
Fields and Waves I  Spring 2006 
 Homework  3 
 

Due 28 February 2006 
 
First we will remind ourselves of some shapes and then go over some general ideas.  

   
 
Some general advice on doing basic vector mathematics in Fields and Waves I. An 
example is provided in italics. 
 

• Always draw as many views of each problem as you find necessary to fully 
understand the configuration.  

Assume that we have the following electric field: ( )
r
E z zE eo

z
d= −

$ where $z is the unit 
vector in the z direction, only for positive values of z. For negative values, the field is 
zero. Assume also that we want to find the flux of this vector through the closed 
cylindrical surface defined by a z b≤ ≤ and 0 ≤ ≤r c  where a d b≤ ≤ . We should begin 
by drawing the cylinder and adding vectors to show the direction of the E field.  
 
 
 

x 

r=c 

z 

y y 
 
 
 E 
 
 
 
 
 
 z=a z=b 
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)

• Always write out the full expression for the line, surface or volume element 
before attempting any integrals. Then, for line or surface integrals, take any dot 
products before doing anything else. This will usually reduce the problem to a 
more manageable scalar integral.  

 
For a closed cylinder, there are two surface elements. On the cylindrical side of the 
cylinder:   On the flat ends of the cylinder: (dS r rd dz

r
= $ φ ( )dS z rdrd

r
= ± $ φ where the 

positive sign goes with the end at the larger value of z and the negative sign at the other 
end. Then the full integral to be evaluated is: 
r r
E dS r d dzr zE e d rdrz zE e d rdrz zE e

a

b

o

z
d

c

o

b
d

c

o

a
d⋅ = ⋅ + ⋅ − ⋅∫ ∫ ∫ ∫ ∫ ∫ ∫

− − −φ φ φ
π π π

0

2

0

2

0 0

2

0
$ $ $ $ $ $  

Note that the first term is trivially zero since the unit vectors are orthogonal: $ $r z⋅ = 0  
 
• Simplify the mathematical expressions before you try to solve them. Usually the 

math, once simplified, will be relatively simple.  
Most of these integrals are quite simple since parts are either easy to do or many terms 

are constants. Consider the second term. d rdrz zE e
c

o

b
dφ

π

0

2

0∫ ∫ ⋅ −
$ $ First move all constants 

outside the integral sign. d rdrz zE e E e d rdrz z
c

o

b
d

o

b
d

c
φ
π

0

2

0 0

2

0∫ ∫ ∫ ∫⋅ =− −
$ $ $ $φ

π
⋅ Then simplify using 

$ $z z⋅ = 1  { }{ }d rdrz zE e E e d rdr
c

o

b
d

o

b
d

c
φ
π

0

2

0 0

2

0∫ ∫ ∫ ∫⋅ =− −
$ $ φ

π

π

where we have also separated the 

two integrals since they are independent of one another. The integral in the first bracket 

is { }  while the integral in the second bracket isdφ
π

0

2
2∫ = { }rdr cc

0

2

2∫ = . Thus, the surface 

integral for the flat surface at z = b is d rdrz zE e E e c c E e
c

o

b
d

o

b
d

o

b
dφ π

π

0

2

0

2
22

2∫ ∫ ⋅ = =− −
$ $ π −  

and the integral for the flat surface at z = a is − ⋅ = −∫ ∫
− −d rdrz zE e c E e

c

o

a
d

o

a
dφ π

π

0

2

0

2$ $ . 

Thus, the total surface integral is given by 
r r
E dS c E e c E eo

a
d

o

b
d⋅ = − +∫

− −0 2 2π π  

 
• When doing surface integrals, it is usually possible to check one’s answer against 

Maxwell’s equations or, if the integrals are used to find a field expression, the 
differential forms of Maxwell’s equations can be used to check answers. 

