ENGR4300
 Spring 2006
 Test 2B

Name_s_solution

Section

\qquad

$$
\text { Question } 1 \text { (25 points) }
$$

\qquad
Question 2 (15 points) \qquad
Question 3 (20 points) \qquad
Question 4 (20 points) \qquad
Question 5 (20 points) \qquad

Total (100 points): \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.

Question 1 - Bridges and Damped Sinusoids (25 points)

Above is figure of an amplified strain gauge bridge similar to the one you are using for project 2 . The circuit has the following values: $\mathrm{Vin}=5 \mathrm{~V}, \mathrm{Rb}=1 \mathrm{~K}$ ohms, $\mathrm{R} 1=2 \mathrm{~K}$ ohms, $\mathrm{R} 2=2 \mathrm{~K}$ ohms, $\mathrm{R} 3=10 \mathrm{k}$ ohms, $\mathrm{R} 4=10 \mathrm{k}$ ohms, and the pot is a 2 k pot.
a) Assuming the bridge is ideal and that it has been properly balanced, which of these four plots is correct for each of the following four voltages on the figure: Vin, Vs, Vp, and Vout. (Indicate the signal in the box below the plot). (8 points)

Vout

Vs

Vin

$$
V p
$$

b) What is the resonant frequency of the output signal in Hertz? (3 points)

$$
\begin{aligned}
& \mathrm{T}=(560 \mathrm{~m}-100 \mathrm{~m}) / 9=51.1 \mathrm{~ms} \mathrm{f}=1 / 51.1 \mathrm{~m} \\
& \boldsymbol{f}=\boldsymbol{1 9 . 6} \mathbf{H z}
\end{aligned}
$$

c) What is the damping constant of the output signal? (4 points)

From below:

$$
\begin{aligned}
& (t 0, v 0)=(0.1 \mathrm{~s}, 300 \mathrm{mV})(t 1, v 1)=(0.56 \mathrm{~s}, 200 \mathrm{mV}) \\
& 200 \mathrm{~m}=300 \mathrm{~m} e^{\wedge}[-\alpha(.56-.1)] \\
& \alpha=0.9 / \mathrm{s}
\end{aligned}
$$

From above:

$$
\begin{aligned}
& (t 0, v 0)=(0.125 \mathrm{~s}, 310 \mathrm{mV}) \quad(t 1, v 1)=(0.585 \mathrm{~s}, 150 \mathrm{mV}) \\
& 150 \mathrm{~m}=310 \mathrm{~m} e^{\wedge}[-\alpha(.585-.125)] \\
& \alpha=1.6 / \mathbf{s}
\end{aligned}
$$

d) Write an equation for Vout in terms of Vs and Vp. Do not substitute numerical values for the resistors. (2 points)

$$
\text { Vout }=\left(\frac{R 4}{R 1}\right)(V s-V p) \quad \text { [Allowable variations: } R 4=R 3, R 1=R 2 \text {] }
$$

e) If $R_{\text {pot }}$ is the total resistance of the potentiometer, $R_{\text {top }}$, is the resistance between the center of the pot and the source voltage, $\mathrm{R}_{\mathrm{bottom}}$ is the resistance between the center of the pot and ground, R_{sg} is the resistance of the strain gauge, and Rb is as shown in the figure, which of the following are true statements? Assume the bridge is balanced and in its rest position. (4 points) (Circle T or F for each statement.)

