ENGR4300

Fall 2006
Test 3A

Name Soln.

Section

Question 1 (20 points) \qquad
Question $2(20$ points $)$ \qquad
Question 3 (20 points) \qquad
Question 4 (20 points) \qquad
Question 5 (20 points) \qquad

Total (100 points): \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.

Use the circuit shown on the left to answer parts a), b) and c) of this question.
a) What is the off time of the 555 timer? Include units. (2pt)

$$
T_{\text {oft }}=0.893 \cdot \mathrm{Rb} \cdot \mathrm{C1}=0.35 \mathrm{~ms}
$$

b) What is the period of the output pulse? Include units (2pts)

c) The graph above is the voltage signal as a function of time at one or more pins) of the 555 timer used in the circuit shown. Which pins)? Label the horizontal scale and the vertical scale, include units. Assume that the left most point is an arbitrarily set to a time of zero and give times relative to that.(6pt)

Question 1 - Astable Multivibrator (continued)

d) Circle True or False for each of the following statements: (4pts)

Regardless of the value of Ra, Rb, and C 1, LED1 will be on for a larger fraction of a cycle than LED2. Ton a lungs P Toff Assuming that Ra and Rb are equal in value and C 1 is charging, then the current through Ra is equal to the current through Rb .
during charge $I_{R_{a}}=I_{R_{s}}$
e) If $\mathrm{Cl}=0.1 \mathrm{uF}$, find values for Ra and Rb that result in an output frequency of 100 hz and a on time of 7.5 ms . (6 pts)

$$
\begin{aligned}
& \left(\text { (an) } T_{\text {on }}=0.691\left(R_{n}+R_{b}\right) c y\right. \\
& T=\frac{1}{f}=10 \mathrm{~ms} \quad T_{\text {Def }}=0.691 R_{1} C H
\end{aligned}
$$

$$
T=T_{\text {on }}+T_{0, f t} \quad T_{0 f f}=10-7.5=2.5 \mathrm{~m}
$$

$$
\begin{gathered}
T_{\text {on }}=7.5 \times 10^{-3}=0.693\left(k_{a}+3.6 \times 10^{40}\right) 10^{-9} \\
R_{a}+3.6 \times 10^{-1}=10.3 \times 10^{-1} \\
R_{a}=72.2 k 2 \quad 3 \text { of } 12
\end{gathered}
$$

Question 2 - Combinational Logic Circuits (20 points)

a) Complete the table below for the circuit above. (6 pts)

\mathbf{A}	\mathbf{B}	\mathbf{F}	\mathbf{G}	\mathbf{C}	\mathbf{S}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

b) What type of gate is output S above, if any? (circle one) (1 pt)
AND NAND
OR NOR
XOR NOT
None of the others.
c) A logic circuit similar to that in a) (but NOT the same) has the following truth table. Combining CS as a 2-bit binary number, fill in the decimal value in the table. (4 pts)

\mathbf{A}	\mathbf{B}	\mathbf{C}	S	CS as Decimal Number
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	1	0	1	1
1	0	0	1	1
1	1	1	0	2

d) If A and B are treated as binary number inputs, what ARITHMATIC operation is being performed in creating the output CS? (4 pts)

Question 2 - Combinational Logic Circuits (continued)

e) Of the basic 2 -input logic gates, which could be used for the ARITHMATIC multiply operation of 1-bit binary numbers A and B. (4 pts)

$$
\underline{A N D}
$$

f) Show that the multiply and logic operations are equivalent by filling in the table below. The symbol ' ' represents the logic operation chosen in e). (1 pt)

\mathbf{A}	\mathbf{B}	$\mathbf{A x B}$	$\mathbf{A} \bullet \mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	0	0
$\mathbf{0}$	1	0	0
1	0	0	0
1	1	1	1

Question 3 - Sequential Logic Circuits (20 points)
In the circuit below, the timing traces at nodes A and B are displayed. You don't need to worry about the details of the clocks. Assume that node X starts low. Plot the time trace for nodes X and Y.

a) Fill in the timing diagram with the signalsindicated. (8 pt)

Question 3 - Sequential Logic Circuits (continued)

b) Clock pulses are applied to a J-K flip-flop as shown above. Below is a timing diagram for the input signals. Assume that the flip-flop starts with Q low and Qbar high. Plot the timing trace for Q and Qbar. (8 pt)

c) A 4-bit counter is cleared and then receives a string of clock pulses. (4 pt) What are QA, QB, QC and QD after 5 clock pulses? Clearly indicate the state of each signal, don't just list some, 1 s and 0's without stating which is QA , which is QB, \ldots

What are $\mathrm{QA}, \mathrm{QB}, \mathrm{QC}$ and QD after a total of 16 clock pulses?