From Maxwell’s Equations 
r r
E dS Qencl⋅ =∫ ε

where  is the charge enclosed 

by the volume. We were not given the charge density, but we can figure it out from 

Qencl v= ∫ ρ dv

( )ρ
ε

∂
∂

∂
∂

v
z o

z
d

o

z
dE

z
E

z
E e E d e= ∇ ⋅ = = = −−r 1 −  Now we can evaluate 

( )Q dv E
d

dze d rdr E
d

d e e c
encl v

o z
d

a

b c o b
d

a
d= = −⎛

⎝⎜
⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟
− −⎛

⎝⎜
⎞
⎠⎟∫ ∫ ∫∫

− −ρ ε φ ε π
π

00

2 2

2
2

−  which 

simplifies to ( )Q E e e cencl
o

b
d

a
d

ε
π= −⎛

⎝⎜
⎞
⎠⎟

− − 2 which is what we obtained above.  
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To evaluate integrals, use Maple or go to http://eqworld.ipmnet.ru/en/auxiliary/aux-
integrals.htm to find a table of many integrals.  One page you may find useful at this 
URL is for Integrals with square root of x2 + a2.  
 
Example: 
 

( )sin ?2

0
x dx =∫

π
 

 
For this integral, we can use equation 8 of the Integrals with sin

 

( )sin sin sin sin2

0
02

2
4 2

2
4

0
2

0
4 2

x dx x x
= −⎡
⎣⎢

⎤
⎦⎥

= − − + =∫
π

π π π π  

 
Using Maple 
 
> int((sin(x))^2,x=0..pi); 

- 1
2

 sin π( ) cos π( ) + 1
2

 π

 
which agrees.  
 
 
 
 
 
 
 
 
 
 
Note: The most mathematically challenging problem in this assignment is problem #1. 
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1. Flux Integrals 
 
a. The electric field due to a point charge at the origin of a cylindrical coordinate system 

( ) (r z, , , , )φ = 0 0 0  is given by 
r
E q

R
a

o
R=

4 2πε
$  where 

r
R  is the radial vector in a 

spherical coordinate system.  (Mixed coordinate systems.)  Determine the total 
electric flux 

r r
passing through the open E dS∫ ⋅ cylindrical surface r a= , 0 ≤ < ∞z . 

Begin by drawing a diagram showing the point charge and the surface in the diagrams 
below. Also indicate the value of dS

r
. Recall that the r = a surface goes from  to 

 and is open at both ends.  
z = 0

z = ∞
 
 
 
 
 
 
 
 
 
 
 
 
 
On the surface of a cylinder, the surface element is given by dS rrd dz

r
= $ φ

ar=
where we are 

using r to denote the unit vector in the cylindrical radial direction. Using this 
notation, the unit vector in the spherical radial direction is . It may seem odd to 
change the notation, for this solution, we take the opportunity to show that there are 
several choices for unit vector notation. Also, we wanted to use the letter ‘a’ fewer times 
to avoid confusion. Given this surface element, the surface integral is now 

$ $

$ $R aR=

r r
E dS q

R
R rrd dz

o
∫ ∫∫⋅ = ⋅

4 2πε
φ$ $   To evaluate this integral, we need to express everything 

in cylindrical coordinates. For the spherical radius, we have R a z2 2 2= + for points on 
the cylinder of radius = a. The diagram below shows this relationship. 
 
 
 
 
 
 
 
 
 

x

z

x

Point 
Charge 

y 

x 
θ

a 

R 

z 

z 
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The dot or inner product of the two unit vectors  from the table on page 117 
of Ulaby. The sine function also has to be written in cylindrical coordinates. 

$ $ sinR r⋅ = θ

$ $ sinR r a
a z

⋅ = =
+

θ
2 2

 so that 

( ) ( )
r r
E dS qa

a z
d dz qa

a z
dz

o o
∫ ∫∫ ∫⋅ =

+
=

+

∞2

2 2 1 5

2

2 2 1 504
1 2

4
1

πε
φ π

πε. .  

