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Due 28 March 2008 at 12:00 noon (Friday at lunch time) 

The first part of this assignment is a continuation of Quiz 2 in that it addresses the issue 
of determining the resistance of a complex structure.  In this case, it is the resistance of a 
grounding rod, driven into the soil to provide a solid ground for a home or business. To 
address this issue, you will also be making use of an IEEE Standard, which is something 
you likely will also be asked to do on the job. There are standards on many, many issues 
and you have full access to them through the RPI Library. You can find them at 
http://ieeexplore.ieee.org/xpl/standards.jsp, but you must access this site from campus or 
use the Library Proxy. I have downloaded the most important standard and posted it at 
http://hibp.ecse.rpi.edu/~connor/education/Fields/IEEEStd142_2007.pdf.  Figure 4-1 
from this document is shown below which provides the configuration of a buried 
conducting rod.  

     

 

Some other references: 

Ground Rods: http://www.hubbellpowersystems.com/powertest/tips_news/pdfs_best/05-
2002.pdf

Deep Earth Grounding: http://www.cpccorp.com/deep.htm  

Grounding Fundamentals: 
http://www.usda.gov/rus/telecom/publications/word_files/1751f802.doc  

 

http://ieeexplore.ieee.org/xpl/standards.jsp
http://hibp.ecse.rpi.edu/%7Econnor/education/Fields/IEEEStd142_2007.pdf
http://www.hubbellpowersystems.com/powertest/tips_news/pdfs_best/05-2002.pdf
http://www.hubbellpowersystems.com/powertest/tips_news/pdfs_best/05-2002.pdf
http://www.cpccorp.com/deep.htm
http://www.usda.gov/rus/telecom/publications/word_files/1751f802.doc
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It is also helpful to read over the information available largely through the Fields and 
Waves I website on Flownets, curvilinear squares, flux and a few other topics. 

From the class notes (Connor and Salon), read over II-33 to II-35, III-11 to III-12, IV-17 
to IV-20. Also review the discussion in section 2-2 of Ulaby in which he notes that for 

TEM transmission lines, 
G
C

=
σ
ε

so that if we know how to find the capacitance of some 

configuration, we can determine the conductance by just replacingε byσ . We will be 
using this in some calculations.  

From Wikipedia http://en.wikipedia.org/wiki/Flux for flux and 
http://en.wikipedia.org/wiki/Flownet for Flownets. Also, from mostly Civil Engineering 
sources, since they use Flownets, we have 
http://doctorflood.rice.edu/envi518/Handouts/Ch02Flownets.ppt and 
http://uwp.edu/~li/geol460-00/chapter4.htm  

Also from Wikipedia on grounding http://en.wikipedia.org/wiki/Ground_(electricity)  

Facility and Equipment Grounding from IEEE 
http://www.ewh.ieee.org/r3/nashville/events/2007/2007.02.07_A.pdf  

RF Earth System http://www.g4nsj.co.uk/earth.shtml  

Curvilinear Squares and Flux Plotting: 
http://www.aa.washington.edu/courses/aa419/ch04_supp.pdf  

From Google Books (http://books.google.com)  

Electric Power Distribution by A. S. Pabla 

Transmission Lines, Matching, and Crosstalk by Kenneth L. Kaiser 

Practical Grounding, Bonding, Shielding and Surge Protection by G. Vijayaraghavan  

Lightning: Physics and Effects by V. A. Rakov and M. A. Uman 

You will also find some interesting information on grounding if you look up counterpoise.  

If you find any other good references, let me know. 

