\qquad

Section 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one)

Question I (24 points) \qquad
Question II (16 points) \qquad
Question III (15 points) \qquad
Question IV (20 points) \qquad
Question V (25 points) \qquad

Total (100 points): \qquad

On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification.

Question I - Diode Rectifier Circuits (24 points)

The diagram above shows the application of a diode bridge for performing rectification of the voltage from the output of the transformer. The sinusoidal source voltage V1 $=240 \mathrm{~V}_{\mathrm{RMS}}$ and $\mathrm{R} 1=5 \mathrm{k} \Omega$.

1. (4 pt) Knowing that the voltage amplitude is $\sqrt{2}$ larger than the RMS voltage, what transformer turns ratio n : 1 will give as close as possible to an 8 V amplitude at V 2 ? (n should be rounded to an integer.)

$$
\mathrm{n}=(240 \times 1.414) / 8=42.42=>42 \quad \mathrm{n}: 1=42: 1
$$

2. (4pt) What will the actual peak voltage be on the output of the full wave bridge (across R1). Let the idealized diodes have $\mathrm{V}_{\mathrm{on}}=0.6 \mathrm{~V}$ and V 2 is the voltage from the turns ratio in question 1 ?

$$
\mathrm{V}=(240 \times 1.414) / 42-2 \times(0.6)=6.88 \mathrm{~V}
$$

3. (3pt) Given R1 above, what is the peak current that will flow through any of the 4 diodes?

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=6.88 / 5 \mathrm{k}=1.38 \mathrm{~mA}
$$

Question I - Diode Rectifier Circuits (continued)

4. (4pt) For a 60 Hz input voltage V1 a capacitor is added in parallel with R 1 to reduce the ripple in the voltage across the load resistance so that the droop is less than 0.7 V . Which of the following values is the minimum capacitance necessary to achieve this?
a) $1 \mu \mathrm{~F}$
(6) $17 \mu \mathrm{~F}$
c) $33 \mu \mathrm{~F}$
d) $100 \mu \mathrm{~F}$

$$
\begin{aligned}
& \text { Droop }=0.7 / 6.88=0.10 \\
& \mathrm{~T}=1 / 120 \mathrm{~Hz}=8.3 \mathrm{~ms} \\
& \tau=\mathrm{RC}=0.0083 / 0.10=0.083 \quad \mathrm{C}>0.083 / 5000=16.6 \mu \mathrm{~F}
\end{aligned}
$$

5. (3pt) It is decided to use a $680 \mu \mathrm{~F}$ capacitor to filter the supply voltage. What 3 digit code will be written on this capacitor to indicate its value?

$$
687=>68 \times 10^{7} \mathrm{pF}=68 \times 10^{7} \times 10^{-12}=68 \times 10^{-5}=0.00068 \mathrm{~F}
$$

6. (6 pt) For a quick calculation of the voltage droop with the $680 \mu \mathrm{~F}$ capacitor and $5 \mathrm{k} \Omega$ load resistance, assume a 5 V amplitude 50 Hz sine wave has been ideally full wave rectified $\left(\mathrm{V}_{\text {on }}=0 \mathrm{~V}\right)$. Use the period between adjacent peaks as the maximum droop time and assume the exponential decay can still be modeled as a straight line in this interval. With these simplifications, how much will the voltage droop from its 5 V maximum value?

Question II - Zener Diode Circuits (16 points)

Below are 2 Zener diode limiter circuits. $\mathrm{Vz}=3 \mathrm{~V}$ for D 1 and $\mathrm{Vz}=8 \mathrm{~V}$ for D 2 .

1. (6 pt) For the left-hand circuit, on the axes below sketch the output voltage at the probe for the 3 inputs below.

Question II - Zener Diode Circuits (continued)

2. (4pt) For the right-hand circuit, on the axes below sketch the output voltage at the probe for the 2 inputs below.

Question II - Zener Diode Circuits (continued)

3. (4pt) Sketch the voltage input-output curve for the left-hand circuit above. Be sure to scale the axes.

$$
\mathrm{V}^{+}=8+0.7=+8.7 \mathrm{~V} \quad \mathrm{~V}^{-}=-3-0.7=-3.7 \mathrm{~V}
$$

4. (2pt) TRUE or FALSE A full wave bridge rectifier with all the diodes replaced with Zener diodes $(\mathrm{Vz}=5 \mathrm{~V})$ would still be able to rectify a 6.4 V amplitude input sine wave (V 2 on the circuit in question I-1) with the same output waveform as with regular diodes (assuming the $\mathrm{V}_{\text {on }}$ voltages are all 0.7 V).

Input amplitude must $<5+0.7=5.7 \mathrm{~V}$

Clipped at $8+0.7=+8.7 \mathrm{~V}$ and $-3-0.7=-3.7 \mathrm{~V}$

Clipped only at $-3-0.7=-3.7 \mathrm{~V}$

No clipping

Clipping at +0.7 V and -0.7 V

No clipping

Question III - LEDs and Phototransistor Circuits (15 points)

Above is a typical optical isolation circuit with an LED/phototransistor pair. The logic gate and inputs may be in a cage whose reference voltage is 5 kV higher than the phototransistor and relay circuit, but the "optical isolation" removes the danger of high voltage getting through.

