
Fields & Waves I  Spring 2007 
Homework #3 

Due 28 February 
 

Before beginning this homework assignment, read over HW3 from Spring 2006, 
especially the discussion in the first 3 pages. Also be sure that you are keeping up 
with the reading posted on the course handout page. Of course, reviewing the lecture 
slides is also a good idea. 

1. Gauss’ Law Methodology This problem was really done in class and in the 
lecture notes. Your purpose here is to fully reproduce the solution while 
simultaneously developing the general set of steps necessary (written in your own 
words) to solve such problems. Assume that we have a uniform cylinder of charge 
with density rρ ρ= 0o  in the region ≤ ≤ a . There are no other charges in this 
problem.  

a. What coordinate system should you use to solve this problem? 

Cylindrical  

b. Sketch the charge distribution in two and three dimensions. 

There are various ways of drawing a 3D cylinder. Shown below is one example. Anything 
similar is fine 

a 
 

 

c. Solve for the electric field ( )
r rE r for all values of r. Remember that the 

answer to this question is a vector function, so be sure you express it as 
such.  

The first step is to note, from symmetry, the simplified form of the electric field. For this 
case, since the source only depends on the cylindrical radius, we also know that the 
electric field is most simply written as ( ) ( )

r rE r a E rr r= $ . Then, we choose a Gaussian 
surface that is a closed cylinder of radius r and length L, as shown in the 3D image 
above. To keep things simple, we will show the 2D plot with dashed lines where the 
Gaussian surface can go (see below). Note that we have to consider both the case where 
r is less than a and where r is greater than a (i.e. for all r).  
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From the class notes, page II-8, we have a helpful picture showing the surface elements 
on the cylindrical Gaussian surface. Note that the surfaces on the end caps of the 
cylinder are perpendicular to the direction of the electric field and, thus, there is no 
contribution to the flux integral from the ends.  
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Then we have for the left hand side of Gauss’ Law 
r r r r r r r r r r
E dS E dS E dS E dS E dS

LEFT END RIGHT END SIDE SIDE

⋅ = ⋅ + ⋅ + ⋅ = ⋅
− −
∫∫ ∫ ∫ ∫  

 
r r r r
E dS E dS E r a a rd dz LrE r

SIDE
r r r r⋅ = ⋅ = ⋅ =∫ ∫ ∫ ( ) $ $ ( )φ π2  

a 

 

For the right hand side of Gauss’ Law,  

the answer depends on whether we are inside our outside the charge.  

For inside the charge, 1 1 2 1
0

2

ε
ρ

ε
π ρ

ε
π ρ

o o
o

r

o
odv L rdr r L∫ ∫= = while for outside the 

charge 

1 1 2 1
0

2

ε
ρ

ε
π ρ

ε
π ρ

o o
o

a

o
odv L rdr a L∫ ∫= = . Setting the two sides equal to one another, we 

obtain the solution for the electric field both inside and outside the charge. 

E r r
r

o

o

( ) = ρ
ε2

for r<a and E r a
rr

o

o

( ) = ρ
ε

2

2
for r>a. 

d. Check your answer for ( )
r rE r  by evaluating ∇ ⋅

r
E  for all values of r. That 

is, show that ∇ ⋅ =E
o

r ρ
ε . 

Checking the answer is straight forward, since it only requires direct application of the 
divergence in cylindrical coordinates. There are usually three terms for the divergence, 
but, in this case, we only need to consider one since there is only an r-directed 
component Er(r) for the electric field.  

∇ ⋅ = = =
r
E

r r
rE r

r r
r a

rr
o

o

1 1
2

0
2∂

∂
∂
∂

ρ
ε

( )  outside the charge, as it should 

∇ ⋅ = = = =
r
E

r r
rE r

r r
r r

r
r

r
o

o

o

o

o

o

1 1
2

1 2
2

∂
∂

∂
∂

ρ
ε

ρ
ε

ρ
ε

( ) inside the charge, as it should. 
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e. Assuming that the voltage is referenced to zero at r = b where b , find 
the voltage (also known as the electric potential) 

a>
( )V rr  for all values of r. 

Remember that the answer to this question is a scalar function, so be sure 
that you express it as such.  

