ENGR-4300
Fall 2008
Test 2

Name:
 SOLUTION

Section: 1(MR 8:00) 2(TF 2:00) (circle one)

Question I (20 points): \qquad
Question II (20 points): \qquad
Question III (20 points): \qquad
Question IV (20 points): \qquad
Question V (20 points): \qquad

Total (100 points): \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.

Question I - Bridges and Damped Sinusoids (20 points)

You are given a cantilever beam similar to the one you used in experiment 4. You place two weights on the end of the beam one at a time (0.1 kg and 0.7 kg) and you get the following two plots (may not be in order of mass listed).

Plot 1

Plot 2

1) $(2 \mathrm{pt})$ What is the frequency of plot 1 ? (Use at least 2 significant figures)

2 cyles in $.5-05 \mathrm{~ms} \quad$ time $_{\boldsymbol{1}}:=.5 \boldsymbol{s}-.05 \boldsymbol{s} \quad$ cylcles $_{\boldsymbol{1}}:=2$

$$
f_{1}:=\frac{\text { cylcles }_{1}}{\text { time }_{1}} \quad f_{1}=4.444 \mathrm{~Hz}
$$

Question I - Bridges and Damped Sinusoids (continued)

2) (2pt) What is the frequency of plot 2? (Use at least 3 significant figures)
5 cylces in $.5-.02 \mathrm{~ms}$
$\boldsymbol{t}_{\boldsymbol{2}}:=.5 \boldsymbol{s}-.02 \boldsymbol{s}$
cycles $_{2}:=5$
$f_{2}:=\frac{\text { cycles }_{2}}{t_{2}}$ $\boldsymbol{f}_{\boldsymbol{2}}=10.417 \mathrm{~Hz}$
$f_{2}=10.4 \mathrm{~Hz}$
3) (6 pt) What is the damping constant for plot 1 , mark the points on the plot? (Use at least 3 significant figures)

$$
\begin{array}{lll}
\left(\boldsymbol{t}_{\boldsymbol{0}}, \boldsymbol{v}_{\boldsymbol{0}}\right)=(.22 \boldsymbol{s}, 2.4 \boldsymbol{V}) & \left(\boldsymbol{t}_{\boldsymbol{1}}, \boldsymbol{v}_{\boldsymbol{1}}\right)=(1.78 \boldsymbol{s}, 1.7 \boldsymbol{V}) & \boldsymbol{t}_{\boldsymbol{0}}:=.22 \boldsymbol{S} \\
\boldsymbol{v}_{\boldsymbol{0}}:=2.4 \boldsymbol{V} \\
\boldsymbol{v}_{\boldsymbol{1}}=\boldsymbol{v}_{\boldsymbol{0}} \cdot \boldsymbol{e}^{-\alpha\left(\boldsymbol{t}_{\boldsymbol{1}}-\boldsymbol{t}_{\boldsymbol{0}}\right)} & \begin{array}{l}
\boldsymbol{t}_{\boldsymbol{1}}:=1.78 \boldsymbol{S} \\
\boldsymbol{v}_{\boldsymbol{1}}:=1.7 \boldsymbol{V}
\end{array} \\
-\frac{}{\boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{v}_{\boldsymbol{1}}}{\boldsymbol{v}_{\boldsymbol{0}}}\right)}=0.221 \frac{1}{\boldsymbol{s}} & \alpha=.22 \frac{1}{\boldsymbol{s}} &
\end{array}
$$

4) (6pt) Given the following formula, $\boldsymbol{k}=\left(\boldsymbol{m}+\boldsymbol{m}_{\boldsymbol{n}}\right) \cdot\left(2 \cdot \boldsymbol{\pi} \cdot \boldsymbol{f}_{\boldsymbol{n}}\right)^{2}$, and assuming that the two data points that you found are ideal, find values for k and m .