From the integral tables 

 

so that 
( )

r r
E dS qa

a z
dz qa z

a z a
qa

a
q

o o
∫ ∫⋅ =

+
=

+

⎡

⎣
⎢

⎤

⎦
⎥ = =

∞
∞2

2 2 1 50

2

2 2 2
0

2

2

2
4

1
2 2

1
2

π
πε ε ε ε.

o o

 

If we think about this, we can see that this answer makes sense. If the cylinder had 
extended from to , it would have completely enclosed the charge since the open 
ends of the cylinder are insignificant in size at infinity. Then the answer would have been 

− ∞ + ∞

r r
E dS q

o
∫ ⋅ =

ε
. However, since the cylinder only goes from 0 to + ∞ , it only encloses half 

of the charge, which accounts for the answer we obtained. In the diagram below, we can 
see that half of the field lines emanating from the point charge do indeed pass through 
the half infinite cylinder, if the scale of the geometry becomes infinite.  
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b. The magnetic field outside of a long straight wire of cylindrical radius r = a, carrying 

a current I is given by 
r
B I

r
ao=

μ
π φ2

$ . Determine the total magnetic flux passing through 

the surface defined by and y b= 0 ≤ ≤ ∞x . Note that we are again mixing coordinate 
systems, in that we have a field specified in cylindrical coordinates and we are asking 
for the flux through a rectangular surface. Begin by drawing a picture of the surface 
in the two planes below. Also indicate the value of dS

r
. Next express the field in 

rectangular coordinates. Then, finally, set up the integral and evaluate it.  
 y 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First consider the surface element. dS ydxdz

r
= $ Note that we are actually free to choose 

the direction of the surface as up or down. Up was chosen since it is in the positive y 
direction. The answer to this question can have either a positive or negative sign. Either 
is OK. Next we must write the magnetic field in rectangular coordinates. First consider 

the unit vector. (
r
B I

x 

z

x

φ

)
r

I
r

x yo o= = − +
μ
π

φ
μ
π

φ
2 2

$ $ sin $ cosφ  Now we have to rewrite both the 

trig functions and r. sinφ =
y
r

 and cosφ =
x
r

 Then, 

( ) ( )
r
B I

r
x y

r
y x

r
I

x y
xy yxo o= − +⎛

⎝⎜
⎞
⎠⎟
=

+
− +

μ
π

μ
π2 2 2 2

$ $ $ $  and 

 

( ) ( ) ( )
r r
B dS I

x y
xy yx ydxdz Ix

x y
dxdzo o⋅ =

+
− + ⋅ =

+
μ

π
μ

π2 22 2 2 2
$ $ $ . Finally, 

( )
r r
B dS Ix

x b
dxdz I dz x

x b
dxo o⋅ =

+
=

+∫ ∫∫ ∫ ∫−∞

+∞ ∞μ
π

μ
π2 22 2 2 20

  

where we will have to use the integral tables (or Maple) again.  
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Thus, [ ] ( )[ ]r r

B dS I dz x
x b

dx I z x bo o⋅ =
+

= +∫ ∫ ∫−∞

+∞ ∞

−∞

+∞ ∞
= ∞

μ
π

μ
π2 2

1
22 20

2 2

0
ln  

 
The following is  a discussion of this result: 
This is one of those things we have to deal with when considering the magnetic field of a 
long straight wire. The flux integral will be infinite for an infinite surface. For a finite, 
surface, we can get finite flux. For a wire, we usually calculate the flux per unit length. 

This takes care of the z integral.  This was the easy one. What about the other 

integral? The good news is that an isolated long straight wire does not exist. All wires 
carrying current are part of a system with at least one additional wire carrying a return 
current. The coaxial cable is an excellent example. If we look at the geometry of a coax 
and redraw the diagrams above, we see that we obtain a finite integral, since there will 
only be magnetic field in the region between the center and outer conductors. Now, 
instead of integrating from 0 to 

dz
0

1
1∫ =

+ ∞ , we integrate from 0 to d, which has a finite result.  