V r V b E dr a
r

dr a b
rrb

r o

o
b

r o

o

( ) ( ) ln− = − = − =∫ ∫
ρ
ε

ρ
ε

2 2

2
1

2
 for r>a. Also V(b) = 0. At r = a, we 

have V a a b
a

o

o

( ) ln=
ρ
ε2

2

which we can use to find the voltage inside the charge, using this 

as the reference. Note that it is not a zero reference. Then 

( )V r V a E dr rdr a b
a

r a a b
ara

r o

o
a

r o

o

o

o

o

o

( ) ( ) ln ln− = − = − + = − − +∫ ∫
ρ
ε

ρ
ε

ρ
ε

ρ
ε2 2 4 2

2 2
2 2

 

Note that this expression is found on slide 25 of Lecture 10.  

f. Check your answer for ( )V rr  by evaluating ( )∇2V rr  for all values of r. 

That is, show that ( )∇ = −2V r
o

ρ
ε . r

( ) ( ) ( )∇ = = − = − =2
2 21

2
1

2
1 1 0V r

r r
r

r
V r a

r r
r

r
b r a

r r
r

r
o

o

o

o

r r∂
∂

∂
∂

ρ
ε

∂
∂

∂
∂

ρ
ε

∂
∂

ln ln outside the 

charge. Inside the charge, 

( ) ( )∇ = = − = − = − = −2 2 2

4 4
2

4
4V r

r r
r

r
V r

r r
r

r
r

r r
r

r
ro

o

o

o

o

o

o

o

1 1 1 1r r ρ
ε

ρ
ε

ρ
ε

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

ρ
ε

as it 

should.  

g. Read over the discussion in the handout on Gauss’ Law. Also, the reading 
in the textbook and class notes on Gauss’ Law. In the handout, there is a 
list of steps to follow to use Gauss’ Law to solve for fields. Put these steps 
in your own words and expand them to include instructions on how to find 
the voltage function and to check your solutions.  

Many different sets of instructions are acceptable here. It is only necessary that the steps 
be clear and complete.  Please check the stops listed in the handout. After that one must 
be sure to 

1. identify where the zero reference is for the potential and then 
2.  integrate V r , for example (this is only an 

example, since not all systems are cylindrical or spherical. Note 
that the appropriate form for the electric field must be used in 
each region 

V r E drrr

r
( ) ( )2 1

1

2
− = −∫

3. For completeness, one should also check one’s answers as 
shown above with the differential form.  
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2. Application of Gauss’ Law Methodology The following charge distribution 

exists in a cylindrical system:ρ ρ= 1o  in the region b r c≤ ≤ and ρ ρ= 2o in the 
region c r d≤ ≤ . The voltage is referenced to zero at r e= . There are no other 
charges in this problem.  

 

e 
c d 
b 

a 

 
 
 
 
 
 
 
 
 
 
 

a. Determine the total charge per unit length. 

( ) ( )ρ π ρ π ρ π ρ πdv L rdr L rdr c b L d c Lob

c

oc

d

o o∫ ∫ ∫= + = − + −2 21 2
2 2

1
2 2

2ρ  

so that the charge per unit length is ( ) ( )π ρ πc b d co o
2 2

1
2 2

2− + − ρ  

b. Now assume that the outer charge density is negative and that the total charge 
per unit length is zero. Find the relationship between the inner and outer 
charge densities. That is solve for one in terms of the other. 

For the total charge to be zero ( ) ( )π ρ π ρc b d co o
2 2

1
2 2

2 0− + − = and 

( )
( )

( )
( )

ρ
π

π
ρ ρ2 2 2 1 2 2 1o o

c b

d c

c b

d c
= −

−

−
= −

−

−

2 2 2 2

o  

For the remainder of this problem, we will assume that the total charge per unit length 
is equal to zero and, for simplicity, that b a2 , c a4 a, d= == 5 e a= 6, and . Thus, 
the only geometric parameter that should appear in your solutions should be a. 

( )
( )

ρ ρ2

2 2

2 2 1 1

4 2

5 4
4
3o o= −

−

−
= − ρ o  

c. Solve for the electric field ( )
r rE r for all values of r. 
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LHS of Gauss’ Law is the same as in problem 1. 
r r
E dS LrE rr⋅ =∫ 2π ( )  

For the RHS, things are slightly different.  

For the region 0<r<b, 1 1 2 0
0ε

ρ
ε

π
o o

r
dv L rdr∫ ∫= = 0 .  

For b<r<c, ( )1 1 2 1
1

2 2
1ε

ρ
ε

π ρ
ε
π ρ

o o
ob

r

o
odv L rdr r b L∫ ∫= = − .  