On the next page is a table of formulas for the resistance of a wide variety of grounding 
systems. We will look at only two of them (the first two) – the hemisphere and the 
ground rod. The latter, in effect, includes the former since the end of the rod can be 
modeled as a hemisphere.  

http://en.wikipedia.org/wiki/Flux
http://en.wikipedia.org/wiki/Flownet
http://doctorflood.rice.edu/envi518/Handouts/Ch02Flownets.ppt
http://uwp.edu/%7Eli/geol460-00/chapter4.htm
http://en.wikipedia.org/wiki/Ground_(electricity)
http://www.ewh.ieee.org/r3/nashville/events/2007/2007.02.07_A.pdf
http://www.g4nsj.co.uk/earth.shtml
http://www.aa.washington.edu/courses/aa419/ch04_supp.pdf
http://books.google.com/
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1. First, to see that the hemisphere model makes sense, you should derive it from 
what you know about spherical capacitors. Begin by writing down the expression 
for the capacitance of a spherical structure consisting of two electrodes, one of 
radius a and one of radius b, where the region b>r>a is filled with an insulator 
with dielectric constantε . A hemispherical capacitor will be just half of this 
expression, since it is only half the size of a full sphere. Write this expression 
down and recall that two of these in parallel will make up a full sphere.  Next, 

convert this expression to conductance using 
G
C

=
σ
ε

. Then, invert the expression 

for the conductance to resistance by inverting it. R
G

=
1

. We will come back to 

this expression in a minute, but first use it to find the expression for an isolated 
spherical electrode by setting b = ∞ . You should find that this will now look like 

the first formula in the table on the previous page if you note that ρ
σ

=
1

is the 

resistivity of the surrounding material (soil). For this type of calculation, it is 
more typical to quote resistivity rather than conductivity but they are clearly 
equivalent. Usually in a Fields course, we avoid using resistivity since the use of 
the Greek letter ρ  is reserved for charge density. Evaluate this expression for a 
sphere with diameter 16mm. It turns out that the hemispherical ground will act as 
if it is in an infinite medium as long as it is reasonably well isolated from other 
objects. To see how isolated it has to be, return to the expression for the spherical 
capacitor with outer electrode at b. Given  a = 8mm, find the value of b that 
produces 99.9% of the resistance of an isolated hemisphere.  

2. Next, consider a 16mm diameter, 3m long rod such as the one shown in figure 4-1 
of the IEEE standard. Use the second formula in the table to find the resistance of 
this configuration in terms of an unspecified soil resistivity. Then, we want to see 
that this formula makes some sense by finding a simple approximation to the 
configuration. Rather than addressing the actual configuration, assume that it can 
be thought of as a combination of a coaxial cable with the outer conductor far 
away and a hemispherical end on the center conductor of the ground rod.  
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= ∞

The figure above shows a wire connected to a ground rod (in black). The rod 
looks like a coax for its length L and then has a hemispherical end cap. One of our 
problems in modeling the coaxial cable is that we need an outer conductor or the 
resistance or capacitance of the structure will appear to be infinite if b . To 
keep things realistic, we will use the value for b found in the previous problem 
that produced 99.9% of the resistance of an isolated hemisphere. We will discuss 
why this is a good model after we make our calculation. Again using the 

relationship 
G'
C'

=
σ
ε

, where now G’ and C’ are per unit length values, find the 

conductance for a ground rod of length L. Invert this expression to get the 
resistance. Combine this resistance in parallel with the resistance of the 
hemispherical end cap (as you found in the first problem) to find the total 
resistance of the ground rod. Compare your answer with the resistance found 
using the second formula in the table. You should find that they are close but not 
identical, since our method is an approximation. The fact that they are reasonably 
close shows that the formula from the table is reasonable to use. Also, the fact that 
it is referenced by pretty much everyone in the world who does grounding should 
also give us some confidence that it is reasonably correct.  

3. Now, assume that the grounding rod is located in soil with an average resistivity 
of 40,000  (see table 4-2 of the Standard document). Evaluate the 
expression for the resistance of the ground rod using this resistivity. Your value 
should be in the range listed in the table. Then, look through the IEEE Standard 
document and find the typical surge current for a lightning stroke. Using this 
current, find the voltage that will be produced at the feed end of the ground rod. 
You will see that it is quite an impressive value even for a typical stroke. For a 
high current stroke it is really big.  

Ω − cm

Magnetic Flux 

4. Read over the second problem in HW 5 for Spring 2007, which involves the flux 
produced by a magnetic dipole. Such a field is produced by a current I in a 
circular loop of radius a located at the origin of our coordinate system. 

