Reading assignment
Ulaby, 4-5
Connor and Salon, II-10 → II-26

Problem 1 - Determine V from E

a. Take the electric field from Lesson 2.2, Problem 3. Assume that the outer cylinder is grounded.
 a. Find the voltage as a function of r for \(r > b \) and \(b > r > a \).
 b. Check your result by evaluating \(-\nabla V\).
 c. Find the voltage at \(r=0 \).

Problem 2 - Equipotential lines
Plot a set of electric field lines and equipotential lines for the quadrupole set of charges below. Dipole equipotentials can be viewed with the Mathcad worksheet for 3.6.2.

![Quadrupole Charges](image)

Problem 3 - Find V from charge

a. Find the electric potential at \(z = 0 \) as a function of \(r \) due to a line charge \(\rho_l \) that extends from \(z = -L/2 \) to \(L/2 \). You'll probably want to use Maple.
 b. Find the \(E \) at the same locations.
 c. When \(\rho_l = 10^{-10} \text{ C/m} \) and \(L = 0.2 \text{ m} \), numerically evaluate \(V \) at \(r = 0.1 \text{ m} \), and \(E \) at \(r = 0.105 \text{ m} \).
 d. Approximate the line charge as a set of 4 point charges. Calculate the voltage from the 4 point charges and compare with part c.
 e. Calculate the voltage at \(r = 0.11 \text{ m} \), and use this to estimate the electric field at \(r = 0.105 \text{ m} \).