Problem 1 - Normal incidence reflection - conductors
A 10 GHz plane wave has an electric field magnitude of 100 V/m and propagates in the a_\z direction through a perfect dielectric with $\varepsilon_r = 9$. E is in the a_x direction.

a. What are the incident E and H phasors?

b. At $z = 0$, the wave strikes a perfect conductor. What are the reflected E and H phasors?

c. Use the boundary conditions to find the surface current density in the conductor.

d. Draw the standing wave pattern for E and H (include numbers for amplitude and position).

e. Simulate this case with sing_bnd.m by using a large imaginary dielectric for region 2.

f. Calculate the total E and H. (phasor & time domain form).

Problem 2 - Normal incidence reflection - dielectrics
The same wave as in problem 1 strikes a dielectric-air boundary at $z=0$ as shown below.

a. Find the reflection and transmission coefficients.

b. What are the reflected and transmitted electric field phasors?

c. What are the reflected and transmitted H phasors? What is H_t/H_i?

d. What is the standing wave ratio in the dielectric? Sketch the standing wave pattern for E and H. Run sing_bnd.m for this problem.

e. What is the average power density of the incident, reflected, and transmitted waves?
Problem 3 - Normal incidence - multiple boundaries

A 10 GHz radar transmitter is used in the configuration shown below. Note that the radome-outside air boundary is identical to the boundary examined in Problem 2.

a. What is $|E|/|H|$ at the $z=0$ boundary of Problem 2? (equivalent to the region 2-3 boundary in this problem). Compare it with the value in air.

b. Now refer to the full radome problem. Where can you put the left boundary so that $|E|/|H|$ in the radome matches that in the air on the left? For mechanical reasons, the radome must be more than 2 cm thick.

c. What is Γ for this value of d?

d. What is Γ if d is 0.2 mm thinner than designed?