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Preface V

PREFACE

Electromagnetic field theory is often the least popular
course in the electrical engineering curriculum. Heavy reli-
ance on vector and integral calculus can obscure physical
phenomena so that the student becomes bogged down in the
mathematics and loses sight of the applications. This book
instills problem solving confidence by teaching through the
use of a large number of worked examples. To keep the subject
exciting, many of these problems are based on physical pro-
cesses, devices, and models.

This text is an introductory treatment on the junior level for
a two-semester electrical engineering course starting from the
Coulomb-Lorentz force law on a point charge. The theory is
extended by the continuous superposition of solutions from
previously developed simpler problems leading to the general
integral and differential field laws. Often the same problem is
solved by different methods so that the advantages and limita-
tions of each approach becomes clear. Sample problems and
their solutions are presented for each new concept with great
emphasis placed on classical models of such physical
phenomena as polarization, conduction, and magnetization. A
large variety of related problems that reinforce the text
material are included at the end of each chapter for exercise
and homework.

It is expected that students have had elementary courses in
calculus that allow them to easily differentiate and integrate
simple functions. The text tries to keep the mathematical
development rigorous but simple by typically describing
systems with linear, constant coefficient differential and
difference equations.

The text is essentially subdivided into three main subject
areas: (1) charges as the source of the electric field coupled to
polarizable and conducting media with negligible magnetic
field; (2) currents as the source of the magnetic field coupled to
magnetizable media with electromagnetic induction generat-
ing an electric field; and (3) electrodynamics where the electric
and magnetic fields are of equal importance resulting in radi-
ating waves. Wherever possible, electrodynamic solutions are
examined in various limits to illustrate the appropriateness of
the previously developed quasi-static circuit theory approxi-
mations.

Many of my students and graduate teaching assistants have
helped in checking the text and exercise solutions and have
assisted in preparing some of the field plots.

Markus Zahn
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Notes to the Student Vii
and Instructor

A NOTE TO THE STUDENT

In this text I have tried to make it as simple as possible for an
interested student to learn the difficult subject of electromag-
netic field theory by presenting many worked examples
emphasizing physical processes, devices, and models. The
problems at the back of each chapter are grouped by chapter
sections and extend the text material. To avoid tedium, most
integrals needed for problem solution are supplied as hints.
The hints also often suggest the approach needed to obtain a
solution easily. Answers to selected problems are listed at the
back of this book.

A NOTE TO THE INSTRUCTOR

An Instructor's Manual with solutions to all exercise problems
at the end of chapters is available from the author for the cost
of reproduction and mailing. Please address requests on Univer-
sity or Company letterhead to:

Prof. Markus Zahn
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
Cambridge, MA 01239
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2 Review of Vector Analysis

Electromagnetic field theory is the study of forces between
charged particles resulting in energy conversion or signal transmis-
sion and reception. These forces vary in magnitude and direction
with time and throughout space so that the theory is a heavy user
of vector, differential, and integral calculus. This chapter presents
a brief review that highlights the essential mathematical tools
needed throughout the text. We isolate the mathematical details
here so that in later chapters most of our attention can be devoted
to the applications of the mathematics rather than to its
development. Additional mathematical material will be presented
as needed throughout the text.

1-1 COORDINATE SYSTEMS

A coordinate system is a way of uniquely specifying the
location of any position in space with respect to a reference
origin. Any point is defined by the intersection of three
mutually perpendicular surfaces. The coordinate axes are
then defined by the normals to these surfaces at the point. Of
course the solution to any problem is always independent of
the choice of coordinate system used, but by taking advantage
of symmetry, computation can often be simplified by proper
choice of coordinate description. In this text we only use the
familiar rectangular (Cartesian), circular cylindrical, and
spherical coordinate systems.

1-1-1 Rectangular (Cartesian) Coordinates

The most common and often preferred coordinate system
is defined by the intersection of three mutually perpendicular
planes as shown in Figure 1-la. Lines parallel to the lines of
intersection between planes define the coordinate axes
(x, y, z), where the x axis lies perpendicular to the plane of
constant x, the y axis is perpendicular to the plane of constant
y, and the z axis is perpendicular to the plane of constant z.
Once an origin is selected with coordinate (0, 0, 0), any other
point in the plane is found by specifying its x-directed, y-
directed, and z-directed distances from this origin as shown
for the coordinate points located in Figure 1-lb.

I
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Figure 1-1 Cartesian coordinate system. (a) Intersection of three mutually perpen-
dicular planes defines the Cartesian coordinates (x,y, z). (b)A point is located in space
by specifying its x-, y- and z-directed distances from the origin. (c) Differential volume
and surface area elements.

By convention, a right-handed coordinate system is always
used whereby one curls the fingers of his or her right hand in
the direction from x to y so that the forefinger is in the x
direction and the middle finger is in the y direction. The
thumb then points in the z direction. This convention is
necessary to remove directional ambiguities in theorems to be
derived later.

Coordinate directions are represented by unit vectors i., i,
and i2 , each of which has a unit length and points in the
direction along one of the coordinate axes. Rectangular
coordinates are often the simplest to use because the unit
vectors always point in the same direction and do not change
direction from point to point.

A rectangular differential volume is formed when one
moves from a point (x, y, z) by an incremental distance dx, dy,
and dz in each of the three coordinate directions as shown in

3

. -
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Figure 1-Ic. To distinguish surface elements we subscript the
area element of each face with the coordinate perpendicular
to the surface.

1-1-2 CircularCylindrical Coordinates

The cylindrical coordinate system is convenient to use
when there is a line of symmetry that is defined as the z axis.
As shown in Figure 1-2a, any point in space is defined by the
intersection of the three perpendicular surfaces of a circular
cylinder of radius r, a plane at constant z, and a plane at
constant angle 4 from the x axis.

The unit vectors i,, i6 and iz are perpendicular to each of
these surfaces. The direction of iz is independent of position,
but unlike the rectangular unit vectors the direction of i, and i6
change with the angle 0 as illustrated in Figure 1-2b. For
instance, when 0 = 0 then i, = i, and i# = i,, while if = ir/2,
then i, = i, and i# = -ix.

By convention, the triplet (r, 4, z) must form a right-
handed coordinate system so that curling the fingers of the
right hand from i, to i4 puts the thumb in the z direction.

A section of differential size cylindrical volume, shown in
Figure 1-2c, is formed when one moves from a point at
coordinate (r,0, z) by an incremental distance dr, r d4, and dz
in each of the three coordinate directions. The differential
volume and surface areas now depend on the coordinate r as
summarized in Table 1-1.

Table 1-1 Differential lengths, surface area, and volume elements for
each geometry. The surface element is subscripted by the coordinate
perpendicular to the surface

CARTESIAN CYLINDRICAL SPHERICAL

dl=dx i+dy i,+dz i, dl=dri,+r d0 i#+dz i, dl=dri,+rdOis
+ r sin 0 do i,

dS. = dy dz dSr = r dO dz dS, = r 9 sin 0 dO d4
dS, = dx dz dS, = drdz dS@ = r sin Odr d4
dS, = dx dy dS, = r dr do dS, = rdrdO
dV=dxdydz dV= r dr d4 dz dV=r 2 sin drdO d

1-1-3 Spherical Coordinates

A spherical coordinate system is useful when there is a
point of symmetry that is taken as the origin. In Figure 1-3a
we see that the spherical coordinate (r,0, 0) is obtained by the
intersection of a sphere with radius r, a plane at constant
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(b)
V= rdrdodz

(c)

Figure 1-2 Circular cylindrical coordinate system. (a) Intersection of planes of
constant z and 4 with a cylinder of constant radius r defines the coordinates (r, 4, z).
(b) The direction of the unit vectors i, and i, vary with the angle 46. (c) Differential
volume and surface area elements.

angle 4 from the x axis as defined for the cylindrical coor-
dinate system, and a cone at angle 0 from the z axis. The unit
vectors i,, is and i# are perpendicular to each of these sur-
faces and change direction from point to point. The triplet
(r, 0, 4) must form a right-handed set of coordinates.

The differential-size spherical volume element formed by
considering incremental displacements dr, rdO, r sin 0 d4
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= r sin dr doAl

Figure 1-3 Spherical coordinate system. (a) Intersection of plane of constant angle 0
with cone of constant angle 0 and sphere of constant radius r defines the coordinates
(r, 0, 4). (b) Differential volume and surface area elements.

i

I· · · · I· ll•U V I•
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Table 1-2 Geometric relations between coordinates and unit vectors for
Cartesian, cylindrical, and spherical coordinate systems*

FESIAN CYLINDRICAL
x = r cos4
y = r sin 4
z = z
i. = coso i- sin oi&

= sin ri,+cos 4 i,

CYLINDRICAL
r

CARTESIAN

= F+Yl

SPHERICAL
= r sin 0 cos4
= r sin 0 sin4
= r cos 0
= sin 0 cos •i, +cos 0 cos Oio -sin )i,#
= sin 0 sin 4i, +cos Osin 4 i, +cos 4 it
= cos Oir- sin Oie

SPHERICAL
= r sin 0

= tan'
x

Z

ir =

i* =
ii =

SPHERICAL
r =

8

z =
cos 4i. +sin 0i, =

-sin i,. +cos 0i, =
i =-

CARTESIAN

(x +y + 2

cos-1 zcos •/x +y +z •

r cos 0
sin Oi, + cos Oi,

i"
cos 0i, - sin Oi,

CYLINDRICAL
=

-1 os
- cOs

cot- -
y

sin 0 cos Ai. + sin 0 sin 4)i, + cos Oi, = sin 0i,+cos 0i,
cos 0 cos 4i. + cos 0 sin $i, - sin Oi, = cos Oir- sin Oi,

-sin 4i, +cos Oi, = i,

* Note that throughout this text a lower case roman r is used for the cylindrical radial coordinate
while an italicized r is used for the spherical radial coordinate.

from the coordinate (r, 0, 46) now depends on the angle 0 and
the radial position r as shown in Figure 1-3b and summarized
in Table 1-1. Table 1-2 summarizes the geometric relations
between coordinates and unit vectors for the three coordinate
systems considered. Using this table, it is possible to convert
coordinate positions and unit vectors from one system to
another.

1-2 VECTOR ALGEBRA

1-2-1 Scalars and Vectors

A scalar quantity is a number completely determined by its
magnitude, such as temperature, mass, and charge, the last

CAR'



8 Review of Vector Analysis

being especially important in our future study. Vectors, such
as velocity and force, must also have their direction specified
and in this text are printed in boldface type. They are
completely described by their components along three coor-
dinate directions as shown for rectangular coordinates in
Figure 1-4. A vector is represented by a directed line segment
in the direction of the vector with its length proportional to its
magnitude. The vector

A = A~i. +A,i, +Ai,

in Figure 1-4 has magnitude

A=IA =[A. +A +AI 2

Note that each of the components in (1) (A., A,, and A,) are
themselves scalars. The direction of each of the components
is given by the unit vectors. We could describe a vector in any
of the coordinate systems replacing the subscripts (x, y, z) by
(r, 0, z) or (r, 0, 4); however, for conciseness we often use
rectangular coordinates for general discussion.