For d>r>c, 

( ) ( ) ( )22 2
1 2

2 2
1

2 2
2ε

ρ
ε
π ρ

ε
π ρ

ε
π ρ

ε
π ρ

o o
o

o
oc

o
o

o
odv c b L L rdr c b L r c L∫ ∫= − + = − + −

1 1 1 1 1r
. 

For e>r>d, 1 0
ε

ρ
o

dv∫ = since the total charge per unit length is zero. 

Setting the two sides of Gauss’ Law equal, we have E rr ( ) = 0 for 0<r<b & d<r, since no 
charge is enclosed in these regions.  

For b<r<c ( )r r
E dS LrE r dv r b Lr

o o
o⋅ = = = −∫ ∫2 1 1 2 2

1π
ε

ρ
ε
π ρ( ) so that 

 
( )

E r
r b

rr
o

o( ) =
−1
2 1ε

ρ
2 2

 

For c<r<d ( ) ( )r r
E dS LrE r dv c b L r c Lr

o o
o

o
o⋅ = = = − + −∫ ∫2 1 1 12 2

1
2 2

2π
ε

ρ
ε
π ρ

ε
π ρ( ) so 

that 
( ) ( )

E r
c b

r

r c

rr
o

o
o

o( ) =
−

+
−1

2
1

21 2ε
ρ

ε
ρ

2 2 2 2

 

d. Check your answer for the previous question 

Trivially, for 0<r<b & d<r, ∇ ⋅ = = =
r
E

r r
rE r

r r
rr

1 1 0 0∂
∂

∂
∂

( )  as it should since there is 

no charge there. 

For b<r<c, 
( ) ( )

∇ ⋅ = =
−

=
−

= =
r
E

r r
rE r

r r
r

r b

r r r

r b

r
r

r
o

o
o

o
o

o
o

o

1 1 1
2

1 1
2

1 1 2
21 1 1

1∂
∂

∂
∂ ε

ρ ∂
∂ ε

ρ
ε

ρ
ρ
ε

( )
2 2 2 2

 

as it should. 
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For b<r<c, 
( ) ( )

∇ ⋅ = =
−

+
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

r
E

r r
rE r

r r
r

c b

r

r c

rr
o

o
o

o
1 1 1

2
1

21 2
∂
∂

∂
∂ ε

ρ
ε

ρ( )
2 2 2 2

 

( ) ( )
∇ ⋅ = =

−
+

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

r
E

r r
rE r

r r

c b r c

r
r

r
o

o
o

o
o

o
o

o

1 1 1
2

1
2

1 1 2
21 2 2

2∂
∂

∂
∂ ε

ρ
ε

ρ
ε

ρ
ρ
ε

( )
2 2 2 2

 as 

it should. 

e. Find the voltage  for all values of r.  ( )V rr

Since the zero reference is at r = e and there is no E field in the region r>d, the voltage 
at r = d is also zero. We will use this as the reference then.  

For c<r<d,  
( ) ( )

V r V d E dr
c b

r

r c

r
drr

o
o

o
od

r

d

r
( ) ( )− = − = −

−
+

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫∫

1
2

1
2

2 2

1

2 2

2ε
ρ

ε
ρ  

For simplicity, note that there are two kinds of integrals here. 1
r

dr r∫ = ln  and 

rdr r
∫ =

2

2
. Thus, 

( ) ( ) ( )
V r

c b c d
r

r d

o
o

o
o

o
o( ) ln=

−
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

−1
2

1
2

1
41 2 2ε

ρ
ε

ρ
ε

ρ
2 2 2 2 2

. For the 

next region, we need this at r = c: 

( ) ( ) ( )
V c

c b c d
c

c d

o
o

o
o

o
o( ) ln=

−
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

−1
2

1
2

1
41 2 2ε

ρ
ε

ρ
ε

ρ
2 2 2 2 2

.  