[ ] ( )[ ] ( )[ ]r r
B dS I dz x

x b
dx I z x b I d b bo d o

d
o⋅ =

+
= + = +∫ ∫ ∫ −

μ
π

μ
π

μ
π2 2

1
2 2

1
2

1
0

1

2 20 0

1 2 2

0

2 2 2ln ln ln  

Note also that, for the case where b = 0, the surface being integrated over is the 

φ = 0 surface. This then becomes [ ]r r
B dS I do⋅ = − = −∞∫

μ
π2

1
2

02ln ln so we also cannot 

integrate from the origin and obtain a finite result. Again, the real world saves us since 
we should really integrate from the outer edge of the wire, which will be at a radius of 
say r= a. Then we obtain the following 

[ ] [ ] [ ]
r r
B dS I d a I d a I d a I d

a
o o o⋅ = − = − = − =∫ oμ
π

μ
π

μ
π

μ
π2

1
2 2

1
2

2 2
2 2

2 2ln ln ln ln ln ln ln  

This result is exactly what is obtained in equation (5.98) of Ulaby for the magnetic flux 
between the two conductors of a coaxial cable.

x

z

x
d φ  d 

y 
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2. The Electric Field due to a Volume Charge Distribution 
 
a. Assume that there is a volume charge distribution in the cylindrical region 

0 ≤ ≤r a given by ρ ρ= − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟o

r
a

1
7

. First, plot this expression as a function of r. 

 
 
 
 
 

r 
 
 
 
 
 
Matlab was used to plot the charge distribution as a function of r, which is shown below. 
Note that it looks something like a uniform charge distribution, except that it is a more 
rounded at r = a. We had to choose a = 100 for this plot, but that does not matter.  
 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Next, determine the total amount of charge per unit length in this distribution. Repeat for 
a uniform distribution in the same region, that is, for ρ ρ= o . Compare your results for the 
two cases.  
 
First, for a uniform distribution, the total charge per unit length is given by 

 Note that the z and Q dz d rdr atotal o

a

o= ∫∫ ∫φ ρ π ρ
π

0

2

0

1

0

2= φ  parts of the integral just become 

2π .  For the given charge distribution ρ ρ ρ π∫ ∫ ∫= − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = − ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dv r

a
dv drr r

ao o1 2 1
7 7

 

 

drr r
a

a a
a

a a a
∫ − ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = − = − =1

2 9 2 9
7
18

7 2 9

7

2 2 2

 

ρ π ρ∫ =dv a o
2 7

9
which is 7

9
as much as the uniform distribution. This also shows that the 

given distribution is indeed pretty close to uniform. 
 
b. Using Gauss’ Law in integral form, determine the electric field 

r
E for all values of 

radius for both charge distributions. Plot the magnitude of the electric field as a function 
of radius

r
E . 

a

 
 
 
 
 
 
 
 
 r
 
 
To solve for the electric field using Gauss’ Law, we need the total charge and the charge 
enclosed by a Gaussian surface with a radius smaller than the charge distribution 
(0<r<a). We can use the integrals above and just replace the upper limit a by r. Then 

ρ ρ ρ π π π ρ∫ ∫= − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = −

⎛
⎝
⎜

⎞
⎠
⎟ = −

⎛
⎝
⎜

⎞
⎠
⎟dv r

a
dv r r

a
r r

ao o o1 2
9

1 2
9

7
2

9

7
2

7

7  and 

 for the two charge distributions. The left hand side of Gauss’ 

Law is 

ρ ρ π∫ ∫= =dv dv ro
2ρo

r r
D dS D r E rr o r⋅ = =∫ 2π ε π2 for all radii. Thus, for the uniform charge 

distribution E r r
r

o

o

( ) = ρ
ε2

inside the charge and E r a
rr

o

o

( ) = ρ
ε

2

2
outside the charge. For the 
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given distribution E r r r
ar

o

o

( ) = −
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ε2

1 2
9

7

7 inside the charge and E r a
rr

o

o

( ) = ⎛
⎝⎜

⎞
⎠⎟

ρ
ε

2

2
7
9

. The 

two field expressions in each region are very similar to one another. Plotting them using 
Matlab, we see the following: 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