1-2-2 Multiplication of a Vector by a Scalar

If a vector is multiplied by a positive scalar, its direction
remains unchanged but its magnitude is multiplied by the

A = Aý I + Ayly+ AI1,

IAI=A =(A +A 2 +A.]'

Figure 1-4
directions.

A vector is described by its components along the three coordinate

_AY
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scalar. If the scalar is negative, the direction of the vector is
reversed:

aA = aAi. + aA,i, + aA i,

1-2-3 Addition and Subtraction

The sum of two vectors is obtained by adding their
components while their difference is obtained by subtracting
their components. If the vector B

AY + 8,

A,

is added or subtracted to the vector A of (1), the result is a
new vector C:

C= A+ B = (A. ±B, )i, + (A,+±B,)i, + (A, ±B,)i, (5)
Geometrically, the vector sum is obtained from the

diagonal of the resulting parallelogram formed from A and B
as shown in Figure 1-5a. The difference is found by first

Y

A+B

A I'1
I / I

I/ I
I

IB I

B- A, + B,

-B

A-K

B

A 
A+B

A

(b)

Figure 1-5 The sum and difference of two vectors (a) by finding the diagonal of the
parallelogram formed by the two vectors, and (b) by placing the tail of a vector at the
head of the other.

B = B. i. +B,i, +B, i,
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drawing -B and then finding the diagonal of the paral-
lelogram formed from the sum of A and -B. The sum of the
two vectors is equivalently found by placing the tail of a vector
at the head of the other as in Figure 1-5b.

Subtraction is the same as addition of the negative of a
vector.

EXAMPLE 1-1 VECTOR ADDITION AND SUBTRACTION

Given the vectors

A=4i +4i,, B=i. + 8i,

find the vectors B*A and their magnitudes. For the
geometric solution, see Figure 1-6.

S=A+B
= 5ix + 12i,

= 4(i0, + y)

Figure 1-6 The sum and difference of vectors A and B given in Example 1-1.
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SOLUTION

Sum

S = A + B = (4 + 1)i, + (4 + 8)i, = 5i, + 12i,

S= [52+ 122] 2 = 13

Difference

D = B - A = (1 - 4)ix +(8- 4)i, = -3i, + 4i,

D = [(-3)2+42] 1/ 2 = 5

1-2-4 The Dot (Scalar) Product

The dot product between two vectors results in a scalar and
is defined as

A .B= AB cos 0 (6)

where 0 is the smaller angle between the two vectors. The
term A cos 0 is the component of the vector A in the direction
of B shown in Figure 1-7. One application of the dot product
arises in computing the incremental work dW necessary to
move an object a differential vector distance dl by a force F.
Only the component of force in the direction of displacement
contributes to the work

dW=F dl (7)

The dot product has maximum value when the two vectors
are colinear (0 = 0) so that the dot product of a vector with
itself is just the square of its magnitude. The dot product is
zero if the vectors are perpendicular (0 = ir/2). These prop-
erties mean that the dot product between different orthog-
onal unit vectors at the same point is zero, while the dot

Y A

Figure 1-7 The dot product between two vectors.
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product between a unit vector and itself is unity

i. *i. = 1, i. - i, = 0

i, i, 1, i i, = 0 (8)

i, i, 1, i, • i, =0

Then the dot product can also be written as

A B = (A,i, +A,i, +A,i,) • (B.i, +B,i, + Bi,)

= A.B. + A,B, + A,B. (9)

From (6) and (9) we see that the dot product does not
depend on the order of the vectors

A-B=B-A (10)

By equating (6) to (9) we can find the angle between vectors as

ACos0= B. + AB, + A,B, (11)cos 8 = (11)
AB

Similar relations to (8) also hold in cylindrical and spherical
coordinates if we replace (x, y, z) by (r, 4, z) or (r, 0, 4). Then
(9) to (11) are also true with these coordinate substitutions.

EXAMPLE 1-2 DOT PRODUCT

Find the angle between the vectors shown in Figure 1-8,

A = r3 i. +i,, B = 2i.

Y

A B = 2V,

Figure 1-8 The angle between the two vectors A and B in Example 1-2 can be found
using the dot product.
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SOLUTION

From (11)

A,B, 4
cos 0 = 2 22 =--

[A +A,] B. 2

0 = cos -= 300
2

1-2-5 The Cross (Vector) Product

The cross product between two vectors A x B is defined as a
vector perpendicular to both A and B, which is in the direc-
tion of the thumb when using the right-hand rule of curling
the fingers of the right hand from A to B as shown in Figure
1-9. The magnitude of the cross product is

JAxBI =AB sin 0

where 0 is the enclosed angle between A and B. Geometric-
ally, (12) gives the area of the parallelogram formed with A
and B as adjacent sides. Interchanging the order of A and B
reverses the sign of the cross product:

AxB= -BxA

AxB

BxA=-AxB

Figure 1-9 (a) The cross product between two vectors results in a vector perpendic-
ular to both vectors in the direction given by the right-hand rule. (b) Changing the
order of vectors in the cross product reverses the direction of the resultant vector.
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The cross product is zero for colinear vectors (0 = 0) so that
the cross product between a vector and itself is zero and is
maximum for perpendicular vectors (0 = ir/2). For rectan-
gular unit vectors we have

i. x i. = 0, i. x i, = i', iv x i = - i

i, x x i, =i=, i, xi, = -i. (14)

i, x i, = 0, i"Xi. = i, i, Xi"= -iy

These relations allow us to simply define a right-handed
coordinate system as one where

ix i,=(15)

Similarly, for cylindrical and spherical coordinates, right-
handed coordinate systems have

irXi =i,, i, xiO = i (16)

The relations of (14) allow us to write the cross product
between A and B as

Ax B = (A.i. +A,i, +Ai,)x (B,i1 + B,i, + Bi , )

= i,(AB, - AB,) + i,(A.B. - A.B.) + i,(AxB, - AB,)
(17)

which can be compactly expressed as the determinantal
expansion

i, i, iz

AxB=det A. A, A,
B. B, B.

= i, (A,B - AB,) + i,(A,B, - AB,) + i, (AB, - AB.)

(18)

The cyclical and orderly permutation of (x, y, z) allows easy
recall of (17) and (18). If we think of xyz as a three-day week
where the last day z is followed by the first day x, the days
progress as

xyzxyzxyzxyz . (19)

where the three possible positive permutations are under-
lined. Such permutations of xyz in the subscripts of (18) have
positive coefficients while the odd permutations, where xyz do
not follow sequentially

xzy, yxz, zyx (20)

have negative coefficients in the cross product.
In (14)-(20) we used Cartesian coordinates, but the results

remain unchanged if we sequentially replace (x, y, z) by the
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cylindrical coordinates (r, 0, z) or the spherical coordinates
(r, 0, 0).

EXAMPLE 1-3 CROSS PRODUCT

Find the unit vector i,, perpendicular in the right-hand
sense to the vectors shown in Figure 1-10.

A= -i.+i,+i,, B=i.-i,+iý

What is the angle between A and B?

SOLUTION

The cross product Ax B is perpendicular to both A and B

i, i, i,
AxB=det-1 1 1 =2(i,+i,)

1 -1 1

The unit vector in is in this direction but it must have a
magnitude of unity

AxB 1i A- = (ix+i,)

B= i,

Figure .1-10 The cross product between the two vectors in Example 1-3.
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The angle between A and B is found using (12) as

sin=AxBI 21sin 0
AB %/

=-22 0 = 70.5* or 109.50

The ambiguity in solutions can be resolved by using the dot
product of (11)

A'B -1
cos 0 --B~0 = 109.5 °

AB 3•

1-3 THE GRADIENT AND THE DEL OPERATOR

1-3-1 The Gradient

Often we are concerned with the properties of a scalar field
f(x, y, z) around a particular point. The chain rule of differ-
entiation then gives us the incremental change df in f for a
small change in position from (x, y, z) to (x + dx, y + dy, z +dz):

af af afdf = -dx + dy + dz (1)
ax Oy Oz

If the general differential distance vector dl is defined as

dl=dx i.+dy i,+dz i, (2)

(1) can be written as the dot product:

df = a-f i, + -- i, + - i)dl
ax ay az

= grad f - dl (3)

where the spatial derivative terms in brackets are defined as
the gradient of f:

grad f = Vf=V i + fi,+ fi (4)
Ox ay az

The symbol V with the gradient term is introduced as a
general vector operator, termed the del operator:

V = ix-+i,-7 +is (5)
ax ay Oz

By itself the del operator is meaningless, but when it premul-
tiplies a scalar function, the gradient operation is defined. We
will soon see that the dot and cross products between the del
operator and a vector also define useful operations.
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With these definitions, the change in f of (3) can be written
as

df = Vf - dl = IVf dl cos 0 (6)

where 0 is the angle between Vf and the position vector dl.
The direction that maximizes the change in the function f is
when dl is colinear with Vf(O = 0). The gradient thus has the
direction of maximum change in f. Motions in the direction
along lines of constant f have 0 = ir/2 and thus by definition
df = 0.

1-3-2 Curvilinear Coordinates

(a) Cylindrical

The gradient of a scalar function is defined for any coor-
dinate system as that vector function that when dotted with dl
gives df. In cylindrical coordinates the differential change in
f(r, , z) is

af af af
df= dr+ý d+-dz (7)

or 0o az

The differential distance vector is

dl= dri,+r do i6 +dz i. (8)

so that the gradient in cylindrical coordinates is

af laf afdf = Vf dl=>Vf=- +i+ i + (9)Or r 4d az

(b) Spherical
Similarly in spherical coordinates the distance vector is

dl=dri,+rdOi,+rsin Odo i6 (10)

with the differential change of f(r, 0, 46) as

af af afdf = -dr+-dO+- d4 = Vf -dl (11)
Or 0o d4

Using (10) in (11) gives the gradient in spherical coordinates
as

Af Iaf 1 af
AfIIi + Ia' + I iVf=-T+ +i4
Ua I U - iII£

r r 80 r s n 0 ad
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EXAMPLE 1-4 GRADIENT

Find the gradient of each of the following functions where
a and b are constants:

(a) f = ax2 y +byst

SOLUTION

-af. af*4f
Vf = -a i,+- i, + - i.