$$
\begin{array}{lll}
\frac{R b}{R b+R_{s g}}=\frac{R_{\text {top }}}{R_{\text {pot }}} & \boldsymbol{T} & \mathrm{F} \\
\frac{R b}{R_{\text {sg }}}=\frac{R_{\text {top }}}{R_{\text {bottom }}} & \boldsymbol{T} & \mathrm{F} \\
R_{\text {top }}+R_{\text {bottom }}=R_{\text {pot }} & \boldsymbol{T} & \mathrm{F} \tag{array}\\
\frac{R_{\text {bottom }}}{R_{\text {sg }}}=\frac{R_{\text {pot }}-R_{\text {bottom }}}{R b} & \boldsymbol{T} & \mathrm{~F}
\end{array}
$$

f) Starting with the equation from part d, derive an equation for Vout in terms of Vin for this circuit. Use the resistor naming conventions we used in part e ($\mathrm{R}_{\mathrm{pot}}, \mathrm{R}_{\text {top }}, \mathrm{R}_{\text {bottom }}, \mathrm{R}_{\text {sg }}$, and Rb) and the other resistors in the circuit ($\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, and R 4). You will not need all of these resistors in the answer. You cannot assume the bridge is balanced. You cannot substitute numerical values for the resistors. You cannot express your answer in terms of Vs and Vp. Your answer should be expressed as Vout $=\mathrm{K}^{*}$ Vin, where K is a constant based on some combination of the resistor values. (4 points)

$$
\begin{aligned}
& \text { Vout }=\left(\frac{R 4}{R 1}\right)(V s-V p) \quad V s=\frac{R_{s g}}{R_{s g}+R b} \text { Vin } \quad V p=\frac{R_{\text {bottom }}}{R_{\text {pot }}} \text { Vin } \\
& \text { Vout }=\left(\frac{R 4}{R 1}\right)\left(\frac{R_{s g}}{R_{s g}+R b} \text { Vin }-\frac{R_{\text {botom }}}{R_{\text {pot }}} \operatorname{Vin}\right) \\
& \text { Vout }=\left(\frac{R 4}{R 1}\right)\left(\frac{R_{s g}}{R_{s g}+R b}-\frac{R_{\text {bottom }}}{R_{\text {pot }}}\right) * \text { Vin }
\end{aligned}
$$

[Allowable variations: $\left.R 1=R 2, R 3=R 4, R_{\text {pot }}=R_{\text {top }}+R_{\text {bottom }}\right]$

Question 2 - Thevenin Equivalents (15 points)

$\mathrm{V} 1=8 \mathrm{~V}, \mathrm{R} 1=3 \mathrm{k}$ ohms, $\mathrm{R} 2=400$ ohms, $\mathrm{R} 3=2 \mathrm{k}$ ohms, $\mathrm{R} 4=1 \mathrm{k}$ ohms, $\mathrm{R} 5=2 \mathrm{k}$ ohms
a) Find the Thevenin equivalent voltage with respect to A and B for the circuit shown above. (5 points)

$$
\begin{aligned}
& V t h=V 1(R 4) /(R 2+R 3+R 4)=8(1 k) /(400+2 k+1 k)=2.35 V \\
& V \text { th }=2.35 \boldsymbol{V}
\end{aligned}
$$

b) Find the Thevenin equivalent resistance with respect to A and B for the circuit shown above. (5 points)

$$
\begin{aligned}
& R 23=400+2000=2400 \text { R234 }=(2400 * 1000) /(2400+1000)=706 \text { ohms } \\
& \text { Rth }=706+2000=2706 \text { ohms } \\
& \text { Rth }=2706 \text { ohms }
\end{aligned}
$$

c) Draw the Thevenin equivalent circuit with a load resistor of 4 K between points A and B. (3 points)

d) What is the current through the 4 K load resistor in the circuit you drew in part c ? (2 points)

$$
I=V t h /(\operatorname{Rth}+4 k)=2.35 /(2706+4000)=0.35 \mathrm{~mA} \quad \boldsymbol{I}=\mathbf{0 . 3 5 m} \boldsymbol{A}
$$

Question 3 - Op-Amp Applications (20 points)