$$
\begin{array}{cc}
\boldsymbol{k}=(\boldsymbol{m}+0.1) \cdot[2 \cdot \boldsymbol{\pi} \cdot(10.4)]^{2} & \boldsymbol{k}=(\boldsymbol{m}+0.7) \cdot[2 \cdot \boldsymbol{\pi} \cdot(4.44)]^{2} \\
\boldsymbol{k}=4269 \cdot \boldsymbol{m}+426.9 \quad \text { if rounded up } & \boldsymbol{k}=779.67 \boldsymbol{m}+544.78 \\
4270 \boldsymbol{m}+427=778.67 \boldsymbol{m}+544.8 & \\
4270-778=3.492 \times 10^{3} & \\
544.8-427=117.8 & \\
\quad \boldsymbol{m}=\frac{117.8}{3492}=0.034 \quad \boldsymbol{k g} & \boldsymbol{k}=572.178 \frac{\mathrm{~kg}}{\mathrm{~s}^{2}}
\end{array}
$$

Question I - Bridges and Damped Sinusoids (continued)

5) (2 pt) What is the mass of the beam?

$$
\begin{aligned}
(0.034) & =0.23 \cdot\left(\boldsymbol{m}_{\boldsymbol{b}}\right) \\
\boldsymbol{m}_{\boldsymbol{b}} & :=\frac{.034}{0.23} \boldsymbol{k} \boldsymbol{g} \\
\boldsymbol{m}_{\boldsymbol{b}} & =0.148 \mathrm{~kg}
\end{aligned}
$$

6) (2pt) Using the chart for Young's Modulus, determine the probable material that the beam is made out of given that the dimensions of the beam are: width $=1.5 \mathrm{~cm}$, length $=15 \mathrm{~cm}$, and thickness $=2$ mm .

TABLE 9.1		Metal	Elastic modulus ($\mathrm{N} / \mathrm{m} 2$)
Young's Modulus Table of Values			
Metal	Elastic modulus ($\mathrm{N} / \mathrm{m} 2$)		
aluminum, 99.3%, rolled	6.96×10^{10}	lead, rolled	1.57×10^{10}
brass	9.02×10^{10}	platinum, pure, drawn	16.7×10^{10}
copper, wire, hard drawn	11.6×10^{10}	silver, hard drawn	7.75×10^{10}
gold, pure, hard drawn	7.85×10^{10}	steel, $0.38 \% \mathrm{C}$, annealed	20.0×10^{10}
iron, wrought	19.3×10^{10}	tungsten, drawn	35.5×10^{10}

$$
\begin{aligned}
\boldsymbol{k} & =572.178 \frac{\mathrm{~kg}}{\mathrm{~s}^{2}} \\
\boldsymbol{w} & :=1.5 \mathrm{~cm} \\
\boldsymbol{l} & :=15 \mathrm{~cm} \\
\boldsymbol{t} & :=2 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{E}:=\frac{\boldsymbol{k} \cdot 4 \cdot \boldsymbol{l}^{3}}{\boldsymbol{w} \cdot \boldsymbol{t}^{3}} \\
& \boldsymbol{E}=6.437 \times 10^{10} \frac{\mathrm{~N}}{\boldsymbol{m}^{2}}
\end{aligned}
$$

Question II - Thevenin Equivalents (20 points)

1) (7pt) Find the Thevenin equivalent voltage with respect to A and B for the circuit shown above) Hint: Vth $=V_{A}-V_{B}$ so find V_{A} then V_{B}

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{1}}:={ }_{6} \quad \boldsymbol{V}_{\boldsymbol{2}}:=500 \Omega \\
& \boldsymbol{R}_{\boldsymbol{1}}:={ }_{2} \boldsymbol{k} \Omega \quad \boldsymbol{R}_{\boldsymbol{3}}:=1 \boldsymbol{k} \Omega \quad \begin{array}{l}
\boldsymbol{R}_{\mathbf{5}}:=3 \boldsymbol{k} \Omega \\
\boldsymbol{V}_{\boldsymbol{A}}:=\boldsymbol{V}_{\boldsymbol{1}} \\
\\
\boldsymbol{V}_{\boldsymbol{B}}:=\boldsymbol{V}_{\boldsymbol{1}} \cdot \frac{\boldsymbol{R}_{\boldsymbol{4}}+\boldsymbol{R}_{\boldsymbol{3}}}{\boldsymbol{R}_{\boldsymbol{2}}+\boldsymbol{R}_{\boldsymbol{4}}+\boldsymbol{R}_{\boldsymbol{3}}} \\
\boldsymbol{V}_{\boldsymbol{B}}=5.143 \mathrm{~V} \\
\boldsymbol{V}_{\boldsymbol{t} \boldsymbol{h}}:=\boldsymbol{V}_{\boldsymbol{A}}-\boldsymbol{V}_{\boldsymbol{B}} \\
\boldsymbol{V}_{\boldsymbol{t h}}=0.857 \mathrm{~V}
\end{array}
\end{aligned}
$$