Question 4 - Switching Circuits (20 points)

a) Redraw the circuit using the transistor switch model for the case where both Q1 and Q2 are on. (2 pt)

b) Complete the table for the circuit shown. (4 pt)

$\mathbf{V a}$	$\mathbf{V b}$	Vout
$\mathbf{0 V}$	$\mathbf{0 V}$	5
$\mathbf{0 V}$	$\mathbf{2 V}$	
2 V	$\mathbf{0 V}$	
2 V	2 V	

Question 4 - Switching Circuits (continued)

c) Redraw the circuit above using the transistor switch model for the case when $Y A=0 \mathrm{~V}, \mathrm{VB}=0 \mathrm{~V}$

d) Using the model from part c): What is the value of Vout for this case. (2 pt)

$$
V \operatorname{Vat}=\left(\frac{4 h}{10 h+4 k}\right)(1,0)=2.9 v
$$

There is a relay in the figure above. The relay coil will be energized if 8 V or more is applied across the coil. The coil is on pins 1 and 2. Pin 3 is the common of the contacts. Pin 5 is the normally closed contact and pin 4 is the normally open contact. The normally closed contact connects to the common when the relay isn't energized.
e) Using the diagram above, fill in the table below: $(8 \mathrm{pt})$

Vin	Vb	Is the relay energized? (yes or no)	Is LED1 on or off? (On or Off)	Is LED2 on or off? (enter On or Off)
0.2 V	0	0	7	
4 V	0	Ys	0	

Question 5 - Comparators and Schmitt Triggers (20 points)

You are to design a comparator circuit that takes $\mathrm{a} \pm 2.5 \mathrm{~V}$ triangle wave and outputs $\mathrm{a} \pm 5 \mathrm{~V}$ square wave that is positive when the triangle wave is negative and negative when the triangle wave is positive.
a) Specify $\mathrm{V}+\left(\mathrm{V}_{\mathrm{s}}^{+}\right) \& \mathrm{~V}-\left(\mathrm{V}_{\mathrm{s}}^{-}\right)$and connections to the $+\&-$ inputs and show where the input signal is connected. (Ignore OS1 and OS2) (4 pts)

b) Modify the circuit in a) to be a Schmitt Trigger with hysteresis that switches at +1 V and -1 V by adding 2 resistors to the comparator. The smaller resistor value (R2) is 1 k . Find the values of R1 and Vref, assuming that V+ and V- are unchanged from a). Show where the input signal is connected. (6 pts)

$$
\begin{gathered}
V_{+}=\left(\frac{R^{2}}{R 1+R_{2}}\right)(5-0)+0 \\
1=\left(\frac{1 k}{R 1+k}\right) 5 \\
R 1=4 k
\end{gathered}
$$

$$
\text { Hysteresis: }-1 \mathrm{~V} \rightarrow+1 \mathrm{~V} \text {, centered @ OV }
$$

$$
\therefore V_{R E F}=O V
$$

Question 5 - Comparators and Schmitt Triggers (continued)

c) Given the circuit below, find the input voltage switch points for the Schmitt Trigger. Note that the supply voltages in the circuit are flipped when compared to the crib sheet drawing. (7 pts)

$$
\begin{aligned}
V_{T H}+ & =\frac{1 k}{1 k+3 k}(+6-2)+2 \\
& =1+2=3 \mathrm{~V} \\
V_{T H}- & =\frac{1 k}{1 k+3 k}(-6-2)+2 \\
& =-2+2=0 \mathrm{~V}
\end{aligned}
$$

d.) Can the circuit in c) be used to create a square wave from the original triangle wave in a)?

Explain why or why not. (3 pts)
No, signal input voltage never exceeds
HIGH THRESHOLD

ENGR4300
 Fall 2006
 Test 3B

Name
 Section

 Soln.Question 1 (20 points) \qquad
Question 2 (20 points) \qquad
Question 3 (20 points) \qquad
Question 4 (20 points) \qquad
Question 5 (20 points) \qquad

Total (100 points):

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.

