DC (Beakman Inspired) Motor

For this project, students can work in groups of two to four. A group of three or four must produce and test at least two distinctly different final motor designs. However, they need only write one report. Groups of two need only do one new motor design.

Grading

Final Motor Performance (15 pts)

Only one test is necessary for a group of 2 students. Two tests are required for groups of 3 and three tests are required for groups of 4. One test must be for a standard motor with one magnet. If more than one test is done, one can be with multiple magnets and if three tests are done, one can be without any restrictions.

Motor Speed _____ Witnessed _____ Date_______
Data Plot Printed and Signed _____ Date_____
Motor Speed _____ Witnessed _____ Date_______
Data Plot Printed and Signed _____ Date_____
Motor Speed _____ Witnessed _____ Date_______
Data Plot Printed and Signed _____ Date_____
Motor Speed _____ Witnessed _____ Date_______
Data Plot Printed and Signed _____ Date_______

Design, Analysis & Discussion of Results (30 pts)

Personal Responsibilities (5 pts)

Total (50 pts)

Name ______________________
Name ______________________
Name ______________________
Name ______________________
Introduction: Project Goals.

The purpose of this project is to build the Beakman’s motor in such a manner that it rotates much faster than the case with the basic design and to determine the speed of the motor by making measurements of currents and voltages in the motor circuit. An explanation of why the motor works as well as it does must be provided. You are allowed to use any spring configuration, including springs held in place by one of your team members.

Background

Please read over the background information found on previous Beakman’s motor project write-ups. Pay special to the benefits of using springs.

Final Motor Performance (15 pts)

A functioning motor will result in a grade of at least 9. The actual grade will be determined by the speed of the motor. The fastest motor in the class (all sections) will have a grade of 18. Of the remaining motors, grades will be based on the following chart:

<table>
<thead>
<tr>
<th>Speed</th>
<th>Any</th>
<th>20Hz</th>
<th>30Hz</th>
<th>40Hz</th>
<th>50Hz</th>
<th>60Hz</th>
<th>Third</th>
<th>Second</th>
<th>First</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Motor Speed must be recorded and witnessed on the grade sheet (front page of this write up). The signed data plot (obtained with the Mobile Studio or Intuilink) must be consistent with speed recorded on the grade sheet. The data must also be clear. Irregularities in pulses, especially for faster speeds are not acceptable. Pulses must be clear so that the speeds can be determined without any question.

Design, Analysis & Discussion (25 Pts)

Describe the particular design improvements (over the basic design) you have pursued in your motor. Draw a picture of your final design. Your design should be sufficiently complete so that any reader will understand what you have done and where your model and analysis come from.

Draw a circuit diagram for the motor, including the resistance and inductance of the coil, the back emf of the coil, and the battery. Show the connections to the oscilloscope and the input impedances of the ‘scope as circuit components. Determine values for each of
the components in your circuit. This can be done using a combination of analysis, experiment, finding published values or judicious guessing. Whenever possible, provide both analysis and experiment. Once you have a complete set of circuit parameters, analyze your circuit either analytically or using a tool like PSpice.

Discuss the features of your data for a slower and a faster motor. The slower motor can the basic design you did in the pre-project, although you should take the data again to confirm its performance. The faster motor can be your motor with springs. You can also do the same motor with and without springs. This is, in fact, ideal, since you should see some distinct differences in electrical performance to go with the two different speeds. Explain the voltage levels observed in the data using your circuit model. Discuss any odd features that do not seem to be consistent with a simple explanation of the motor. It is a good idea to look for relevant HW assignments while doing this project, since some involve key features to look for in the performance of your motor.

Personal Responsibilities (5 pts)

A short paragraph should be written describing what each group member did to develop and implement the final design. It is very important that each member of the group be responsible for some aspect of the design, analysis or testing process. To obtain full credit for this, tasks must be described and assigned to members of the group. If possible, describe how you used some of what you learned in Professional Development I to make your team more successful.

Note: Be sure that you turn in the grading sheet with your official signed speeds and all data signed by a TA or instructor with your report.

Report – In your report, you should only include useful information. Do not pad it with extra materials. All plots should be well annotated so that they can be easily understood without reading any of the text materials. Be sure that you provide information on all reference materials you have used. Do not borrow pictures or any other information from webpages, books, etc. without properly giving clear credit. You are free to use any information at all as long as you give proper credit.

Extra Credit (Variable)

Unique design features, special insight into motor operation, etc. will be rewarded with extra points.