(B a I )r

r
ro≈ +

μ
θ θ θ34

2$ cos $ sin
2

where we have noted that this is an approximate 

expression. It is valid only for r >> a. From the latter part of Lecture 15 (see the 
slides), you will see that we can also represent the magnetic field using the vector 
potential

r
. The link between the two expressions is A

r r
B = ∇ × A . From Stokes’ 

Theorem, we also know that ∇ × ⋅ = ⋅∫ ∫
r r r r
A dS A dl so that we can find the 

magnetic flux passing through some surface using either 
r
Aor

r
B . The expression 

for flux is ψm B dS A dl= ⋅ = ⋅∫ ∫
r

. Using the expression for
r r r r

Ahas a big advantage 
in the present problem, since we can evaluate the flux and never have to violate 
the requirement that the field expression we have is valid only for r >> a. Before 
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we do that, we need the dipole expression for
r
A . Looking it up online, one finds 

that all expressions look like 
r
A K

r
= $sinθ

φ2 where K is a constant. Your first step 

then is to evaluate 
r r
B = ∇ × A , compare the result with our approximate 

expression for
r
B and the identify the value of K. Next, find the flux passing 

through the coaxial loop of radius b whose center is located at z using the flux 
expression for the vector potential. Hint: using

r
A to find the flux, makes this task 

very simple. (The following figure is copied from HW5 for Spring 2007) 

 

3D View 
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Using the following parameters, find and plot the flux for z from -50 to 50. 
Assume that I=100, a=1, b=5. You can leave your expression in terms of 
μo since that keeps things simpler. Note that this can be done using Excel or 
Matlab, so use the one you know best.  When one does the experiment of 
dropping a magnet through a conducting pipe, there will be a current and voltage 
induced in the pipe that is proportional to the time derivative of the flux. Since the 
dipole flux does not change, but rather the magnet or coil are moved, the time rate 
of change of the magnetic flux will be 
d d d d dz dm m

dt dt
B dS

dt
A dl

dz dt dz
vmψ ψ ψ

= ⋅ = ⋅ = =∫ ∫
r r r r

 where v is the velocity of the 

magnet or coil. Thus, to see what the induced current looks like, we need to 

evaluate the z derivative of the flux.  
d
dz

mψ
= ? . This can either be done 

numerically or analytically (your choice). Either using the values for flux you 
evaluated above or the analytic expression for the derivative, find and plot the 
derivative of the flux with respect to z. Again, you can use either Excel or Matlab 
to plot your results. 
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Matlab m-file 
% Plotting the Data for Homework Assignment 5 
% Spring 2008 
% K. A. Connor, ECSE Dept., RPI 
  
% Magnetic Dipole Vector Potential 
% Current and Coil Radius 
I=100;a=1; 
% Loop Radius for Flux Calculation 
b=5; 
% Permeability of Free Space 
muo=4*pi*1e7; 
% Constant for A Expression 
K=I*(a^2)/4; 
% Range of z values 
delta=.1; 
z=[-50:delta:50];r=sqrt(b.^2+z.^2); 
% Vector Potential 
A=K.*b./r.^3; 
% Flux through a loop of radius b 
F=A.*2.*pi.*b; 
  
% Plot A 
plot(z,F);grid;xlabel('Distance'),ylabel('Flux'); 
  
% Now Find the Derivative of the Expression Numerically 
F1=-sign(z).*abs(gradient(F,delta)); 
  
% Compare with the Analytic Derivative 
F2=-(2.*pi.*(b.^2)).*K.*(1.5).*(2.*z)./(r.^5); 
  
% Plot Result 
figure;plot(z,F1,'.',z,F2),grid;xlabel('Distance'),ylabel('Flux Derivative'); 
  
% Plot Everything 
figure;plot(z,F,z,F1,'.',z,F2),grid,xlabel('distance'),ylabel('Flux or Its Derivative'); 
 
 
The output plots are on the next page. 
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The Excel File will be posted with the solution. 
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