Question II - Thevenin Equivalents (continued)

2) (6 pt) Find the Thevenin equivalent resistance with respect to A and B for the circuit shown above. Short across a resistor means R1 is negligible

R3 and R4 are is series

$$
R_{34}:=R_{3}+R_{4}
$$

R34 is in parallel with R2

$$
\boldsymbol{R}_{\mathbf{3 4}}=3 \times 10^{3} \Omega
$$

R234 and R5 are in series

$$
\begin{gathered}
\boldsymbol{R}_{\mathbf{2 3 4}}:=\frac{\boldsymbol{R}_{\mathbf{3 4}} \cdot \boldsymbol{R}_{\mathbf{2}}}{\boldsymbol{R}_{\mathbf{3 4}}+\boldsymbol{R}_{\mathbf{2}}} \\
\boldsymbol{R}_{\mathbf{2 3 4}}=428.571 \Omega \\
\boldsymbol{R}_{\mathbf{2 3 4 5}}:=\boldsymbol{R}_{\mathbf{2 3 4}} \\
\boldsymbol{R}_{\mathbf{2 3 4}}=428.571 \Omega \\
\boldsymbol{R}_{\boldsymbol{t h}}:=\boldsymbol{R}_{\mathbf{2 3 4}}
\end{gathered}
$$

3) (5pt) Draw the Thevenin equivalent circuit with a load resistor $R L$ of $3 K$ between points A and B Rth

4) (2pt) What is the voltage across R_{L} ? Hint: Also the voltage at point V_{A}
$\begin{aligned} \boldsymbol{R}_{\boldsymbol{L}} & :=3 \boldsymbol{k} \Omega \\ \boldsymbol{V}_{\boldsymbol{R} \boldsymbol{L}} & :=\boldsymbol{V}_{\boldsymbol{t h}} \cdot \frac{\boldsymbol{R}_{\boldsymbol{L}}}{\boldsymbol{R}_{\boldsymbol{t h}}+\boldsymbol{R}_{\boldsymbol{L}}}\end{aligned}$

$V_{\boldsymbol{R L}}=0.75 \mathrm{~V}$

Question III - Op-Amp Applications (20 points)

Assume the following components in the above circuit:
$\boldsymbol{V}_{\mathbf{2}}$: Voff=2V, Vamp=2V, Freq=1k
$V 3: V d c=2 V$
$\boldsymbol{R} \mathbf{2}:=16 \boldsymbol{k} \Omega \quad \boldsymbol{R} \boldsymbol{3}:=2 \boldsymbol{k} \Omega \quad \boldsymbol{R} 4:=2 \boldsymbol{k} \Omega$
$\boldsymbol{R 5}:=16 \boldsymbol{k} \Omega$
$R 6:=1 k \Omega$

1) (1pt) The circuit above is an amplifier you've seen. What type of amplifier is it?
difference amplifier or differentia
2) (3pt) Write an equation for the output $\mathrm{C}(\mathrm{Vc})$ in terms of the input voltages V 2 and V 3 . Simplify (Do not have to enter voltage values)

$$
V_{\text {out }}=\frac{\boldsymbol{R}_{\boldsymbol{f}}}{\boldsymbol{R}_{\boldsymbol{i n}}} \cdot\left(V_{2}-V_{3}\right) \quad V_{\text {out }}=8 \cdot\left(V_{2}-V_{3}\right)
$$

Question III - Op-Amp Applications (continued)

3) (16pt) Sketch and label one cycle of the input at V2 (point B), the input at V3 (point A) and the output at $\mathrm{C}(\mathrm{Vc})$ on the plot below

or

(extra credit +2 if plotted second graph with $\pm 15 \mathrm{~V}$ supplies clipping output)

Question IV - Op-Amp Analysis (20 points)

1) (2pt) What op-amp circuit given on your crib sheet does this circuit most closely represent?
a. Inverting Amplifier b. Non-inverting Amplifier c. Adder d. Differential Amplifier
e. Practical Active Differentiator

Non-inverting Amplifier
2) (2pt) Redraw the circuit combining and resistors that are in parallel or series and find the combined values.