For the circuit above, the variable resistor, Rsg, will be equal to 100 ohms when $\mathrm{SET}=1$. The op-amps are ideal. The Vac source creates a sine wave and the Vdc source adds a DC offset to it. When Vac=0, this is equivalent to replacing the Vac source by a short, leaving only the Vdc source as input to the circuit.
a) What is the voltage $\mathrm{V}_{\text {sg }}$ in the circuit above if $\mathrm{Vac}=0$ and $\mathrm{Vdc}=9 \mathrm{v}$? (3 points)

$$
V_{s g}=9 V(100) /(100+200)=3 V \quad V_{s g}=3 V
$$

b) What is the voltage $\mathrm{V}_{\text {comp }}$ in the circuit above if $\mathrm{Vac}=0$ and $\mathrm{Vdc}=9 \mathrm{v}$? (3 points)

$$
V_{s g}=9 V(200) /(200+200)=4.5 \mathrm{~V} \quad V_{s g}=4.5 \mathrm{~V}
$$

c) With $\mathrm{Vdc}=6 \mathrm{v}$ and $\mathrm{Vac}=0 \mathrm{v}$, and assuming the op-amp is ideal, what is I_{x} ? (3 points)

$$
I_{x}=0 m A
$$

d) What is the voltage V_{z} if $\mathrm{Vdc}=6 \mathrm{v}$ and $\mathrm{Vac}=0 \mathrm{v}$? (3 points)

$$
\mathrm{Vz}=V_{s g}=6 V(100) /(100+200)=2 V \quad V z=2 V
$$

e) Circle and label the op amp configurations on the schematic above, choosing from the following types. (Not all are in the circuit and there can be more than one of a single type.) (3 points)

1. Follower/Buffer
2. Inverting Amp
3. Non-inverting Amp
4. Differentiator
5. Integrator
6. Adding (Mixing) Amp
7. Difference (Differential) Amp
f) What values of R_{x} and R_{y} would you use to produce the following plot with $V d c=6 v$ and the amplitude of $\mathrm{Vac}=6 \mathrm{v}$, if the probe's output appeared as follows? (5 points)

We know that the circuit will operate on the amplitude and the offset in a mutually exclusive manner. We could use either to solve the problem. The input amplitude is 6 V and the $D C$ offset is also 6 V . They are the same, so we will use 6 V as the input. The output amplitude and DC offset are both $4 V$.

If the circuit with Rx and Ry is actually a functioning differential amplifier, then Rx and Ry can be found easily by looking at the circuit. Ry must match the other input resistor and Rx must match the feedback resistor. This would mean that $R x=4 k$ ohms and $R y=1 \mathrm{k}$ ohms. If this is not the case, then we will have to do more work.

Let's check and see if our assumption is correct :
Vout $=(R f /$ Rin $)(V x-V z) \quad V x=6 V(200 / 400)=3 V \quad V z=6 V(100 / 300)=2 V$ Vout $=(4 k / 1 k)(3 V-2 V)=4 V$. This is the Vout that we want. Therefore,
$R x=4 K$ ohms and $R y=1 k$ ohms

Question 4 - Op-Amp Analysis (20 points)

Part A: Assume the op-amp is ideal.

1) Above is a Capture schematic of an op-amp circuit that you should recognize. What type of circuit is it? (1 point)

differential amplifier

2) We assume that the op-amp is ideal. What are the two "golden rules" that we then use to analyze the circuit? (2 points)

$$
\begin{array}{ll}
\text { 1) } V a=V b & \text { 2) } I a=I b=0
\end{array}
$$

(where Ia is the current entering at pin 2 of the op amp and Ib is the current entering at pin 3 of the op amp.)
3) Draw the circuit at the non-inverting input to the op-amp. (2 points)

4) If $\mathrm{V} 1=1.2 \mathrm{~V}, \mathrm{~V} 2=0.5 \mathrm{~V}$ what is the value of Vb in Volts? (2 points)

$$
V b=V 2(R 4) /(R 2+R 4)=(0.5)(8 k) /(1 k+8 k)=0.444 V \quad \boldsymbol{V} \boldsymbol{b}=\mathbf{0 . 4 4 V}
$$

