ECSE 2100 - Fields and Waves I Fall 2004 Homework #1

1. For the following wave expressions, indicate if the wave is standing or traveling. If the wave is traveling, find the direction of propagation and the velocity.

a)
$$\sin(377t+0.05x)$$
 traveling in $-x$, $V = \frac{\omega}{\beta} = 7540 \text{ m/s}$
b) $\cos(10^5t-2\times10^{-1}z)$ traveling in $+3$, $v = \frac{\omega}{\beta} = 5\times10^5 \text{ m/s}$
c) $\cos(120t)\sin(55x)$ Standing

2. Find the phasor representation of the following expressions

a)
$$v(t) = 5\cos\left(\omega t - \frac{\pi}{4}\right)$$
 $\widetilde{V} = 5C$

$$V = 5C$$

$$V = 5C$$

$$V = 120\cos\left(\omega t - \frac{\pi}{4}\right)$$

c)
$$v(t) = 3\sin\left(\omega t + \frac{2\pi}{3}\right) + 2\cos\left(\omega t - \frac{\pi}{6}\right) = 3\cos(\pi t) - (\omega t + 2\pi) + 2\cos(\omega t - \pi/6)$$

c)
$$v(t) = 3\sin\left(\omega t + \frac{2\pi}{3}\right) + 2\cos\left(\omega t - \frac{\pi}{6}\right) = 3\cos\left(\frac{\pi}{3} - (\omega t + \frac{2\pi}{3})\right) + 2\cos\left(\omega t - \frac{\pi}{6}\right) = 3\cos\left(\frac{\pi}{3} + \frac{2\cos\left(\omega t - \frac{\pi}{6}\right)}{3\cos\left(\omega t + \frac{\pi}{6}\right)} + 2\cos\left(\frac{\pi}{3} + \frac{2\cos\left(\omega t - \frac{\pi}{6}\right)}{3\cos\left(\omega t - \frac{\pi}{6}\right)}\right)$$
3. Find the time domain expression for the following phasors

3. Find the time domain expression for the following phasors.

a)
$$\tilde{V} = 6 + j4V$$
 7. 2 $e^{j33.7}$ $\Rightarrow v(k) = 7.2 \cos(\omega k + 33.7)$

b)
$$\tilde{V} = 2e^{j\frac{3\pi}{4}V}$$
, $V(t) = \text{Re}\left(2e^{j\frac{3\pi}{4}V}e^{j\omega t}\right) = 2\cos(\omega t + 3\pi/V)$

- 4. A wave is described by $v(t,z) = 3e^{-\alpha z} \sin(2\pi \times 10^9 t 10\pi z)V$. Find the frequency, wavelength and velocity. At z = 2m the magnitude is measured as 1V. Find the attenuation constant.
- 5. In class we showed that any function, f(x-ct) is a solution of the wave equation. By the same process, show that f(x+ct) is also a solution.

4.
$$f = 10^9$$
, $\beta = 10\pi$, $\lambda = \frac{2\pi}{\beta} = 0.2m$, $U = \frac{10}{\beta} = 2 \times 10^8 \text{ m/s}$
 $3e^{-\alpha 2} = 1 \Rightarrow \alpha = -\frac{1}{3} \ln \frac{1}{3} = 0.55$

5. Let
$$\hat{J} = x + cx$$
, we have $\frac{\partial^2 E}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial x}$, for $f(\hat{s}) = E$

$$\frac{\partial E}{\partial x} = \frac{\partial f}{\partial s} \frac{\partial s}{\partial x} = \frac{\partial f}{\partial s} \frac{\partial^2 E}{\partial x^2} = \frac{\partial f}{\partial s} \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial s}$$

$$\frac{\partial E}{\partial t} = \frac{\partial f}{\partial s} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial s} \frac{\partial^2 E}{\partial x^2} = \frac{\partial f}{\partial s} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial s} \frac{\partial f}{\partial s} = \frac{\partial f}{\partial s} \frac{\partial f}{\partial s}$$