to resonant frequency Vout would be low for a low pass filter. Therefore, Circuit B would cause Vout to be low.

Question III - Transfer Functions (20 points)

1) (6 pts) What is the transfer function $\mathrm{H}(\mathrm{j} \omega)$ for the circuit above in terms of R, L, and C ? You must reduce it to a simple ratio of polynomials in ω.

2) (4 pts) Find the simplified transfer function for small (not zero) and large ω.

3) (4 pts) Substitute the values $\mathrm{R}=1, \mathrm{C}=0.25$, and $\mathrm{L}=4$ into $\mathrm{H}(\mathrm{j} \omega)$ in 1) and simplify.

4) (2 pts) Find the magnitude of $\mathrm{H}(\mathrm{j} \omega)$ for $\omega=1$ radian/s.

5) (2 pts) For $\omega=1 \mathrm{radian} / \mathrm{s}$, if the input has an amplitude of 2 volts $[\operatorname{Vin}=2 \sin (\mathrm{t})]$, what is the amplitude of Vout?

$$
\mid \text { Vout }|=|\mathrm{H}(\mathrm{j} 1)| \mathrm{x}| \mathrm{Vin} \mid=4 \mathrm{x} 2=8 \mathrm{~V}
$$

6) (2 pts) At what frequency would you expect the voltage $V_{\text {out }}$ to go to zero?

From 2), as ω approaches 0 , the output approaches 0 , so
$V_{\text {out }}=0$ for $\omega=0$

Question IV - Transformers and Inductors (20 points)

1) (7 pts) In the circuit above, $\mathrm{R} 1=10 \mathrm{~K} \Omega$. If the input voltage has an amplitude of 5 V and the voltage at point A is 600 mV , what is the value of R 2 ?

You have found an inductor and wish to determine its inductance. Here is a picture:

You find that it has a wire gauge diameter of 0.51 mm (24 gauge), a length of 10.5 mm , a core diameter of 7.0 mm and 47 turns. You assume that it has an air core ($\mu=1.257 \times 10^{-6}$ Henries $/$ meter $)$.
2) (3 pts) Calculate the theoretical inductance

3) (2 pts) You place the inductor you found in the following circuit

If the value of the resistor is 50 ohms and the value of the capacitor is $100 \mu \mathrm{~F}$, what is the resonant frequency of the circuit?

(note: one point for correct equation, if
value of inductor is incorrect)
4) (3 pts) Based on simple analysis of what occurs at high and low frequencies (redraw if needed), draw the sketch of the magnitude of the transfer function at point B. Mark the resonant frequency on the sketch.

5) (2 pts) What kind of filter is this?

Band reject

6) (3 pts) If Vout is placed between the inductor and capacitor instead of point B, what happens to the magnitude of the transfer function from high to low frequencies?

Question V - PSpice (20 points)

The following circuit is setup in PSpice

1) (5 pts) Setup a transient analysis in the simulation settings window below that will show 10 cycles of the signal, (the "start saving data after:" box can be neglected)

$1 \mathrm{kHz}=>1 \mathrm{~ms}$ for 1 complete cycle. $10 \mathrm{~ms}=>10$ cycles.
Max step size is 10 us or something close to this.
2) (2 pts) Your friend in the course is trying to create an AC sweep for the above circuit. He or she is frustrated and has spent hours trying to get the simulation to run. You decide to help and find that the simulation settings are correct and the components in the circuit are connected correctly. You still receive an error, "No AC sources- AC sweep ignored". What is the easiest and fastest solution to this error?
a) Call over Professor Sawyer and/or Professor Kraft
b) Call over a TA
c) Close the program and restart
d) Double click the AC source and add the amplitude parameter in the "AC" box
e) Use "VAC/Source" component in your library
(d if they have a,b, and d, take off 1 point!)
3) (3 pts) The AC sweep problem is solved. The simulation output looks like:

You would like to see the transient output plot at 1.0 MHz . What would you change in the circuit and in the settings to clearly see the change in voltage with time? Circle all that apply.
a) The values of the capacitor and inductor
b) The analysis type in the simulation settings to Time Domain (Transient)
c) The position of the voltage probes
d) The value of the AC source amplitude to 1 V
e) The value of the AC source amplitude to .1 V
f) The value of the AC source frequency to 1 M
g) The value of the AC source frequency to 1 Meg
h) The run time to 40 ms and maximum step size to 40 us
i) The run time to .004 ms and maximum step size to .004 us
b, g, i
4) (4 pts) Refer to the AC sweep diagram above. Choose and label the plots of the transient output at

1 Meg, Vout is red, Vin is green

Determined from plot above, the transfer function is nearly 0

200 Hz , Vout is red, Vin is green

Determined
from plot above, the transfer function is nearly 1
5) (6 pts) You begin to build the circuit on the protoboard. You would like to compare the input and output of the circuit as shown in the diagram as probes. What options can you use on the oscilloscope with the corresponding IOBoard connections? (Mark all that apply)

Wire to circuit at voltage point at point 1 using A1+ and Ground Wire to circuit at voltage point at point 2 using A2+ and Ground

Wire to circuit at voltage point at probe 1 using A1+ and Ground

Wire to circuit at voltage point at point 1 using A1+ and Ground Wire to circuit at voltage point at point 2 using A2+ and Ground

Wire to circuit at voltage point at probe 2 using A2+ and Ground

Measuring the output from the outside using wires $A 2$ single ended and the input at probe 1 from the inside AWG1 is correct