Question 1 - Astable Multivibrator (20 points)

Use the circuit shown on the left to answer parts a), b) and c) of this question.
a) What is the off time of the 555 timer? Include units. (2 pt)

$$
T 2=0.693 \cdot R 31 \cdot C 3=1.52 \mathrm{~m} 5
$$

b) What is the period of the output pulse? Include units (2pts)

c) The graph above is the voltage signal as a function of time at one or more pins) of the 555 timer used in the circuit shown. Which pins)? Label the voltage and time for points A and B. Both points are where the slope of the curve changes. Include units. Assume that the left most point is an arbitrarily set to a time of zero and give times relative to that.(6pt)

$$
\begin{aligned}
& V_{c}(\min)=4
\end{aligned}
$$

Question 1 - Astable Multivibrator (continued)

Use this circuit to answer parts d) and e)
d) Circle True or False for each of the following statements: (4pts)

If Ra is $2 \mathrm{k} \Omega$ and Rb is $4 \mathrm{k} \Omega$, and C 1 is unknown, then LED1 will be on for a larger fraction of a cycle than LED2.

True False
Assuming that Ra and Rb are equal in value and C 1 is discharging, then the current through Ra is equal to the current through Rb .
e) If $\mathrm{Rb}=20 \mathrm{k} \Omega$, find values for Ra and C 1 that result in an output frequency of 5 khz and a duty cycle of 80%. (6 pts)

$$
\begin{aligned}
& f=5 \mathrm{hHz} \quad T=t=200 \mathrm{~ms}^{5} \\
& T_{\text {on }}=(50 \%)(200 \mathrm{~ms})=160 \mathrm{~ms} \\
& T_{\text {off }}=(20 \%)(200 \mathrm{~ms})=40 \mathrm{~ms} \\
& T_{\text {off }}=0.693(\mathrm{Rb})(\mathrm{Cl}) \quad c_{1}=2.9 \mathrm{nF} \\
& T_{\text {in }}=0.693\left(R_{n}+R_{1}\right) C_{1}=160 \mathrm{~m} \\
& \begin{array}{r}
0.643\left(R_{a}+20 \times 11^{3}\right)\left(2.9 \times 1 a^{-9}\right)=160 \times 10^{-6} \\
R_{a}=60 \mathrm{k} \Omega
\end{array}
\end{aligned}
$$

Question 2 - Combinational Logic Circuits (20 points)

a) Complete the table below for the circuit above. (6 pts)

\mathbf{A}	\mathbf{B}	\mathbf{F}	\mathbf{G}	\mathbf{C}	\mathbf{S}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

b) What type of gate is output S above, if any? (circle one) (1 pt)
AND NAND
OR NOR
XOR NOT
None of the others.
c) A logic circuit similar to that in a) (but NOT the same) has the following truth table. Combining CS as a 2-bit binary number, fill in the decimal value in the table. (4 pts)

\mathbf{A}	\mathbf{B}	\mathbf{C}	S	CS as Decimal Number
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	1	0	1	1
1	0	0	1	1
1	1	1	0	2

d) If A and B are treated as binary number inputs, what ARITHMATIC operation is being performed in creating the output CS? (4 pts)

Question 2 - Combinational Logic Circuits (continued)

e) Of the basic 2 -input logic gates, which could be used for the ARITHMATIC multiply operation of 1-bit binary numbers A and B. (4 pts)

$$
\underline{A N D}
$$

f) Show that the multiply and logic operations are equivalent by filling in the table below. The symbol ' ' represents the logic operation chosen in e). (1 pt)

\mathbf{A}	\mathbf{B}	$\mathbf{A x B}$	$\mathbf{A} \bullet \mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	0	0
$\mathbf{0}$	1	0	0
1	0	0	0
1	1	1	1

Question 3 - Sequential Logic Circuits (20 points)

In the circuit below, the timing traces at nodes A and B are displayed. You don't need to worry about the details of the clocks. Assume that node X starts low. Plot the time trace for nodes X and Y.

a) Fill in the timing diagram with the signals indicated. (8 pt)

$$
\begin{gathered}
\text { A goes high } \\
x \text { goes low } \\
\text { A }+x \text { both low } \\
Y \text { goes } \operatorname{logh}
\end{gathered}
$$

Question 3 - Sequential Logic Circuits (continued)

$$
\begin{aligned}
& \text { Q te } \mathrm{Q} \text { on l, change } \\
& \text { on falling edge of CLK }
\end{aligned}
$$

b) Clock pulses are applied to a J-K flip-flop as shown above. Below is a timing diagram for the input signals. Assume that the flip-flop starts with Q low and Qbar high. Plot the timing trace for

c) A 4-bit counter is cleared and then receives a string of clock pulses. (4 pt)

What are QA, QB, QC and QD after 7 clock pulses? Clearly indicate the state of each signal, don't just list some 1's and 0's without stating which is QA , which is QB, \ldots

$Q D$	$Q C$	$Q 1$	U_{A}
O	1	1	1

What are QA, QB, QC and QD after a total of 17 clock pulses?