5) Draw the circuit at the inverting input to the op-amp. (2 points)

6) Still using V1 $=1.2 \mathrm{~V}, \mathrm{~V} 2=0.5 \mathrm{~V}$ what is the value of Vout in Volts? Show your work. (3 points)

$$
\text { Vout }=(R 3 / R 1)(V 2-V 1)=(8 k) /(1 k)(0.5-1.2)=-5.6 \mathrm{~V} \quad \text { Vout }=\mathbf{- 5 . 6 V}
$$

Part B: This is the same circuit except that one of your partners wired this circuit and made a mistake. She/he used a $10 \mathrm{k} \Omega$ resistor for R 2 rather than the $1 \mathrm{k} \Omega$ value called for in the schematic.

1) Still using V1 $=1.2 \mathrm{~V}, \mathrm{~V} 2=0.5 \mathrm{~V}$, what is the value of Vb in Volts for the improperly wired circuit? (2 points)

$$
V b=V 2(R 4) /(R 2+R 4)=0.5(8 k) /(8 k+10 k)=0.22 V \quad \boldsymbol{V}=\mathbf{0 . 2 2 V}
$$

2) Still assuming the circuit is wired incorrectly as stated in part 1 B , and using $\mathrm{V} 1=$ $1.2 \mathrm{~V}, \mathrm{~V} 2=0.5 \mathrm{~V}$ what is the value of Va in volts? What is the current through R 1 , in mA ? Assume that the op-amp is ideal. (3 points)

According to the op-amp analysis rules, $V a=V b$, therefore

$$
\begin{aligned}
& \boldsymbol{V} \boldsymbol{a}=\mathbf{0 . 2 2 ~ V} \\
& I_{R I}=(V 1-\mathrm{Va}) / R 1=(1.2-0.22) /(1 \mathrm{k})=0.98 \mathrm{~mA}
\end{aligned}
$$

I(through R1) $=0.98 \mathrm{~m} A$

3) Use the results from part B2 and determine Vout for the incorrect circuit, again using $\mathrm{V} 1=1.2 \mathrm{~V}$ and $\mathrm{V} 2=0.5 \mathrm{~V}$. Give Vout in volts. (3 points)

I know that the current through R3 must be the same as the current through R1.

$$
I_{R I}=(\text { Va-Vout }) / R 3 \quad 0.98 m=(0.22-\text { Vout }) / 8 k \quad 7.84=0.22-\text { Vout } \text { Vout }=-7.62 \mathrm{~V}
$$

Vout $=-7.62 \mathrm{~V}$

Question 5 - Op-Amp Integrators and Differentiators (20 points)

Part A: Assume the op-amp in the circuit above is ideal.

1) Above is a Capture schematic of an op-amp circuit that you should recognize. What type of circuit is it? (1 point)

ideal integrator

2) For this circuit, the input is sinusoidal. What is $\mathrm{H}(\mathrm{j} \omega)$, the transfer function for this circuit? $\mathrm{H}(\mathrm{j} \omega)=$ Vout/V1. You must use the component values, don't leave the answer in terms of R1 or C1. Simplify your answer. (3 points)

$$
\begin{aligned}
& H(j \omega)=-1 /(j \omega \operatorname{Rin} C f)=-1 /(j \omega(10 k)(0.2 \mu)=-1 /(j \omega 0.002)=+500 j / \omega \\
& \boldsymbol{H}(\mathbf{j} \omega)=\mathbf{5 0 0 j} / \omega
\end{aligned}
$$