8x ay 8z

= 2axyi. + (ax + 3byz)i, + bysi,

(b) f= ar2 sin q +brz cos 24

SOLUTION

S+af . af
Vf = -a ir+ If i +•-f i,

ar r a4 az

= (2ar sin 4 + bz cos 20)i,

+ (ar cos 4 - 2bz sin 20)i, + br cos 20i,

(c) f =a +br sin 0 cos 4
r

SOLUTION

af. 1 af 1 af
ar r rO r sin 0 a8

= --+bsin 0 cos 4)i,+bcos 0 cos - sini

1-3-3 The Line Integral

In Section 1-2-4 we motivated the use of the dot product
through the definition of incremental work as depending
only on the component pf force F in the direction of an
object's differential displacement dl. If the object moves along
a path, the total work is obtained by adding up the incremen-
tal works along each small displacement on the path as in
Figure 1-11. If we break the path into N small displacements

I~
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dl 6

Li wl ai, N N

W dW, F - di,
n 1 n= 1

lim

din 0 W 
= 

F dl
N - fJ

L

Figure 1-11 The total work in moving a body over a path is approximately equal to
the sum of incremental works in moving the body each small incremental distance dl.
As the differential distances approach zero length, the summation becomes a line
integral and the result is exact.

dl, d12, . .., dN, the work performed is approximately

W -F *dl 1+F 2 'dl2 + F3 di+ • • +FN dlN
N

Y F, *dl, (13)
n=l

The result becomes exact in the limit as N becomes large with
each displacement dl, becoming infinitesimally small:

N

W= lim Y Fn.dl,= F dl (14)
N-o n=1
dl,,--O

In particular, let us integrate (3) over a path between the
two points a and b in Figure 1-12a:

Sdf = fi,-fl.= Vf dl (15)

Because df is an exact differential, its line integral depends
only on the end points and not on the shape of the contour
itself. Thus, all of the paths between a and b in Figure 1-12a
have the same line integral of Vf, no matter what the function
f may be. If the contour is a closed path so that a = b, as in
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2 b

4

2 31. Vf" di = f(b) - f(a)

a

1

Y

(a)

Figure 1-12 The component of the gradient of a function integrated along a line
contour depends only on the end points and not on the contour itself. (a) Each of the
contours have the same starting and ending points at a and b so that they all have the
same line integral of Vf. (b) When all the contours are closed with the same beginning
and ending point at a, the line integral of Vf is zero. (c) The line integral of the
gradient of the function in Example (1-5) from the origin to the point P is the same for
all paths.

Figure 1-12b, then (15) is zero:

Lvf dl=L.-f.=0 (16)

where we indicate that the path is closed by the small circle in
the integral sign f. The line integral of the gradient of a
function around a closed path is zero.

EXAMPLE 1-5 LINE INTEGRAL

For f=x2y, verify (15) for the paths shown in Figure 1-12c
between the origin and the point P at (xo, yo).

SOLUTION

The total change in f between 0 and P is

df f -flo = xoYo

From the line integral along path 1 we find

Yo 0o xo 2
Vf -dl= f dy+f= xoyo

Y_0 Ir X=0 ax

0
IJ

I
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Similarly, along path 2 we also obtain

Vf dl= o &o,+ o dy_ xoyo

while along path 3 we must relate x and y along the straight
line as

Yo Yoy = x dy = dx
xo xo

to yield

vf *dl= I(-ý dx +. dy) = o dx = xOyoJo \ax ay xJ.=o Xo

1-4 FLUX AND DIVERGENCE

If we measure the total mass of fluid entering the volume in
Figure 1-13 and find it to be less than the mass leaving, we
know that there must be an additional source of fluid within
the pipe. If the mass leaving is less than that entering, then

Flux in = Flux out

Flux in < Flux out

"----/ -, -- ----- •

Source

Flux in > Flux out

Sink

Figure 1-13 The net flux through a closed surface tells us whether there is a source or
sink within an enclosed volume.
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there is a sink (or drain) within the volume. In the absence of
sources or sinks, the mass of fluid leaving equals that entering
so the flow lines are continuous. Flow lines originate at a
source and terminate at a sink.

1-4.1 Flux

We are illustrating with a fluid analogy what is called the
flux 4 of a vector A through a closed surface:

D= f AdS (1)

The differential surface element dS is a vector that has
magnitude equal to an incremental area on the surface but
points in the direction of the outgoing unit normal n to the
surface S, as in Figure 1-14. Only the component of A
perpendicular to the surface contributes to the flux, as the
tangential component only results in flow of the vector A
along the surface and not through it. A positive contribution
to the flux occurs if A has a component in the direction of dS
out from the surface. If the normal component of A points
into the volume, we have a negative contribution to the flux.

If there is no source for A within the volume V enclosed by
the surface S, all the flux entering the volume equals that
leaving and the net flux is zero. A source of A within the
volume generates more flux leaving than entering so that the
flux is positive (D > 0) while a sink has more flux entering than
leaving so that D< 0.

dS n dS

Figure 1-14 The flux of a vector A through the closed surface S is given by the
surface integral of the component of A perpendicular to the surface S. The differential
vector surface area element dS is in the direction of the unit normal n.

i



Flux and Divergence 23

Thus we see that the sign and magnitude of the net flux
relates the quantity of a field through a surface to the sources
or sinks of the vector field within the enclosed volume.

1-4-2 Divergence

We can be more explicit about the relationship between the
rate of change of a vector field and its sources by applying (1)
to a volume of differential size, which for simplicity we take to
be rectangular in Figure 1-15. There are three pairs of plane
parallel surfaces perpendicular to the coordinate axes so that
(1) gives the flux as

()= f A.(x) dy dz - A. (x -Ax) dy dz

+ JA,(y + Ay) dx dz - A, (y) dx dz

+j A(z +Az) dxdy- A,(z)dxdy (2)

where the primed surfaces are differential distances behind
the corresponding unprimed surfaces. The minus signs arise
because the outgoing normals on the primed surfaces point in
the negative coordinate directions.

Because the surfaces are of differential size, the
components of A are approximately constant along each
surface so that the surface integrals in (2) become pure

dS, = Ax Ay

Figure 1-15 Infinitesimal rectangular volume used to define the divergence of a
vector.

Ay Aze
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multiplications of the component of A perpendicular to the
surface and the surface area. The flux then reduces to the form

( [Ax(x)-Ax(x -Ax)] + [A,(y +Ay)-A,(y)]
Ax Ay

+ Ax Ay Az (3)

We have written (3) in this form so that in the limit as the
volume becomes infinitesimally small, each of the bracketed
terms defines a partial derivative

aA 3A ýAMz
lim =( + + A V (4)

ax-o \ax ay az

where AV = Ax Ay Az is the volume enclosed by the surface S.
The coefficient of AV in (4) is a scalar and is called the

divergence of A. It can be recognized as the dot product
between the vector del operator of Section 1-3-1 and the
vector A:

aAx aA, aA,
div A = V - A = -+ + (5)

ax ay az

1-4-3 Curvilinear Coordinates

In cylindrical and spherical coordinates, the divergence
operation is not simply the dot product between a vector and
the del operator because the directions of the unit vectors are
a function of the coordinates. Thus, derivatives of the unit
vectors have nonzero contributions. It is easiest to use the
generalized definition of the divergence independent of the
coordinate system, obtained from (1)-(5) as

V A= lim ý'A.dS (6)
v-,o AV

(a) Cylindrical Coordinates
In cylindrical coordinates we use the small volume shown in

Figure 1-16a to evaluate the net flux as

D= sA dS =f (r+Ar)Ar,,, , dkdz - rArr,, ddz

+ I A4,. dr dz - A6, dr dz

r
+ i rA,,•+. drdb - I rA,,= dr db

.J3 J13
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dS, = (r + Ar)2 sin 0 dO do

/ dS = r dr dO

Figure 1-16 Infinitesimal volumes used to define the divergence of a vector in
(a) cylindrical and (b) spherical geometries.

Again, because the volume is small, we can treat it as approx-
imately rectangular with the components of A approximately
constant along each face. Then factoring out the volume
A V= rAr A4 Az in (7),

([(r + Ar)A ,.l +A, - rA r,]
r\ Ar

[A. -A.1] [A
+ A. .+ • .... ) rAr AO AzAAA A,

M M ý

r oyr u*
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lets each of the bracketed terms become a partial derivative as
the differential lengths approach zero and (8) becomes an
exact relation. The divergence is then

"A*dS la 1AA + A,
V A=lim =--(rAr)+-- + (9)ar&o AV r r r 84 8z

Az-.0

(b) Spherical Coordinates
Similar operations on the spherical volume element AV=

r 9 sin 0 Ar AO A4 in Figure 1-16b defines the net flux through
the surfaces:

4= A. dS

[( r)2 A,,+A, - r2 AA,j]

([(r + r2 Ar

+ [AA.A, sin (0 +AO)-A e, sin 8]
r sin 0 AO

+ [AA+. - A ] r2 sin 0 Ar AO A (10)r sin 0 A4

The divergence in spherical coordinates is then

sA *dS

V. A= lim
a-.o AV

1 a 1 8 BA, (Ir (r'A,)+ (As sin 0)+ A (11)
r ar r sin 0 80 r sin 0 a•

1-4-4 The Divergence Theorem

If we now take many adjoining incremental volumes of any
shape, we form a macroscopic volume V with enclosing sur-
face S as shown in Figure 1-17a. However, each interior
common surface between incremental volumes has the flux
leaving one volume (positive flux contribution) just entering
the adjacent volume (negative flux contribution) as in Figure
1-17b. The net contribution to the flux for the surface integral
of (1) is zero for all interior surfaces. Nonzero contributions
to the flux are obtained only for those surfaces which bound
the outer surface S of V. Although the surface contributions
to the flux using (1) cancel for all interior volumes, the flux
obtained from (4) in terms of the divergence operation for



Flux and Divergence 27

n1 -n 2

Figure 1-17 Nonzero contributions to the flux of a vector are only obtained across
those surfaces that bound the outside of a volume. (a) Within the volume the flux
leaving one incremental volume just enters the adjacent volume where (b) the out-
going normals to the common surface separating the volumes are in opposite direc-
tions.

each incremental volume add. By adding all contributions
from each differential volume, we obtain the divergence
theorem:

QO=cIAdS= lim (V*A)AV.=f VAdV (12)
A V.-.O

where the volume V may be of macroscopic size and is
enclosed by the outer surface S. This powerful theorem con-
verts a surface integral into an equivalent volume integral and
will be used many times in our development of electromag-
netic field theory.

EXAMPLE 1-6 THE DIVERGENCE THEOREM

Verify the divergence theorem for the vector

A = xi. +yi, +zi, = ri,

by evaluating both sides of (12) for the rectangular volume
shown in Figure 1-18.

SOLUTION

The volume integral is easier to evaluate as the divergence
of A is a constant

V A = A.+ aA, A=
ax ay az
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Figure 1-18 The divergence theorem is verified in Example 1-6 for the radial vector
through a rectangular volume.

(In spherical coordinates V A= (1/r )(8ar)(/r)(r)=3) so that
the volume integral in (12) is

v V A dV= 3abc

The flux passes through the six plane surfaces shown:

q=fA-dS= jj(a dydz- AJO) dydz
a 0

+A ,(b)dx dz- A, dx dz

/O

c 0

which verifies the divergence theorem.