Then, for b<r<c, 
( )

V r V c E dr
r b

r
drr

o
oc

r

c

r
( ) ( )− = − = −

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫∫

1
2 1ε

ρ
2 2

and 

( )
V r V c E dr

r c
b c

rrc

r o

o

( ) ( ) ln− = − = −
−

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫

ρ
ε
1 2

2 2

2 2

. Finally, for the region 0<r<b, the 

voltage is a constant 

( ) ( ) ( ) ( )
V r

b c
b c

b

c b c d
c

c d
o

o o
o

o
o

o
o( ) ln ln= −

−
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ −

−
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

−ρ
ε ε

ρ
ε

ρ
ε

ρ1 2
1 2 22 2

1
2

1
2

1
4

2 2 2 2 2 2 2

All of the above expressions can be simplified for the given values of b, c, d, e in terms of 
a.  

f. Check your answer for the previous question 
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Again, for the regions where there is no charge 

( ) ( )∇ = = =2 1
2

1 0 0V r
r r

r
r

V r a
r r

r
r

o

o

r r∂
∂

∂
∂

ρ
ε

∂
∂

∂
∂

2

 

For c<r<d 

( ) ( ) ( ) ( ) ( )
∇ = = −

−
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2
2 2

1

2

2

2 2

2
1 1 1

2
1

2
1

4
V r

r r
r

r
V r

r r
r

r

c b c d
r

r d

o
o

o
o

o
o

r r∂
∂

∂
∂

∂
∂

∂
∂ ε

ρ
ε

ρ
ε

ρln

 Again, for simplicity, there are two types of derivatives here and they were both done in 

problem 1. 1 1 1 0
r r

r
r

const
r r r

r
r

∂
∂

∂
∂

∂
∂

ln⎛
⎝⎜

⎞
⎠⎟
= =  and 1

4
1 2

4
1

2 2

r r
r

r
r

r r
r∂

∂
∂
∂

∂
∂

⎛
⎝
⎜

⎞
⎠
⎟ = = . Thus, 

( )∇ = −
⎛
⎝
⎜

⎞
⎠
⎟2

2
1V r
o

o
r

ε
ρ as it should. 

g. Now assume that a = 5mm and that the voltage at r = a is V(a)=10 Volts. 
Determine the values of the two charge densities. Plot the electric field and 
voltage as a function of radius for these conditions.  

First we will simplify all expressions above, using only a instead of the other dimensions 

and also eliminate one of the charge densities. 
( )

E r
r a

rr
o

o( ) =
−1 4

2 1ε
ρ

2 2

 and 

( ) ( ) ( )
E r

a

r

r a

r

a

r
r

r
o

o
o

o
o

o
o

o( ) = +
−

= −
1 6 1 16

2
1 50

3
2

31 2 1 1ε
ρ

ε
ρ

ε
ρ

ε
ρ

2 2 2 2

  

( )
V r a a d

r

r a

o
o

o
o

o
o( ) ln= −

⎛
⎝
⎜

⎞
⎠
⎟ +

−1 6 1 8 1 25

4
2

1
2

2

2 2

2ε
ρ

ε
ρ

ε
ρ  and plugging in for the charge  

( ) ( )
V r

a a
r

r a

o
o

o
o( ) ln=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ −

−1 50

3
5 1 25

3

2

1

2 2

1ε
ρ

ε
ρ and ,  

( ) ( )
V c

a a
a

a a

o
o

o
o( ) ln=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ −

−1 50

3
5
4

1 16 25

3

2

1

2 2

1ε
ρ

ε
ρ  

V c ao

o

( ) ln= +⎛
⎝⎜

⎞
⎠⎟

ρ
ε

1
2

3
50 5

4
9  
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( )
V r V c

r c
b c

r
o

o

( ) ( ) ln= + −
−

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρ
ε
1

2 2
2

2 2
 for c>r>b 

( )
V r V c

r a
a a

r
o

o

( ) ( ) ln= + −
−

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρ
ε
1 2

2

16

2
4 4

2 2

 

( )
V r

a r a
a a

r
o

o

o

o

( ) ln ln= +⎛
⎝⎜

⎞
⎠⎟
−

−
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρ
ε

ρ
ε

1
2

1 2

3
50 5

4
9

2

16

2
4 4

2 2

 

( )
V b

a a a
a a

a
o

o

o

o

( ) ln ln= +⎛
⎝⎜

⎞
⎠⎟
−

−
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρ
ε

ρ
ε

1
2

1 2

3
50 5

4
9

2

4 16

2
4 4

2

2 2

 

( )
V b a a

ao

o

o

o

( ) ln ln= +⎛
⎝⎜

⎞
⎠⎟
− +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρ
ε

ρ
ε

1
2

1 2

3
50 5

4
9

2

12

2
4 2

2

 

( )
V b a a

ao

o

( ) ln ln= +⎛
⎝⎜

⎞
⎠⎟
+ −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ρ
ε

1
2 2

2

3
50 5

4
9 1

2

12

2
4 2  

Since V(b)=10, we can solve for the charge densities once we plug in a = 5mm. It is 
easiest to do this with Matlab by first solving for the charge density, plug in all values 
and then plot the results for V and E. 