100 110 120 130 140 150 160 170 180 190 200
30

40

50

60

70

80

90

100

 

 10 
K. A. Connor Rensselaer Polytechnic Institute 25 January 2005 



Fields and Waves I  Spring 2006 
 Homework  3 
 
Again, the non-uniform distribution is more rounded.  
c. Use Gauss’ Law in differential form to check your answer for both cases.  
 

Inside the two charge distributions ∇ ⋅ =
r
E

o

ρ
ε

while outside ∇ ⋅ =
r
E 0.  Thus, we need to 

take the divergence of the four expressions, which is given by (∇ ⋅ = )
r
E

r r
rEr

1 ∂
∂

.  For the 

uniform charge and r a≥ , ∇ ⋅ =
⎛

⎝
⎜

⎞

⎠
⎟ =

r
E

r r
r a

r
o

o

1
2

0
2∂

∂
ρ
ε

. For r a≤  

∇ ⋅ =
⎛
⎝
⎜

⎞
⎠
⎟ = =

r
E

r r
r r

r
ro

o

o

o

o

o

1
2 2

2∂
∂

ρ
ε

ρ
ε

ρ
ε

. For the given charge distribution and r a≥  

∇ ⋅ =
⎛

⎝
⎜

⎞

⎠
⎟ =

r
E

r r
r a

r
o

o

1
2

7
9

0
2∂

∂
ρ
ε

. For r a≤  ∇ ⋅ = −
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

r
E

r r
r r

a
o

o

ρ
ε

∂
∂2

1 1 2
9

2
7

7  which 

simplifies to ∇ ⋅ = −
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛
⎝
⎜

⎞
⎠
⎟

r
E

r r
r r

a r
r r

a
r
a

o

o

o

o

o

o

ρ
ε

∂
∂

ρ
ε

ρ
ε2

1 1 2
9 2

1 2 2 12
7

7

8

7

7

7  so all 

four expressions check out.  
 
 
 
3. Electric Scalar Potential  
 
For both cases in problem 2, find the electric scalar potential as a function of position 

 and then also evaluate the potential at the origin( )V V r= ( )V V= 0 . Assume that 
so voltages are referenced to r = b. V b( ) = 0

 
To determine the potential as a function of position, we need to evaluate the integral 

 where we have assumed that the voltage is zero at r = b. For the 

uniform charge distribution and 

( )V V r E r drrb

r
= = −∫ ( )

r a≥ , ( )V r a
r

dr a b
r

Q b
r

o

o
b

r o

o

total

o

= − = =∫
ρ
ε

ρ
ε πε

2 2

2 2 2
ln ln  

where we have put the solution in the form of a line charge to check it against that result. 

For r a≤ , ( ) (V r a b
a

r dr a b
a

a ro

o

o

o
a

r o

o

o

o

= − = +∫
ρ
ε

ρ
ε

ρ
ε

ρ
ε

2 2
2 2

2 2 2
ln ln )− . The voltage at the 

origin is then ( ) ( )V a b
a

ao

o

o

o

0
2

2
2= +

ρ
ε

ρ
ε

ln . For the given non-uniform charge and r a≥ , 

( )V V r a
r

dr a b
r

o

o
b

r o

o

= = − ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟∫

ρ
ε

ρ
ε

2 2

2
7
9 2

7
9

ln  which again looks just like the other result 

except for being a little smaller. For r a≤ , things are a bit more complex. 
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( )V V r V a r r
a