1.5 THE CURL AND STOKES' THEOREM

1-5-1 Curl

We have used the example of work a few times previously
to motivate particular vector and integral relations. Let us do
so once again by considering the line integral of a vector
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around a closed path called the circulation:

C = A dl (1)

where if C is the work, A would be the force. We evaluate (1)
for the infinitesimal rectangular contour in Figure 1-19a:

C= A,(y)dx+ A,(x+Ax)dy+ Ax(y+Ay)dx
I 3

+ A,(x) dy (2)

The components of A are approximately constant over each
differential sized contour leg so that (2) is approximated as

S([A(y)- (y +Ay)] + [A,(x + Ax)- A,(x)] (3)

x. y)

(a)

n

Figure 1-19 (a) Infinitesimal rectangular contour used to define the circulation.
(b)The right-hand rule determines the positive direction perpendicular to a contour.

j x y
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where terms are factored so that in the limit as Ax and Ay
become infinitesimally small, (3) becomes exact and the
bracketed terms define partial derivatives:

lim C= aA ) AS (4)
ax-o ax ay

AS.-AxAy

The contour in Figure 1-19a could just have as easily been
in the xz or yz planes where (4) would equivalently become

C = \(ý z"'AS. (yz plane)
ay a.,

C=\ AS, (xz plane) (5)

by simple positive permutations of x, y, and z.
The partial derivatives in (4) and (5) are just components of

the cross product between the vector del operator of Section
1-3-1 and the vector A. This operation is called the curl of A
and it is also a vector:

i, i, i,

curl A= VxA= det
ax ay az
A. A, A,

a. _A,A *(a aAM\
ay az ) az ax
tA• aAz•x
+aA, aA) (6)

The cyclical permutation of (x, y, z) allows easy recall of (6) as
described in Section 1-2-5.

In terms of the curl operation, the circulation for any
differential sized contour can be compactly written as

C= (VxA)- dS (7)

where dS = n dS is the area element in the direction of the
normal vector n perpendicular to the plane of the contour in
the sense given by the right-hand rule in traversing the
contour, illustrated in Figure 1-19b. Curling the fingers on
the right hand in the direction of traversal around the
contour puts the thumb in the direction of the normal n.

For a physical interpretation of the curl it is convenient to
continue to use a fluid velocity field as a model although the
general results and theorems are valid for any vector field. If
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No circulation Nonzero circulation

Figure 1-20 A fluid with a velocity field that has a curl tends to turn the paddle wheel.
The curl component found is in the same direction as the thumb when the fingers of
the right hand are curled in the direction of rotation.

a small paddle wheel is imagined to be placed without dis-
turbance in a fluid flow, the velocity field is said to have
circulation, that is, a nonzero curl, if the paddle wheel rotates
as illustrated in Figure 1-20. The curl component found is in
the direction of the axis of the paddle wheel.

1-5-2 The Curl for Curvilinear Coordinates

A coordinate independent definition of the curl is obtained
using (7) in (1) as

fA~dl
(V x A), = lim (8)

dS.-.• dS.

where the subscript n indicates the component of the curl
perpendicular to the contour. The derivation of the curl
operation (8) in cylindrical and spherical. coordinates is
straightforward but lengthy.

(a) Cylindrical Coordinates
To express each of the components of the curl in cylindrical

coordinates, we use the three orthogonal contours in Figure
1-21. We evaluate the line integral around contour a:

A dl= A,(4) dz + A,(z -&Az) r d4

+ A( +A)r dz + A(z) r d4

([A,( +A4)-A,(,)] _[A#(z)-A#(z -Az)] r Az
rA jr AZA

M M ý

The Curl and Stokes' Theorem
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(r-Ar,

(rO + AO, -AZ)

(V x A),

Figure 1-21 Incremental contours along cylindrical surface area elements used to
calculate each component of the curl of a vector in cylindrical coordinates.

to find the radial component of the curl as

l aA aAA
(V x A)r = lim

a,-o r ,& Az r a4 az
Az l around contour b:

We evaluate the line integral around contour b:

(10)

r z -As

A* dl = Ar A,(z)dr+ zA
+ -Ar -,r) d z

+j Az(r-Ar) dz

r-Ar

A,(r)dz + j Ar(z - Az)dr

[A,(z)-A,(z -Az)] [A(r)-A(r- Ar)] Ar
Az Ar (11)

I
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to find the 4 component of the curl,

A dl OAr aa

(V x A) = li = (12)
Ar-.o Ar Az az ar
Az 0

The z component of the curl is found using contour c:

Sr "+A4rrr--d r

A -dl= Arlo dr+ rAld4+ A,,,,. dr

+ A¢(r - r)A,-. d b

[rAp,-(r-Ar)A4,_-,] [Arl4$]-Arlb]rAr
rAr rA ]

(13)

to yield

A - dl
______1 8 aA\

(Vx A), = lim =C - (rA) - ) (14)
Ar-O rAr AO rr 84

The curl of a vector in cylindrical coordinates is thus

IM(A, aA aA aA
VxA= )ir+(A= A.

r a4 az az r

+ (rA) a)i, (15)
r ar 84

(b) Spherical Coordinates
Similar operations on the three incremental contours for

the spherical element in Figure 1-22 give the curl in spherical
coordinates. We use contour a for the radial component of
the curl:

A dl=J+A A4,r sin 0 d -+ rAI,÷., dO

+i r sin ( -AO)A 4,. d + rA, dO
.+A -AO

[Ad. sin 0- A4._.. sin (0- AO)]

rsin 0 AO

-[A,.,-A_+•r2 sin 0A A4 (16)
r sin 0 AO
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r sin (0 - AO)

(r,0- AO,

Figure 1-22 Incremental contours along spherical surface area elements used to
calculate each component of the curl of a vector in spherical coordinates.

to obtain

I A dl(Ain
(V x A), = lim I r(A. sin )a:o r sin 0 AO AO r sin 0 O

(17)

The 0 component is found using contour b:

r
- A

r 4+A
A dl= A,0.dr+ J (r - Ar)A%,_, sin 0 d

+ A.... dr + rA$, sin 0 d4
-A +A4

\ r sin 0 Ab

[rA4-(r-Ar)A_.]~ r sin 0 Ar A4
r Ar

I

!
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as

1 1 aA, a
(Vx A)@ = limr (rA o)

a,-o r sin 0 Ar A r sin 08 a r

(19)

The 4 component of the curl is found using contour c:

fA dl= e-A, rA +dO+ r A,,,dr

-Ao r
+ (r -Ar)AoA dO + A,,,_ ,dr

([rA,, - (r-Ar)Ae.al ] [A,1 -Ar,_-,]) r Ar AO
\ r Ar r AO

(20)
as

Ad 1 a BA
(Vx A), = lim -(rAe) - (21)Ar-.o r Ar AO r aOr 801)

The curl of a vector in spherical coordinates is thus given
from (17), (19), and (21) as

1 aA
VxA= I (A.sin 0)- i,

+- -r(rA)- i (22)

1-5-3 Stokes' Theorem

We now piece together many incremental line contours of
the type used in Figures 1-19-1-21 to form a macroscopic
surface S like those shown in Figure 1-23. Then each small
contour generates a contribution to the circulation

dC = (V x A) *dS (23)

so that the total circulation is obtained by the sum of all the
small surface elements

C
C= I(VxA)'dS

J's
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Figure 1-23 Many incremental line contours distributed over any surface, have
nonzero contribution to the circulation only along those parts of the surface on the
boundary contour L.

Each of the terms of (23) are equivalent to the line integral
around each small contour. However, all interior contours
share common sides with adjacent contours but which are
twice traversed in opposite directions yielding no net line
integral contribution, as illustrated in Figure 1-23. Only those
contours with a side on the open boundary L have a nonzero
contribution. The total result of adding the contributions for
all the contours is Stokes' theorem, which converts the line
integral over the bounding contour L of the outer edge to a
surface integral over any area S bounded by the contour

A *dl= J(Vx A)* dS (25)

Note that there are an infinite number of surfaces that are
bounded by the same contour L. Stokes' theorem of (25) is
satisfied for all these surfaces.

EXAMPLE 1-7 STOKES' THEOREM

Verify Stokes' theorem of (25) for the circular bounding
contour in the xy plane shown in Figure 1-24 with a vector
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zi -1 ri - i

Figure 1-24 Stokes' theorem for the vector given in Example 1-7 can be applied to
any surface that is bounded by the same contour L.

field

A = -yi, +xi, -zi, = ri6 -zi,

Check the result for the (a) flat circular surface in the xy
plane, (b) for the hemispherical surface bounded by the
contour, and (c) for the cylindrical surface bounded by the
contour.

SOLUTION

For the contour shown

dl= R do i"

so that

A * dl= R 2 d4

where on L, r = R. Then the circulation is
2sr

C= A dl= o R2do=2n-rR2

The z component of A had no contribution because dl was
entirely in the xy plane.

The curl of A is

VxA=i aA, =y2i,
ax ay
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(a) For the circular area in the plane of the contour, we
have that

S(Vx A) * dS = 2 dS. = 2R

which agrees with the line integral result.
(b) For the hemispherical surface

v/2 2w

(Vx A) dS = 0 2i, iR sin 0 dO d

From Table 1-2 we use the dot product relation

i= • i, = cos 0

which again gives the circulation as

/2 COs 20 w/2
C= 2 '2 sin 20 dO dO = -2wR ° 20 /=2nR2

=1=1=o -o2 0e-o

(c) Similarly, for th'e cylindrical surface, we only obtain
nonzero contributions to the surface integral at the upper
circular area that is perpendicular to Vx A. The integral is
then the same as part (a) as V X A is independent of z.

1-5-4 Some Useful Vector Identities

The curl, divergence, and gradient operations have some
simple but useful properties that are used throughout the
text.

(a) The Curl of the Gradient is Zero [V x (Vf)= 0]
We integrate the normal component of the vector V x (Vf)

over a surface and use Stokes' theorem

JVx (Vf).dS= Vf dl= (26)

where the zero result is obtained from Section 1-3-3, that the
line integral of the gradient of a function around a closed
path is zero. Since the equality is true for any surface, the
vector coefficient of dS in (26) must be zero

vx(Vf)=O

The identity is also easily proved by direct computation
using the determinantal relation in Section 1-5-1 defining the

I
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curl operation:

i. i, i,

V x (Vf)= det a a
ax ay az

af af af
ax ay az

.=(•-•L f. +,( af a/2f) +i(.I2- a2f).0
ayaz azay azax axaz axay ayax)

(28)

Each bracketed term in (28) is zero because the order of
differentiation does not matter.

(b) The Divergence of the Curl of a Vector is Zero
[V* (V x A)= 0]

One might be tempted to apply the divergence theorem to
the surface integral in Stokes' theorem of (25). However, the
divergence theorem requires a closed surface while Stokes'
theorem is true in general for an open surface. Stokes'
theorem for a closed surface requires the contour L to shrink
to zero giving a zero result for the line integral. The diver-
gence theorem applied to the closed surface with vector V X A
is then

VxA dS= •IV> (VxA) dV= O V - (VxA) = 0
(29)

which proves the identity because the volume is arbitrary.
More directly we can perform the required differentiations

V. (VxA)

a,aA, aA,\ a aA aA) a aA, aA\
-ax\y az / y az ax I az\ ax ay /
xa2A, a2 A , a2A, 2 A a2A, a2 Ax (
-\xay avax \ayaz azay) \azax ax(z

where again the order of differentiation does not matter.