1. (6pt) Fill in the following table:

A	B	Relay (on or off?)	LED C (on or off?)	LED D (on or off?)
0	0	ON	ON	OFF
0	1	OFF	OFF	ON
1	0	OFF	OFF	ON
1	1	ON	ON	OFF

2. (5pt) Assuming the resistance of the relay coil is negligible but 100 mA is needed to turn it on, what is the maximum resistance value R can be if the on-resistance of the phototransistor is 20Ω ?

$$
\text { Answer: } 5 \mathrm{~V} / 100 \mathrm{~mA}=20+R \quad R=5 / 0.2-20=30 \Omega
$$

3. (4pt) Using the phototransistor on-resistance of 20Ω, setting $\mathrm{R}=15 \Omega$ and assuming the phototransistor behaves like an ideal switch when it is turned off, what are the minimum and maximum voltages at E , the collector of the transistor?

$$
\begin{array}{ll}
\text { Answer: } \quad & \text { Minimum }=5 \frac{20}{20+15}=5 \frac{20}{35}=2.86 \mathrm{~V} \\
& \text { Maximum }=5 \mathrm{~V}
\end{array}
$$

Question IV - Diode Limiter Circuits (20 points)

1 (6pt) Design a diode limiter circuit in the square, using stacked series standard Silicon diodes, that limits Vout to a maximum of +5.6 V and a minimum of -3.5 V .

2. (4pt) Sketch Vin and Vout when Vin is a 1 kHz triangle wave with an 8 V amplitude and a -2 V offset.

Approximate answers will be flat clipped at +5.6 V and -3.5 V

Question IV - Diode Limiter Circuits (continued)

3. (4 pt) If all the diodes in this limiter circuit were replaced with diodes whose forward bias voltages $\left(\mathrm{V}_{\mathrm{on}}\right)$ are 0.6 V , what would the maximum and minimum output voltages become?

$$
\begin{aligned}
& \operatorname{Vmax}=5 \times 0.6=+3.0 \mathrm{~V} \\
& \operatorname{Vmin}=-8 \times 0.6=-4.8 \mathrm{~V}
\end{aligned}
$$

4. (6pt) Can the circuit below, with appropriate values for Vz , be made to match the requirements in question IV-1? If not, explain why not. If so, what values are needed as Vz for Zener 1 and Zener 2? Von for all diodes is the same as in IV-1 above.

Yes:
$\begin{array}{ll}+5.6 \mathrm{~V}=\mathrm{Vz2}+0.7 \mathrm{~V} & \mathrm{Vz2}=4.9 \mathrm{~V} \\ -3.5 \mathrm{~V}=-\mathrm{Vz} 1-0.7 \mathrm{~V} & \mathrm{Vz1}=2.8 \mathrm{~V}\end{array}$

Question V - Signal Modulation and Filtering (25 points)

A modulated signal is to be filtered to remove the effects of the modulation and other noise. The desired signal is from $100 \mathrm{~Hz}-8 \mathrm{kHz}$. The undesired parts of the signal are below 50 Hz and above 10 kHz . Design a combination of filter types (low pass and/or high pass) that will remove everything except the desired signal. It has been decided that the filters should be in series (cascaded) as shown below. The Zs in the op-amp circuits represent complex impedances and may be combinations of resistors and capacitors. (Hint: one of these filters was used in Project 4.)

1. (4pt) For each filter determine the appropriate type.

Filter 1: \qquad Filter 2: __HIGH PASS
Order of filters may be switched around
2. (6 pt) For each filter determine the corner frequency.

Filter $1 f_{c}$: \qquad $\sim 9 \mathrm{kHz}$

Filter $2 \mathrm{f}_{\mathrm{c}}: _\simeq \sim 70 \mathrm{~Hz}$

$$
8 \mathrm{kHz}-10 \mathrm{kHz} \text { OK }
$$

$50 \mathrm{~Hz}-100 \mathrm{~Hz}$ OK

Question V - Signal Modulation and Filtering (continued)

3. (8pt) Using $10 \mathrm{k} \Omega$ resistors and whatever capacitor values are necessary, draw the circuits for Filter 1 and Filter 2 with the correct components replacing the Zs above.

LPF Filter 1: $\omega=2 \pi f=\frac{1}{R_{f} C_{f}} \Rightarrow C_{f}=\frac{1}{R_{f} 2 \pi f}=\frac{1}{10,000 \cdot 2 \pi 9 k}=1.77 n F$
HPF Filter 2: $\omega=2 \pi f=\frac{1}{R_{i} C_{i}} \Rightarrow C_{i}=\frac{1}{R_{i} 2 \pi f}=\frac{1}{10,000 \cdot 2 \pi 70}=0.227 \mu F$

4. (4pt) Write down the transfer function, $\mathrm{H}(\mathrm{j} \omega)$, for each filter with numerical values for the coefficients.

LPF Filter 1:

$$
H(j \omega)=-\frac{R_{f}}{R_{i}\left(1+j \omega R_{f} C_{f}\right)}
$$

HPF Filter 2:

$$
=-\frac{1}{1+j \omega 17.7 \times 10^{-6}}
$$

$$
H(j \omega)=-\frac{j \omega R_{f} C_{i}}{1+j \omega R_{i} C_{i}}
$$

$$
=-\frac{j \omega 2.27 \times 10^{-3}}{1+j \omega 2.27 \times 10^{-3}}
$$

5. (3pt) Which type of filters, Miller integrators or practical differentiators, have problems due to inherent noise in signals?

Practical Differentiators: they greatly amplify high frequency noise