$Q D$	$U C$	$4 B$	$U A$
0	0	0	1

Note
1111 15 sown 00216 sounds
$\ll 11$ count

Question 4 - Switching Circuits (20 points)

a) Redraw the circuit using the transistor switch model for the case where both Q1 and Q2 are off. (2 pt)

b) Complete the table for the circuit shown. (4 pt)

$\mathbf{V a}$	$\mathbf{V b}$	Vout
$\mathbf{0 V}$	$\mathbf{0 V}$	5
$\mathbf{0 V}$	$\mathbf{2 V}$	0
$\mathbf{2 V}$	$\mathbf{0 V}$	0
2 V	$\mathbf{2 V}$	0

c) Redraw the circuit above using the transistor switch model for the case when $\mathrm{VA}=10 \mathrm{~V}, \mathrm{VB}=0 \mathrm{~V}$ and $\mathrm{VC}=0 \mathrm{~K}$.
(4 pt)

d) Using the model from part c): What is the value of Vout for this case. $(2,1$

There is a relay in the figure above. The relay coil will be energized if 8 V or more is applied across the coil. The coil is on pins 1 and 2. Pin 3 is the common of the contacts. Pin 5 is the normally closed contact and pin 4 is the normally open contact. The normally closed contact connects to the common when the relay isn't energized.
e) Using the diagram above, fill in the table below: (8 pt)

Vin	Va	Vb	Is the relay energized? (yes or no)	Is LED2 on or off? (enter On or Off)
0.2 V	10 l	10 V	N0	opp
4V	OV	0	Yes	$0 N$
o allow nav				

Question 5 - Comparators and Schmitt Triggers (20 points)

You are to design a comparator circuit that takes $\mathrm{a} \pm 2.5 \mathrm{~V}$ triangle wave and outputs $\mathrm{a} \pm 5 \mathrm{~V}$ square wave that is positive when the triangle wave is negative and negative when the triangle wave is positive.
a) Specify $\mathrm{V}+\left(\mathrm{V}_{\mathrm{s}}^{+}\right) \& \mathrm{~V}-\left(\mathrm{V}_{\mathrm{s}}^{-}\right)$and connections to the $+\&-$ inputs and show where the input signal is connected. (Ignore OS1 and OS2) (4 pts)

b) Modify the circuit in a) to be a Schmitt Trigger with hysteresis that switches at +1 V and -1 V by adding 2 resistors to the comparator. The smaller resistor value (R2) is 1 k . Find the values of R1 and Vref, assuming that V+ and V- are unchanged from a). Show where the input signal is connected. (6 pts)

$$
\begin{gathered}
V_{+}=\left(\frac{R^{2}}{R 1+R_{2}}\right)(5-0)+0 \\
1=\left(\frac{1 k}{R 1+k}\right) 5 \\
R 1=4 k
\end{gathered}
$$

$$
\text { Hysteresis: }-1 \mathrm{~V} \rightarrow+1 \mathrm{~V} \text {, centered @ OV }
$$

$$
\therefore V_{R E F}=O V
$$

Question 5 - Comparators and Schmitt Triggers (continued)

c) Given the circuit below, find the input voltage switch points for the Schmitt Trigger. Note that the supply voltages in the circuit are flipped when compared to the crib sheet drawing. (7 pts)

$$
\begin{aligned}
V_{T H}+ & =\frac{1 k}{1 k+3 k}(+6-2)+2 \\
& =1+2=3 \mathrm{~V} \\
V_{T H}- & =\frac{1 k}{1 k+3 k}(-6-2)+2 \\
& =-2+2=0 \mathrm{~V}
\end{aligned}
$$

d.) Can the circuit in c) be used to create a square wave from the original triangle wave in a)?

Explain why or why not. (3 pts)
No, signal input voltage never exceeds
HIGH THRESHOLD