PROBLEMS

Section 1-1
1. Find the area of a circle in the xy plane centered at the
origin using:

(a) rectangular coordinates x2 +y = a2 (Hint:

J -x dx = A[x •a2-x a2 sin-'(x/a)l)
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(b) cylindrical coordinates r= a.
Which coordinate system is easier to use?

2. Find the volume of a sphere of radius R centered at the
origin using:

(a) rectangular coordinates x2 +y 2 +z2 = R2 (Hint:

JI I x dx==[x •-ý + a sin - (x/a)])

(b) cylindrical coordinates r + z 2= R2;
(c) spherical coordinates r = R.

Which coordinate system is easiest?

Section 1-2
3. Given the three vectors

A = 3ix + 2i, - i.

B = 3i, - 4i, - 5i,

C= i.-i,+i,

find the following:

(a) A+EB, B C, A±C
(b) A-B, BC, AC
(c) AxB, BxC, AxC
(d) (A x B) - C, A - (B x C) [Are they equal?]
(e) Ax (B x C), B(A C)- C(A - B) [Are they equal?]
(f) What is the angle between A and C and between B and

AxC?

4. Given the sum and difference between two vectors,

A+B= -i. +5i, -4i,

A- B = 3i. - i, - 2i,

find the individual vectors A and B.
5. (a) Given two vectors A and B, show that the component
of B parallel to A is

B'A
Bll = A

A*A

(Hint: Bi = aA. What is a?)
(b) If the vectors are

A = i. - 2i, + i"

B 3i, + 5i, - 5i,

what are the components of B parallel and perpendicular to
A?
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6. What are the angles between each of the following vectors:

A = 4i. - 2i, + 2i,

B= -6ix + 3i, - 3i,

C= i. + 3,+i,

7. Given the two vectors

A=3i,+4i, and B=7ix-24i,

(a) What is their dot product?
(b) What is their cross product?
(c) What is the angle 0 between the two vectors?

8. Given the vector

A = Ai, +A,i, +Aii

the directional cogines are defined as the cosines of the angles
between A and each of the Cartesian coordinate axes. Find
each of these directional cosines and show that

Cos 2 a + Cos2 / + Cos2 y = 1

Y

9. A triangle is formed by the three vectors A, B, and C=
B-A.

(a) Find the length of the vector C in terms of the lengths
of A and B and the enclosed angle 0c. The result is known as
the law of cosines. (Hint: C C = (B - A) (B - A).)

(b) For the same triangle, prove the law of sines:

sin 0. sin Ob sin 0,

A B C

(Hint: BxA=(C+A) A.)

M M ý ý ý
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10. (a) Prove that the dot and cross can be interchanged in
the scalar triple product

(AxB) .C=(BxC) A= (CxA) B

(b) Show that this product gives the volume of a parallele-
piped whose base is defined by the vectors A and B and whose
height is given by C.

(c) If

A=i.+2i,, B=-i.+2i,, C=i,+i.

verify the identities of (a) and find the volume of the paral-
lelepiped formed by the vectors.

(d) Prove the vector triple product identity

A x (B x C) = B(A- C)- C(A B)

I(A x B) - CI

IA x BI

A Volume = (A x B) C
= (B x C) A
= (C x A) - B

11. (a) Write the vectors A and B using Cartesian coordinates
in terms of their angles 0 and 4 from the x axis.

(b) Using the results of (a) derive the trigonometric
expansions

sin(O +) = sin 0 cos d +sin 0 cos 0

cos (0 + 4) =cos 0 cos 4 - sin 0 sin 4
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x

Section 1-3
12. Find the gradient of each of the following functions
where a and b are constants:

(a) f = axz +bx-y
(b) f= (a/r)sin 4 +brz 2 cos 30
(c) f = ar cos 0 + (b/r 2 ) sin 0

13. Evaluate the line integral of the gradient of the function

f= r sin 0

over each of the contours shown.

x

Section 1-4
14. Find the divergence of the following vectors:

(a) A= xi, + i,+zi, = ri,
(b) A= (xy 2)[i. +i, + i]
(c) A= rcos Oi,+[(z/r) sin 0)]i,
(d) A= r 2 sin 0 cos 4 [i, +ie +ii

15. Using the divergence theorem prove the following
integral identities:

(a) JVfdV= fdS
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(Hint: Let A = if, where i is any constant unit vector.)

(b) tVxFdV= -FxdS

(Hint: LetA=ixF.)

(c) Using the results of (a) show that the normal vector
integrated over a surface is zero:

dS= 0

(d) Verify (c) for the case of a sphere of radius R.
(Hint: i, = sin 0 cos Oi, + sin 0 sin Oi, +cos Oi,.

16. Using the divergence theorem prove Green's theorem

[f Vg-gVf] dS= J[fV2g- gV2f] dV

(Hint: V (fVg)= fV 2g+ Vf Vg.)

17. (a) Find the area element dS (magnitude and diirection)
on each of the four surfaces of the pyramidal figure shown.

(b) Find the flux of the vector

A = ri,= xiA +yi, +zi,

through the surface of (a).
(c) Verify the divergence theorem by also evaluating the

flux as

4 =IV - AdV
2J

-4

b

Section 1-5
18. Find the curl of the following vectors:

(a) A= x2yi +2 Yi, +yi

A
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z sin 4
(b) A = r cos i, +z sin

r
cos 0 sin .

(c) A= r2 sin 0 cos 4i, + 2 r 6

19. Using Stokes' theorem prove that

fdl= - Vf xdS

(Hint: Let A = if, where i is any constant unit vector.)

20. Verify Stokes' theorem for the rectangular bounding
contour in the xy plane with a vector field

A = (x + a)(y + b)(z + c)i.

Check the result for (a) a flat rectangular surface in the xy
plane, and (b) for the rectangular cylinder.

21. Show that the order of differentiation for the mixed
second derivative

X kay ay kx

does not matter for the function

x 2 I ny
y

22. Some of the unit vectors in cylindrical and spherical
coordinates change direction in space and thus, unlike
Cartesian unit vectors, are not constant vectors. This means
that spatial derivatives of these unit vectors are generally
nonzero. Find the divergence and curl of all the unit vectors.

M ýýý
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23. A general right-handed orthogonal curvilinear coordinate
system is described by variables (u, v, w), where

i. x iý = i,

i~dv

= hah,hdudvdw

fAhhdudw

a

Since the incremental coordinate quantities du, dv, and dw do
not necessarily have units of length, the differential length
elements must be multiplied by coefficients that generally are
a function of u, v, and w:

dL,= h.du, dL, = h.dv, dL, = h,dw

(a) What are the h coefficients for the Cartesian, cylindri-
cal, and spherical coordinate systems?

(b) What is the gradient of any function f(u, v, w)?
(c) What is the area of each surface and the volume of a

differential size volume element in the (u, v, w) space?
(d) What are the curl and divergence of the vector

A =Ai, +Avi, + Ai,?

(e) What is the scalar Laplacian V2f = V. (Vf)?
(f) Check your results of (b)-(e) for the three basic coor-

dinate systems.

24. Prove the following vector identities:

(a) V(fg) = fVg + gVf
(b) V(A-B)=(A- V)B+(B V)A+Ax(VxB)+Bx(VxA)
(c) V-(fA)=fV.A+(A*V)f
(d) V . (AxB)=B - (VxA)-A . (VxB)
(e) Vx(AxB)=A(V B)-B(V A)+(B.V)A-(A V)B
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(f) Vx(fA)=VfxA+fVxA
(g) (VxA)xA=(A-V)A- V(A.A)
(h) Vx(VxA)=V(V-A)-V 2A

25. Two points have Cartesian coordinates (1, 2, - 1) and (2,
-3, 1).

(a) What is the distance between these two points?
(b) What is the unit vector along the line joining the two

points?
(c) Find a unit vector in the xy plane perpendicular to the

unit vector found in (b).

Miscellaneous
26. A series RLC circuit offers a good review in solving linear,
constant coefficient ordinary differential equations. A step
voltage Vo is applied to the initially unexcited circuit at t = 0.

i(t) R L

t=O

(a) Write a single differential equation for the current.
(b) Guess an exponential solution of the form

i(t)= fe5'

and find the natural frequencies of the circuit.
(c) What are the initial conditions? What are the steady-

state voltages across each element?
(d) Write and sketch the solution for i(t) when

(R2 1)(R2 1 , (R2

2L LC' H- LC' 2L LC

(e) What is the voltage across each element?
(f) After the circuit has reached the steady state, the

terminal voltage is instantly short circuited. What is the short
circuit current?

27. Many times in this text we consider systems composed of
repetitive sequences of a basic building block. Such discrete
element systems are described by difference equations.
Consider a distributed series inductance-shunt capacitance
system excited by a sinusoidal frequency w so that the voltage
and current in the nth loop vary as

in = Re (I. e'"'); v. = Re( V. e/")
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(a) By writing Kirchoff's voltage law for the nth loop, show
that the current obeys the difference equation

2

I.+I- 2- 2I. +I. - = 0

What is w~?
(b) Just as exponential solutions satisfy linear constant

coefficient differential equations, power-law solutions satisfy
linear constant coefficient difference equations

I. = fA"

What values of A satisfy (a)?
(c) The general solution to (a) is a linear combination of all

the possible solutions. The circuit ladder that has N nodes is
excited in the zeroth loop by a current source

io = Re (lo e' ' )

Find the general expression for current in and voltage v. for
any loop when the last loop N is either open (IN = 0) or short
circuited (VN = 0). (Hint: a +a- = 1I(a -a-- -1)

(d) What are the natural frequencies of the system when
the last loop is either open or short circuited?
(Hint: (1) / (2 N) = e2N, r = 1,2,3,... 2N.)
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The ancient Greeks observed that when the fossil resin
amber was rubbed, small light-weight objects were attracted.
Yet, upon contact with the amber, they were then repelled.
No further significant advances in the understanding of this
mysterious phenomenon were made until the eighteenth
century when more quantitative electrification experiments
showed that these effects were due to electric charges, the
source of all effects we will study in this text.

2-1 ELECTRIC CHARGE

2-1-1 Charging by Contact

We now know that all matter is held together by the attrac-
tive force between equal numbers of negatively charged elec-
trons and positively charged protons. The early researchers
in the 1700s discovered the existence of these two species of
charges by performing experiments like those in Figures 2-1
to 2-4. When a glass rod is rubbed by a dry cloth, as in Figure
2-1, some of the electrons in the glass are rubbed off onto the
cloth. The cloth then becomes negatively charged because it
now has more electrons than protons. The glass rod becomes

(b)

Figure 2-1 A glass rod rubbed with a dry cloth loses some of its electrons to the cloth.
The glass rod then has a net positive charge while the cloth has acquired an equal
amount of negative charge. The total charge in the system remains zero.