The Matlab M-File: 

% Problem # 2 

% Dimensions 

a=.005; 

% Radius Vector 

 r2=[1.01:.01:2].*2*a; 

 r3=[2.01:.01:2.5].*2*a; 

 r=[r2 r3]; 

% Voltage at inner region used to find the charge density 

 den=(a^2/3)*(50*log(5/4)+9)+0.5*((6*a^2)-4*a^2*log(2)); 

 pse=10/den; 
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 V2=(pse.*(a.^2)./3).*(50.*log(5./4)+9)-(pse./2).*(((r2.^2-
16.*a.^2)/2)+4.*a.^2.*log((4.*a)./r2)); 

 V3=(pse./3).*((50.*a.^2).*log(5.*a./r3)-(r3.^2-25.*a.^2)); 

 V=[V2 V3]; 

 % Plotting 

 plot(r,V) 

 grid;title('Voltage');xlabel('Meters');ylabel('Volts'); 

 figure; 

 % Electric Field 

 E2=pse.*(r2.^2-4.*a.^2)./(2.*r2); 

 E3=pse.*(((50.*a.^2)./(3.*r3))-(2.*r3./3)); 

 E=[E2 E3]; 

 % Plotting 

 plot(r,E); 

 grid; 

 title('Electric Field');xlabel('Meters');ylabel('Volts/Meter'); 
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Note that the electric field is zero both outside and inside the charge distribution. The 
voltage goes to 10 Volts at the inner radius of the inner charge distribution as it should.  
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12 
K. A. Connor Rensselaer Polytechnic Institute 24 February 2007 



Fields & Waves I  Spring 2007 
Homework #3 

Due 28 February 
 

3. Application of Gauss’ Law Methodology & Capacitance For the same 
geometry as the previous problem, assume that we have placed a conductor at r = 
a and at r = e. Also, assume that the charges that were previously free volume 
charges have been moved to the surfaces of the two conductors. That is, assume 
that there is a positive surface charge ρsa at r = a and a negative surface charge 
ρse  at r = e = 6a.  The region between a and e is now empty. We still assume that 
the total charge per unit length is zero. 

a. Find the relationship between the inner and outer surface charge densities. 
That is, find ρse  in terms of ρsa .  

b. Solve for the electric field ( )
r rE r for all values of r.  

c. Find the voltage  for all values of r. We are still using r = e as the 
location of the zero reference for voltage.  

( )V rr

d. Evaluate the voltage at r = a. Using this voltage, determine the capacitance 
per unit length 

e. Using your answer for part a, determine the energy stored per unit length. 
From this answer, determine the capacitance per unit length and compare with 
your answer to part c.  

h. Now assume that a = 5mm, e = 6a, and that the voltage at r = a is V(a)=10 
Volts. Determine the values of the two surface charge densities. Plot the 
electric field and voltage as a function of radius for these conditions.  

 

The answers to all parts of this problem are also found in the reading since this is just 
a coaxial cable, except for the last part where the results are plotted. The M-File 
created for this is: 

% Parameters 

a=.005;e=6*a; 

r=[1:.01:6].*a; 

% Charge Density divided by epsilon zero 

den=a*log(e/a); 

pse=10/den; 
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% Voltage 

V=pse.*a.*log(e./r); 

plot(r,V);grid; 

title('Voltage');xlabel('Meters');ylabel('Volts'); 

figure; 

% E Field 

E=(pse.*a)./r; 

plot(r,E);grid; 

title('Electric Field');xlabel('Meters');ylabel('Volts/Meter'); 

 

Note that the E field has a finite value at both r = a and r = e, which it should since there 
is now a surface charge at both locations. We can check these values to see if the 
boundary conditions are being met. E(a)=1.12e3 and E(e)=186. At the inner conductor, 
the Electric field is supposed to be the surface charge density divided by epsilon zero, 
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which it is. The surface charge density at the outer surface should be 1/6 as large 
because the outer surface area is 6 times larger, which it is.  
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