dr a b
a

r r
a

dro

o
a

r o

o

o

o
a

r
= = − −

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝⎜
⎞
⎠⎟

− −
⎛
⎝
⎜

⎞
⎠
⎟∫ ∫( ) lnρ

ε
ρ
ε

ρ
ε2

1 2
9 2

7
9 2

2
9

7

7

2 8

7

( )V r a b
a

r a r
a

ao

o

o

o

= ⎛
⎝⎜

⎞
⎠⎟

− − − +
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ε

ρ
ε

2 2 2 9

7

2

2
7
9 2 2 2

2
81

2
81

ln  so that at r = 0, 

. ( )V a b
a

a ao

o

o

o

0
2

7
9 2 2

2
81

2 2 2

= ⎛
⎝⎜

⎞
⎠⎟

+ −
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ε

ρ
ε

ln  

 
4. Charge on a Capacitor Plate 
 
First, before addressing a specific configuration, address the following general question. 
Assume you are given the voltages at 9 nearby points in space. The points are given by 
the values of (x,y) = (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), & (3,3), where the 
units are assumed to be centimeters.  The voltages at these nine locations are V= 0, 0, 0, 
5, 10, 15, 10, 25, & 40.  For clarity, these points are shown below. 
 
 
 
 
 
 
 
 
 
 
Given this information, determine the best approximate value for the Ex and Ey, the x and 
y components of the electric field. Be sure that your answers are expressed in SI units.  
 
The best approximation uses all available points. However, there are several reasonable 

ways to do this. My choice is to evaluate − Δ
Δ
V
x

, for example, on both sides of the center 

point and then take their average. Thus, V
my = −

−
+

−⎛
⎝⎜

⎞
⎠⎟
= −

1
2

15 10
0 01

10 5
0 01

500
. .

E  and 

E V
mx = −

−
+

−⎛
⎝⎜

⎞
⎠⎟
= −

1
2

25 10
0 01

10 0
0 01

1250
. .
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Fields and Waves I  Spring 2006 
 Homework  3 
 
A parallel plate capacitor with a metal object embedded in its insulator is connected to 2 
10V DC voltage sources, as shown. Little is known about how the capacitor is 
constructed so we do not know enough to calculate the capacitance from first principles. 
However, somehow, we are able to measure the voltage at an array of points located 1cm 
inside the top surface of the capacitor. The measured voltages are given in the Excel 
spreadsheet HW3-s06.xls found next to this assignment on the Handout webpage. Each 
plate of the capacitor is 24cm by 24cm. The voltages are measured at the edge points and 
points every cm to form the 24x24 grid given in the spreadsheet. 
 
 
 
 
 
 
 
 
 
 
 

Measured Points 

10V 

-10V 

Ground 

 
a. Determine the average value of the electric field in the region between the measured 

points and the top plate. 
The average value of the voltage for the measured points is 9.05V. This average can 
easily be found using the average function in Excel. The average difference between the 
top plate and the measured points is 0.95V. Again this can easily be found using Excel. 
This difference voltage divided by 0.01m give the average E field of 95V/m. 
b. Assume the dielectric constant in the region where the voltage is measured is 

ε ε ε ε= =r o o3 . Determine the average value of the electric flux density. 
The average flux density is obtained by multiplying the electric field by the dielectric 
constant. Thus  D xo o= × = = −95 3 285 3 10 8ε ε
c. Determine the total charge on the top plate. 
The total charge is given by the charge density (which is equal to the flux density in this 
case) times the area. The area is 5.8x10-2m2 so that the charge is 16  4 173 10 9. .εo x= −

d. Find the capacitance. 
The capacitance is given by the charge divided by the total voltage or 

C x x po
o= = = = =

−
−16 4

20
082 173 10

20
8 65 10 865

9
11. . . . .ε

ε F  

A sanity check for this result is to look at the ideal capacitor with no diamond shaped 

blob inside. The formula for capacitance is C A
d
o

o= =
3 0 72ε

ε.  which is very close to this 

value and smaller, as it should be. (Why should it be smaller?)  
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