(b)
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positively charged as it has lost electrons leaving behind a
surplus number of protons. If the positively charged glass rod
is brought near a metal ball that is free to move as in Figure
2-2a, the electrons in the ball near the rod are attracted to the
surface leaving uncovered positive charge on the other side of
the ball. This is called electrostatic induction. There is then an
attractive force of the ball to the rod. Upon contact with the
rod, the negative charges are neutralized by some of the
positive charges on the rod, the whole combination still
retaining a net positive charge as in Figure 2-2b. This transfer
of charge is called conduction. It is then found that the now
positively charged ball is repelled from the similarly charged
rod. The metal ball is said to be conducting as charges are
easily induced and conducted. It is important that the
supporting string not be conducting, that is, insulating,
otherwise charge would also distribute itself over the whole
structure and not just on the ball.

If two such positively charged balls are brought near each
other, they will also repel as in Figure 2-3a. Similarly, these
balls could be negatively charged if brought into contact with
the negatively charged cloth. Then it is also found that two
negatively charged balls repel each other. On the other hand,
if one ball is charged positively while the other is charged
negatively, they will attract. These circumstances are sum-
marized by the simple rules:

Opposite Charges Attract. Like Charges Repel.

G

(a) (b) (c)

Figure 2-2 (al A charged rod near a neutral ball will induce an opposite charge on
the near surface. Since the ball is initially neutral, an equal amount of positive charge
remains on the far surface. Because the negative charge is closer to the rod, it feels a
stronger attractive force than the repelling force due to the like charges. (b) Upon
contact with the rod the negative charge is neutralized leaving the ball positively
charged. (c) The like charges then repel causing the ball to deflect away.
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-4-

Figure 2-3 (a) Like charged bodies repel while (b) oppositely charged bodies attract.

In Figure 2-2a, the positively charged rod attracts the
negative induced charge but repels the uncovered positive
charge on the far end of the ball. The net force is attractive
because the positive charge on the ball is farther away from
the glass rod so that the repulsive force is less than the
attractive force.

We often experience nuisance frictional electrification
when we walk across a carpet or pull clothes out of a dryer.
When we comb our hair with a plastic comb, our hair often
becomes charged. When the comb is removed our hair still
stands up, as like charged hairs repel one another. Often
these effects result in sparks because the presence of large
amounts of charge actually pulls electrons from air molecules.

2-1-2 Electrostatic Induction

Even without direct contact net charge can also be placed
on a body by electrostatic induction. In Figure 2-4a we see
two initially neutral suspended balls in contact acquiring
opposite charges on each end because of the presence of a
charged rod. If the balls are now separated, each half retains
its net charge even if the inducing rod is removed. The net
charge on the two balls is zero, but we have been able to
isolate net positive and negative charges on each ball.

(b)
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+z

+4

(hi

Figure 2-4 A net charge can be placed on a body without contact by electrostatic
induction. (a) When a charged body is brought near a neutral body, the near side
acquires the opposite charge. Being neutral, the far side takes on an equal but opposite
charge. (b) If the initially neutral body is separated, each half retains its charge.

2-1-3 Faraday's "Ice-Pail" Experiment

These experiments showed that when a charged conductor
contacted another conductor, whether charged or not, the
total charge on both bodies was shared. The presence of
charge was first qualitatively measured by an electroscope
that consisted of two attached metal foil leaves. When
charged, the mutual repulsion caused the leaves to diverge.

In 1843 Michael Faraday used an electroscope to perform
the simple but illuminating "ice-pail" experiment illustrated
in Figure 2-5. When a charged body is inside a closed isolated
conductor, an equal amount of charge appears on the outside
of the conductor as evidenced by the divergence of the elec-
troscope leaves. This is true whether or not the charged body
has contacted the inside walls of the surrounding conductor.
If it has not, opposite charges are induced on the inside wall
leaving unbalanced charge on the outside. If the charged
body is removed, the charge on the inside and outside of the
conductor drops to zero. However, if the charged body does
contact an inside wall, as in Figure 2-5c, all the charge on the
inside wall and ball is neutralized leaving the outside charged.
Removing the initially charged body as in Figure 2-5d will
find it uncharged, while the ice-pail now holds the original
charge.

If the process shown in Figure 2-5 is repeated, the charge
on the pail can be built up indefinitely. This is the principle of
electrostatic generators where large amounts of charge are
stored by continuous deposition of small amounts of charge.

~~ ~ "

In)
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(b) (c)

Figure 2-5 Faraday first demonstrated the principles of charge conservation by
attaching an electroscope to an initially uncharged metal ice pail. (a) When all charges
are far away from the pail, there is no charge on the pail nor on the flexible gold leaves
of the electroscope attached to the outside of the can, which thus hang limply. (b) As a
charged ball comes within the pail, opposite charges are induced on the inner surface.
Since the pail and electroscope were originally neutral, unbalanced charge appears on
the outside of which some is on the electroscope leaves. The leaves being like charged
repel each other and thus diverge. (c) Once the charged ball is within a closed
conducting body, the charge on the outside of the pail is independent of the position
of the charged ball. If the charged ball contacts the inner surface of the pail, the inner
charges neutralize each other. The outside charges remain unchanged. (d) As the now
uncharged ball leaves the pail, the distributed charge on the outside of the pail and
electroscope remains unchanged.

This large accumulation of charge gives rise to a large force
on any other nearby charge, which is why electrostatic
generators have been used to accelerate charged particles to
very high speeds in atomic studies.

2-2 THE COULOMB FORCE LAW BETWEEN STATIONARY
CHARGES

2-2-1 Coulomb's Law

It remained for Charles Coulomb in 1785 to express these
experimental observations in a quantitative form. He used a
very sensitive torsional balance to measure the force between

I
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two stationary charged balls as a function of their distance
apart. He discovered that the force between two small charges
q, and q2 (idealized as point charges of zero size) is pro-
portional to their magnitudes and inversely proportional to
the square of the distance r 12 between them, as illustrated in
Figure 2-6. The force acts along the line joining the charges
in the same or opposite direction of the unit vector i12 and is
attractive if the charges are of opposite sign and repulsive if
like charged. The force F2 on charge q2 due to charge qi is
equal in magnitude but opposite in direction to the force F,
on q1, the net force on the pair of charges being zero.

1 qlq2 2

F=-FI= int[2 2nt[kg-m-s - ()
4rsrEo r1 2

2-2-2 Units

The value of the proportionality constant 1/4rreo depends
on the system of units used. Throughout this book we use SI
units (Systdme International d'Unitis) for which the base
units are taken from the rationalized MKSA system of units
where distances are measured in meters (m), mass in kilo-
grams (kg), time in seconds (s), and electric current in
amperes (A). The unit of charge is a coulomb where 1
coulomb= 1 ampere-second. The adjective "rationalized" is
used because the factor of 47r is arbitrarily introduced into
the proportionality factor in Coulomb's law of (1). It is done
this way so as to cancel a 41r that will arise from other more
often used laws we will introduce shortly. Other derived units
are formed by combining base units.

47reo r,2

r12

F, = -F 2

Figure 2-6 The Coulomb force between two point charges is proportional to the
magnitude of the charges and inversely proportional to the square of the distance
between them. The force on each charge is equal in magnitude but opposite in
direction. The force vectors are drawn as if q, and q2, are of the same sign so that the
charges repel. If q, and q2 are of opposite sign, both force vectors would point in the
opposite directions, as opposite charges attract.
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The parameter Eo is called the permittivity of free space
and has a value

e0 = (4rT X 10-7C2)- 1

10 - 9

- 9= 8.8542 x 10 - 1 2 farad/m [A 2 -s 4 - kg - _ m -
3] (2)3 6 7r

where c is the speed of light in vacuum (c -3 x 10" m/sec).
This relationship between the speed of light and a physical

constant was an important result of the early electromagnetic
theory in the late nineteenth century, and showed that light is
an electromagnetic wave; see the discussion in Chapter 7.

To obtain a feel of how large the force in (1) is, we compare
it with the gravitational force that is also an inverse square law
with distance. The smallest unit of charge known is that of an
electron with charge e and mass me

e - 1.60 x 10 - 19 Coul, m, _9.11 x 10 - • kg

Then, the ratio of electric to gravitational force magnitudes
for two electrons is independent of their separation:

F, eI/(4rEor2 ) e2 142
F= - m2 2 

-2 = -4.16x 10 (3)
F, Gm,/r m, 4ireoG

where G=6.67 10-11 [m 3 -s-2-kg-'] is the gravitational
constant. This ratio is so huge that it exemplifies why elec-
trical forces often dominate physical phenomena. The minus
sign is used in (3) because the gravitational force between two
masses is always attractive while for two like charges the
electrical force is repulsive.

2-2-3 The Electric Field

If the charge q, exists alone, it feels no force. If we now
bring charge q2 within the vicinity of qj, then q2 feels a force
that varies in magnitude and direction as it is moved about in
space and is thus a way of mapping out the vector force field
due to q,. A charge other than q2 would feel a different force
from q2 proportional to its own magnitude and sign. It
becomes convenient to work with the quantity of force per
unit charge that is called the electric field, because this quan-
tity is independent of the particular value of charge used in
mapping the force field. Considering q2 as the test charge, the
electric field due to q, at the position of q2 is defined as

F o •7
E 2 = lim , ' i 2 volts/m [kg-m-s - A ]

q 2-O q2 4qeor,2
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In the definition of (4) the charge q, must remain stationary.
This requires that the test charge q2 be negligibly small so that
its force on qi does not cause q, to move. In the presence of
nearby materials, the test charge q2 could also induce or cause
redistribution of the charges in the material. To avoid these
effects in our definition of the electric field, we make the test
charge infinitely small so its effects on nearby materials and
charges are also negligibly small. Then (4) will also be a valid
definition of the electric field when we consider the effects of
materials. To correctly map the electric field, the test charge
must not alter the charge distribution from what it is in the
absence of the test charge.

2-2-4 Superposition

If our system only consists of two charges, Coulomb's law
(1) completely describes their interaction and the definition of
an electric field is unnecessary. The electric field concept is
only useful when there are large numbers of charge present
as each charge exerts a force on all the others. Since the forces
on a particular charge are linear, we can use superposition,
whereby if a charge q, alone sets up an electric field El, and
another charge q2 alone gives rise to an electric field E2 , then
the resultant electric field with both charges present is the
vector sum E 1 +E 2. This means that if a test charge q, is
placed at point P in Figure 2-7, in the vicinity of N charges it
will feel a force

F, = qpEp (5)

E
2

....... . . .

. .. ..... ... ....
. . . . .. .. .. . .

... .... ... .... ..... .:·:·%

q . ......::::: : : :::::::::::::::::::::::::::::::::::::::::::"-
:::::::::::::::::::::............:::::: ::::
.. ............ ... * .. . . ...