$15 \mathrm{k}=10 \mathrm{k}+5 \mathrm{k} \quad 3 \mathrm{k}=(4 \mathrm{k} \times 12 \mathrm{k}) /(4 \mathrm{k}+12 \mathrm{k})$
3) (2pt) What are the two golden rules of op-amp analysis?

1. The output attempts to do whatever is necessary to make the voltage difference between the inputs zero (the + and - terminals will have the same voltage).
2. The inputs (+ and - terminals) draw no current.

Question IV - Op-Amp Analysis (continued)

4) (2pt) Using a different circuit below, if Vin $=1 \mathrm{~V}$ on the ' + ' input of the op-amp, what is the voltage on the '-' input?

$$
\mathrm{V}^{-}=\mathrm{V}^{+}=\mathrm{Vin}=1 \mathrm{~V} \quad(\text { Golden Rule })
$$

5) (3 pt) From 4), how much current is flowing through the 2 k resistor to ground?

$$
\mathrm{I}_{2 \mathrm{k}}=\mathrm{V}^{-/} \mathrm{R}=1 \mathrm{~V} / 2 \mathrm{k}=0.5 \mathrm{~mA}
$$

6) (3pt) By the Golden Rules, how much current in 4) is flowing through the 10 k resistor from Vout to V^{-}(the connection point between the 2 resistors)?

By the Golden Rule, all the current in the 2 k must come from the $10 \mathrm{k} ; \mathrm{I}_{10 \mathrm{k}}=\mathrm{I}_{2 \mathrm{k}}=0.5 \mathrm{~mA}$
7) $(3 \mathrm{pt})$ What is Vout for Vin $=1 \mathrm{~V}$?

8) (2pt) What is the gain of this op-amp circuit?

9) (1 pt) For an ideal op-amp in 4), what is the maximum value the input voltage Vin can have before the output will not be able to exhibit the full amplification from 8)?

$$
\text { Max output }=9 \mathrm{~V}(\pm 9 \mathrm{~V} \text { batteries }) \quad \text { Vin }=9 / \text { Gain }=9 / 6=3 / 2 \mathrm{~V}=1.5 \mathrm{~V}
$$

Question V - Op-Amp Integrators and Differentiators (20 points)

1) (2pt) What function is this circuit designed to perform?

Practical Miller Integration

2) (4pt) Write the transfer function Vout/V1 for this circuit. (Substitute in the values provided for the components.)

3) (3pt) For which frequencies will the circuit perform the desired function?
a. Low frequencies below ω_{c}
b. Only a mid band of frequencies around ω_{c}
c. High frequencies above ω_{c}
c. High frequencies above ω_{c}
4) (3pt) Find the corner frequency for the circuit in Hz .

$$
\mathrm{f}_{\mathrm{c}}=1 /\left(2 \pi \mathrm{R}_{\mathrm{f}} \mathrm{C}_{\mathrm{f}}\right)=1 /(2 \pi \times 5 \mathrm{kx} 1 \mu)=31.83 \mathrm{~Hz}
$$

Question V - Op-Amp Integrators and Differentiators (continued)

5) (2pt) Redraw the circuit with an appropriate substitution for the capacitor as $f \rightarrow 0$ for when the input V1 has a very low frequency.

Replace C with open circuit
6) (4 pt) Show that simplification of the transfer function from 2) for small ω gives the same results as the analysis of the redrawn circuit in 5).

From the inverting op-amp in 5): $\mathrm{A}_{\mathrm{V}}=-\mathrm{Rf} / \mathrm{Ri}=-5 \mathrm{k} / 1 \mathrm{k}=-5$
7) (2pt) Sketch the output of the original circuit in 1) to a square wave input on the axis below. Show the correct shape of the waveform but don't worry about the amplitude scaling.