3) $\mathrm{V} 1=2 \mathrm{~V} \sin (100 \mathrm{t}+0 \mathrm{rad})$, and Vout is expressed as a sine wave of the form: Vout $=\mathrm{A}_{\text {out }} \sin \left(\omega_{\text {out }} t+\Phi_{\text {out }}\right)$. What are the values for $\mathrm{A}_{\text {out }}, \omega_{\text {out }}$, and $\Phi_{\text {out }}$? Include units (6 points)

$$
\begin{aligned}
& \omega_{\text {out }}=100 \mathrm{rad} / \mathrm{sec} \quad|H|=500 / 100=5 \quad \angle H=\pi / 2 \\
& A_{\text {out }}=|H|^{*} A_{\text {in }}=5 * 2 \mathrm{~V}=10 \mathrm{~V} \quad \Phi_{\text {out }}=\angle H+\Phi_{\text {in }}=1.57+0=1.57 \mathrm{rad} \\
& A_{\text {out }}=10 \mathrm{~V} \\
& \omega_{\text {out }}=100 \mathrm{rad} / \mathrm{sec} \\
& \Phi_{\text {out }}=1.57 \mathrm{rad}
\end{aligned}
$$

Part B: You are given the circuit pictured above. Assume the op-amp is ideal.

1) Assume that the input is sinusoidal and we want to find $H(j \omega)$, the transfer function, for this circuit. We know that when the non-inverting terminal of an op-amp circuit is grounded, $\mathrm{H}(\mathrm{j} \omega)=\mathbf{- Z f} / \mathbf{Z i n}$. Find Zf . Substitute values for the components. (1 point)

$$
Z f=R 2=1 k \quad Z f=1 k
$$

2) Find Zin. Substitute values for the components. Simplify your answer. (2 points)

$$
\begin{aligned}
& \operatorname{Zin}=\frac{\frac{1}{j \omega C 1} \cdot R 1}{\frac{1}{j \omega C 1}+R 1}=\frac{R 1}{1+\omega R 1 C 1}=\frac{10 k}{1+\omega(10 k)(20 n)}=\frac{10 k}{1+j \omega(0.2 m)} \\
& \operatorname{Zin}=\frac{10 k}{1+j \omega(0.0002)}
\end{aligned}
$$

3) Using 1) and 2), determine the transfer function, $\mathrm{H}(\mathrm{j} \omega)$, for the circuit. Substitute component values. Simplify your answer. (3 points)

$$
\begin{aligned}
& H(j \omega)=\frac{-Z f}{Z \text { in }}=\frac{1 k}{10 k / 1+j \omega(0.0002)}=\frac{1 k}{10 k}(1+j \omega(0.0002)) \\
& H(j \omega)=-0.1-j \omega(0.02 m)=-0.1-j \omega(0.00002)
\end{aligned}
$$

4) At high frequency, this circuit acts like a differentiator

Fill in the blank using one of the following: a) Inverting Amplifier, b) Non-inverting Amplifier, c) Differential Amplifier, d) Adder, e) Integrator, f) Differentiator, g) none of a thrue. (2 points)

We also accepted "none of a through \boldsymbol{e} " because although the circuit is differentiating at high frequencies, the transfer function approaches infinity. It won't be a useful differentiator.
5) Now assume that Vin is a 0.1 V DC source. What is Vout? (2 points)

$$
H(j \omega)=-0.1-j \omega(0.00002)
$$

$D C$ input is zero frequency. The transfer function at zero frequency (ω approaches zero) is $H(j \omega)=-0.1$. The phase is π, so the signal is inverted.

Aout $=|H| * \operatorname{Vin} \quad|H|=0.1$ Vin $=0.1$ Aout $=(0.1)(0.1)=0.01$
The signal is inverted, so Vout $=-0.01 \mathrm{~V}$
A simpler way to find the answer, is to realize that the capacitor behaves like an open circuit at low frequency. The circuit turns into an inverting amplifier.

Vout $=-R 2 / R 1($ Vin $)=-(1 k) /(10 k)(0.1)=-0.01 \mathrm{~V}$

Vout $=\mathbf{- 0 . 0 1 V}$