.. q..............E 
2 . +E

":...................... ..... .....,....." ..:.ql,41q2, q3.. . .... .. qN::::::::::: Ep El + E2 + + E+E

Figure 2-7 The electric field due to a collection of point charges is equal to the vector
sum of electric fields from each charge alone.
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where Ep is the vector sum of the electric fields due to all the
N-point charges,

q ql. 92. 3. N.
Ep= -2- 1+-_-12P+ P 2SP + 2' + 2ENP

E 4ieo rlp r2 p rP NP

= ' Eqi,1- (6)

Note that Ep has no contribution due to q, since a charge
cannot exert a force upon itself.

EXAMPLE 2-1 TWO-POINT CHARGES

Two-point charges are a distance a apart along the z axis as
shown in Figure 2-8. Find the electric field at any point in the
z = 0 plane when the charges are:

(a) both equal to q
(b) of opposite polarity but equal magnitude + q. This

configuration is called an electric dipole.

SOLUTION

(a) In the z = 0 plane, each point charge alone gives rise to
field components in the i, and i, directions. When both
charges are equal, the superposition of field components due
to both charges cancel in the z direction but add radially:

q 2r
E(z = 0) = 2 /2

47Eo0 [r +(a/2) 2]3 /2

As a check, note that far away from the point charges (r >> a)
the field approaches that of a point charge of value 2q:

2qlim E,(z = 0) =
r.a 4rEor2

(b) When the charges have opposite polarity, the total
electric field due to both charges now cancel in the radial
direction but add in the z direction:

-q a
E,(z = O)= -q 2 )2]314 1Tso [r +(a/2)2] 2

Far away from the point charges the electric field dies off as
the inverse cube of distance:

limE,(z = 0)= -qa
ra 47rEor

I
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Figure 2-8 Two equal magnitude point charges are a distance a apart along the z
axis. (a) When the charges are of the same polarity, the electric field due to each is
radially directed away. In the z = 0 symmetry plane, the net field component is radial.
(b) When the charges are of opposite polarity, the electric field due to the negative
charge is directed radially inwards. In the z = 0 symmetry plane, the net field is now -z
directed.

The faster rate of decay of a dipole field is because the net
charge is zero so that the fields due to each charge tend to
cancel each other out.

2-3 CHARGE DISTRIBUTIONS

The method of superposition used in Section 2.2.4 will be
used throughout the text in relating fields to their sources.
We first find the field due to a single-point source. Because
the field equations are linear, the net field due to many point

2
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sources is just the superposition of the fields from each source
alone. Thus, knowing the electric field for a single-point
charge'at an arbitrary position immediately gives us the total
field for any distribution of point charges.

In typical situations, one coulomb of total charge may be
present requiring 6.25 x 108s elementary charges (e - 1.60x
10-'9 coul). When dealing with such a large number of par-
ticles, the discrete nature of the charges is often not
important and we can consider them as a continuum. We can
then describe the charge distribution by its density. The same
model is used in the classical treatment of matter. When we
talk about mass we do not go to the molecular scale and count
the number of molecules, but describe the material by its mass
density that is the product of the local average number of
molecules in a unit volume and the mass per molecule.

2-3-1 Line, Surface, and Volume Charge Distributions

We similarly speak of charge densities. Charges can dis-
tribute themselves on a line with line charge density
A (coul/m), on a surface with surface charge density
a (coul/m 2 ) or throughout a volume with volume charge
density p (coul/mS).

Consider a distribution of free charge dq of differential size
within a macroscopic distribution of line, surface, or volume
charge as shown in Figure 2-9. Then, the total charge q within
each distribution is obtained by summing up all the differen-
tial elements. This requires an integration over the line, sur-
face, or volume occupied by the charge.

A dl J A dl (line charge)

dq= adS q= s r dS (surface charge) (1)

pdV IJp dV (volume charge)

EXAMPLE 2-2 CHARGE DISTRIBUTIONS

Find the total charge within each of the following dis-
tributions illustrated in Figure 2-10.

(a) Line charge A0 uniformly distributed in a circular hoop
of radius a.

·_
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Point charge

(a)

t0j

dq = o dS

q = odS
S

4-

4- S

--. P
rQp q

dq 
=

Surface charge Volume charge

(c) (d)

Figure 2-9 Charge distributions. (a) Point charge; (b) Line charge; (c) Surface
charge; (d) Volume charge.

SOLUTION

q= Adl = Aoa d = 21raAo

(b) Surface charge uo uniformly distributed on a circular
disk of radius a.

SOLUTION

a 2w

q= odS= 1:-J=0 0or dr do = 7ra 20

(c) Volume charge po uniformly distributed throughout a
sphere of radius R.

a
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Figure 2-10 Charge distributions of Example 2-2. (a) Uniformly distributed line
charge on a circular hoop. (b) Uniformly distributed surface charge on a circular disk.
(c) Uniformly distributed volume charge throughout a sphere. (d) Nonuniform line
charge distribution. (e) Smooth radially dependent volume charge distribution
throughout all space, as a simple model of the electron cloud around the positively
charged nucleus of the hydrogen atom.

SOLUTION

q = =pdV = 0
*V =0-0=of

por sin 0 dr dO do = 3rrR po

(d) A line charge of infinite extent in the z direction with
charge density distribution

A0
A- +(z2]

SOLUTION

q = A dl A,1  - Aoa tan = Aoi-a
q j [1+ (z/a)2] a

I

-
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(e) The electron cloud around the positively charged
nucleus Q in the hydrogen atom is simply modeled as the
spherically symmetric distribution

p(r)=- e-2- a
7ra

where a is called the Bohr radius.

SOLUTION

The total charge in the cloud is

q= f p dV

- i= -sa e-'2r sin 0 drdO d
r=0 1=0JO=O =0ir

= Lo a 3e-2r/ar2 dr

4Q -2,/a 2 2 OD

- -~ e [r -- 1)] 0

=-Q

2-3-2 The Electric Field Due to a Charge Distribution

Each differential charge element dq as a source at point Q
contributes to the electric field at.a point P as

dq
dE= 2 iQp (2)

41rEorQp

where rQp is the distance between Q and P with iqp the unit
vector directed from Q to P. To find the total electric field, it
is necessary to sum up the contributions from each charge
element. This is equivalent to integrating (2) over the entire
charge distribution, remembering that both the distance rQp
and direction iQp vary for each differential element
throughout the distribution

E 2=q Q (3)
111,q -'7rEorQP

where (3) is a line integral for line charges (dq =A dl), a
surface integral for surface charges (dq = o-dS), a volume



64 The Electric Field

integral for a volume charge distribution (dq =p dV), or in
general, a combination of all three.

If the total charge distribution is known, the electric field is
obtained by performing the integration of (3). Some general
rules and hints in using (3) are:

1. It is necessary to distinguish between the coordinates of
the field points and the charge source points. Always
integrate over the coordinates of the charges.

2. Equation (3) is a vector equation and so generally has
three components requiring three integrations. Sym-
metry arguments can often be used to show that partic-
ular field components are zero.

3. The distance rQp is always positive. In taking square
roots, always make sure that the positive square root is
taken.

4. The solution to a particular problem can often be
obtained by integrating the contributions from simpler
differential size structures.

2-3-3 Field Due to an Infinitely Long Line Charge

An infinitely long uniformly distributed line charge Ao
along the z axis is shown in Figure 2-11. Consider the two
symmetrically located charge elements dq1 and dq2 a distance z
above and below the point P, a radial distance r away. Each
charge element alone contributes radial and z components to
the electric field. However, just as we found in Example 2-la,
the two charge elements together cause equal magnitude but
oppositely directed z field components that thus cancel leav-
ing only additive radial components:

A0 dz Aor dz
dEr= 4 (z + r) cos 0 = 4ireo(z2 + /2 (4)

To find the total electric field we integrate over the length
of the line charge:

Aor I_ dz

4rreo J- (z+r )/2

A0r z +Go
41re0 r2(z 2 +r+ 2) / =-2

2reor
Ar
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dqi = Xodz

+ z
2

)1/2

+ dE 2

dE,

dq2 = Xo dz

Figure 2-11 An infinitely long uniform distribution of line charge only has a radially
directed electric field because the z components of the electric field are canceled out by
symmetrically located incremental charge elements as also shown in Figure 2-8a.

2-3-4 Field Due to Infinite Sheets of Surface Charge

(a) Single Sheet
A surface charge sheet of infinite extent in the y = 0 plane

has a uniform surface charge density oro as in Figure 2-12a.
We break the sheet into many incremental line charges of
thickness dx with dA = oro dx. We could equivalently break the
surface into incremental horizontal line charges of thickness
dz. Each incremental line charge alone has a radial field
component as given by (5) that in Cartesian coordinates
results in x and y components. Consider the line charge dA1, a
distance x to the left of P, and the symmetrically placed line
charge dA2 the same distance x to the right of P. The x
components of the resultant fields cancel while the y
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Figure 2-12 (a) The electric field from a uniformly surface charged sheet of infinite
extent is found by summing the contributions from each incremental line charge
element. Symmetrically placed line charge elements have x field components that
cancel, but y field components that add. (b) Two parallel but oppositely charged sheets
of surface charge have fields that add in the region between the sheets but cancel
outside. (c) The electric field from a volume charge distribution is obtained by sum-
ming the contributions from each incremental surface charge element.
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do = pody'
'S

ijdy'

p.:

."P0 "

,-' II'.
":i : :,:

a

a

po0a

'o

components add:

Eo dx aoydx
dE, = o( + cos 0 = (+y)

21reo(x2+y )2 27eo(x2 +y2)

The total field is then obtained by integration over all line
charge elements:

+aOEroYor dx
Ey J 2 2S21rEox +y

= --y tan-
2 rEoyy y1 -rn

So/2eo, y>O0
-o'o/2Eo, y<0

where we realized that the inverse tangent term takes the sign
of the ratio x/y so that the field reverses direction on each side
of the sheet. The field strength does not decrease with dis-
tance from the infinite sheet.

(b) Parallel Sheets of Opposite Sign
A capacitor is formed by two oppositely charged sheets of

surface charge a distance 2a apart as shown in Figure 2-12b.

III
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Fig. 2-12(c)
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The fields due to each charged sheet alone are obtained from
(7) as

y,, y>- a -- , y>a
2Eo 2EO

E i= E2 (8)

ro. To .
-,, y <-a ,i, y<a

2EO 2EO

Thus, outside the sheets in regions I and III the fields cancel
while they add in the enclosed region II. The nonzero field is
confined to the region between the charged sheets and is
independent of the spacing:

E = E,+E 2 = ( IyI>a (9)
0 jy| >a

(c) Uniformly Charged Volume
A uniformly charged volume with charge density Po of

infinite extent in the x and z directions and of width 2a is
centered about the y axis, as shown in Figure 2-12c. We break
the volume distribution into incremental sheets of surface
charge of width dy' with differential surface charge density
do- = Po dy'. It is necessary to distinguish the position y' of the
differential sheet of surface charge from the field point y. The
total electric field is the sum of all the fields due to each
differentially charged sheet. The problem breaks up into
three regions. In region I, where y 5 -a, each surface charge
element causes a field in the negative y direction:

E,= 2dy = pa y - a (10)
a 2eo 60

Similarly, in region III, where y > a, each charged sheet gives
rise to a field in the positive y direction:

EPo yya (11)E fa PO ,= poaa y >--a (11)
-a 2Eo Eo

For any position y in region II, where -a y 5 a, the charge
to the right of y gives rise to a negatively directed field while
the charge to the left of y causes a positively directed field:

IPody' a P oyE,= 2E+ (-) dy'o -, -ao y5a (12)
2 2eo 8o

The field is thus constant outside of the volume of charge and
in opposite directions on either side being the same as for a
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surface charged sheet with the same total charge per unit
area, 0o = po2a. At the boundaries y = ±a, the field is
continuous, changing linearly with position between the
boundaries:

poa
-- L, y --a

E, = o, -a -y - a (13)
so

poa
, y>-a6,O0

2-3-5 Superposition of Hoops of Line Charge

(a) Single Hoop
Using superposition, we can similarly build up solutions

starting from a circular hoop of radius a with uniform line
charge density A0 centered about the origin in the z = 0 plane
as shown in Figure 2-13a. Along the z axis, the distance to the
hoop perimeter (a2+z2)112 is the same for all incremental
point charge elements dq = Aoa d. Each charge element
alone contributes z- and r-directed electric field components.
However, along the z axis symmetrically placed elements 180*
apart have z components that add but radial components that
cancel. The z-directed electric field along the z axis is then

E f2w Aoa d4 cos 0 Aoaz
E2= 2 2 2 - (14)

47rEo(z +a ) 2eo(a +Z2
The electric field is in the -z direction along the z axis below the
hoop.

The total charge on the hoop is q = 27taXo so that (14) can
also be written as

qz
E.= 4reo(a +z )3/2 (15)

When we get far away from the hoop (IzI > a), the field
approaches that of a point charge:

q Jz>0
lim Ez = ±--2 z0 (16)
I%1*a t4rEoz z<0

(b) Disk of Surface Charge
The solution for a circular disk of uniformly distributed

surface charge Oo is obtained by breaking the disk into
incremental hoops of radius r with line charge dA = oo dras in
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Figure 2-13 (a) The electric field along the symmetry z axis of a uniformly dis-
tributed hoop of line charge is z directed. (b) The axial field from a circular disk of
surface charge is obtained by radially summing the contributions of incremental hoops
of line charge. (c) The axial field from a hollow cylinder of surface charge is obtained
by axially summing the contributions of incremental hoops of line charge. (d) The axial
field from a cylinder of volume charge is found by summing the contributions of axial
incremental disks or of radial hollow cylinders of surface charge.

Figure 2-13b. Then the incremental z-directed electric field
along the z axis due to a hoop of radius r is found from (14) as

o= orz dr
dE= 2e(r 2 +z 2) 2 (17)

2)P12

Y

............. •v
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where we replace a with r, the radius of the incremental
hoop. The total electric field is then

a rdr
Io_2 2t32

= 2eo J (r +z )

o1oz

2eo(r 2 +z 2 )1I2 0

•(o z z
2EO (a2 +2 1/2 IZI2e, '(a +z)u 2 I|z|

roroz z > 0

2Eo 20(a 2 2 1/2 z<

where care was taken at the lower limit (r = 0), as the magni-
tude of the square root must always be used.

As the radius of the disk gets very large, this result
approaches that of the uniform field due to an infinite sheet
of surface charge:

lim E. = >0 (19)
.-002oo z <0

(c) Hollow Cylinder of Surface Charge
A hollow cylinder of length 2L and radius a has its axis

along the z direction and is centered about the z = 0 plane as
in Figure 2-13c. Its outer surface at r=a has a uniform
distribution of surface charge 0o. It is necessary to distinguish
between the coordinate of the field point z and the source
point at z'(-L sz':-L). The hollow cylinder is broken up
into incremental hoops of line charge dA = o0dz'. Then, the
axial distance from the field point at z to any incremental
hoop of line charge is (z -z'). The contribution to the axial
electric field at z due to the incremental hoop at z' is found
from (14) as

E=oa (z - z') dz'
dE= 2e[a2+ (z -z') 2 ]31 (20)

which when integrated over the length of the cylinder yields

oa +L (z -z')dz'
Ez 2e J-L [a2 + (z - z')2 12

=ooa 1 +L

2eo [a 2 + (z - z' )2] /2'

o\[a2 +(z L)2]1/2 [a2+(Z +L)211/2) (21)
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(d) Cylinder of Volume Charge
If this same cylinder is uniformly charged throughout the

volume with charge density po, we break the volume into
differential-size hollow cylinders of thickness dr with incre-
mental surface charge doa = po dr as in Figure 2-13d. Then, the
z-directed electric field along the z axis is obtained by integra-
tion of (21) replacing a by r:

P 1 1
E, - r--9I r2 21/2 2 2 112J dr= 0 a r( 2( 1L)],,) dr2e 0 Jo r[r +(z -L)]l/[r +(z+L)I

= P• {[r2 + (Z- L)2]1/2-[r2 + (Z + L2)]1/2}1

2eo

+Iz+LL} (22)

where at the lower r= 0 limit we always take the positive
square root.

This problem could have equally well been solved by
breaking the volume charge distribution into many differen-
tial-sized surface charged disks at position z'(-L -z'-L),
thickness dz', and effective surface charge density do = Po dz'.
The field is then obtained by integrating (18).

2-4 GAUSS'S LAW

We could continue to build up solutions for given charge
distributions using the coulomb superposition integral of
Section 2.3.2. However, for geometries with spatial sym-
metry, there is often a simpler way using some vector prop-
erties of the inverse square law dependence of the electric
field.

2-4-1 Properties of the Vector Distance Between Two Points, rop

(a) rp
In Cartesian coordinates the vector distance rQp between a

source point at Q and a field point at P directed from Q to P
as illustrated in Figure 2-14 is

rQp = (x - Q)i2 + (y - yQ)i, + (z - zQ)i' (1)

with magnitude

rQp = [(x -xQ) + (yY -yQ)2 + (z - zQ) ]] • 2  (2)

The unit vector in the direction of rQP is

fr

rQP
QP iO_.
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2

x

Figure 2-14 The vector distance rQp between two points Q and P.

(b) Gradient of the Reciprocal Distance, V(l/rQp)
Taking the gradient of the reciprocal of (2) yields

V I = j-2 I + ,a I a
rQ ax ro , y r,) az rQ

1
= -- r- [(x -XQ)i: + (Y -YQ)i, + (z - zQ)iz]

rQP

= -iQp/rQP (4)

which is the negative of the spatially dependent term that we
integrate to find the electric field in Section 2.3.2.

(c) Laplacian of the Reciprocal Distance
Another useful identity is obtained by taking the diver-

gence of the gradient of the reciprocal distance. This opera-
tion is called the Laplacian of the reciprocal distance. Taking
the divergence of (4) yields

S QP

3 3 (
----- +--[(x-xQ)2 +(y-y Q)2 +(z zQ)] (5)rQp rQ y

y
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Using (2) we see that (5) reduces to

2 _ = O, rq, O0
rQp (6)

rQp) =undefined rQp=0

Thus, the Laplacian of the inverse distance is zero for all
nonzero distances but is undefined when the field point is
coincident with the source point.

2-4-2 Gauss's Law In Integral Form

(a) Point Charge Inside or Outside a Closed Volume
Now consider the two cases illustrated in Figure 2-15 where

an arbitrarily shaped closed volupne V either surrounds a
point charge q or is near a point charge q outside the surface
S. For either case the electric field emanates radially from the
point charge with the spatial inverse square law. We wish to
calculate the flux of electric field through the surface S sur-
rounding the volume V:

= sE -dS

=•s4 or2 PiQpdS
% eorp7)
-qv

=S 41r o (rQP) d S (7)

# oE dS= f oE dS=q
S S'

dS

(a) (b)

Figure 2-15 (a) The net flux of electric field through a closed surface S due to an
outside point charge is zero because as much flux enters the near side of the surface as
leaves on the far side. (b) All the flux of electric field emanating from an enclosed point
charge passes through the surface.
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where we used (4). We can now use the divergence theorem
to convert the surface integral to a volume integral:

-q

fsE.dS= 4• V[. ( ' ]dV (8)
41eo IV rqP)

When the point charge q is outside the surface every point in
the volume has a nonzero value of rQp. Then, using (6) with
rQp # 0, we see that the net flux of E through the surface is
zero.

This result can be understood by examining Figure 2-15a.
The electric field emanating from q on that part of the sur-
face S nearest q has its normal component oppositely directed
to dS giving a negative contribution to the flux. However, on
the opposite side of S the electric field exits with its normal
component in the same direction as dS giving a positive
contribution to the flux. We have shown that these flux
contributions are equal in magnitude but opposite in sign so
that the net flux is zero.

As illustrated in Figure 2-15b, assuming q to be positive, we
see that when S surrounds the charge the electric field points
outwards with normal component in the direction of dS
everywhere on S so that the flux must be positive. If q were
negative, E and dS would be oppositely directed everywhere
so that the flux is also negative. For either polarity with
nonzero q, the flux cannot be zero. To evaluate the value of
this flux we realize that (8) is zero everywhere except where
rQp = 0 so that the surface S in (8) can be shrunk down to a
small spherical surface S' of infinitesimal radius Ar sur-
rounding the point charge; the rest of the volume has rQp 0 0
so that V .V(l/rQp) = 0. On this incremental surface we know
the electric field is purely radial in the same direction as dS'
with the field due to a point charge:

fEEdS=f E* dS' q= q (q(
s- 41reo(Ar) (r) (9)

If we had many point charges within the surface S, each
charge q, gives rise to a flux qdso so that Gauss's law states that
the net flux of e0E through a closed surface is equal to the net
charge enclosed by the surface:

eoE dS= qi. (10)
S all qi

inside S

Any charges outside S do not contribute to the flux.

(b) Charge Distributions
For continuous charge distributions, the right-hand side of

(10) includes the sum of all enclosed incremental charge
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elements so that the total charge enclosed may be a line,
surface, and/or volume integral in addition to the sum of
point charges:

fseoE'dS= _ qi + dq
S all qi all q

inside S inside S

=(Qqi+f Adl+ °dS+ ~pdV) (11)
all charge
inside S

Charges outside the volume give no contribution to the total
flux through the enclosing surface.

Gauss's law of (11) can be used to great advantage in
simplifying computations for those charges distributed with
spatial symmetry. The trick is to find a surface S that has
sections tangent to the electric field so that the dot product is
zero, or has surfaces perpendicular to the electric field and
upon which the field is constant so that the dot product and
integration become pure multiplications. If the appropriate
surface is found, the surface integral becomes very simple to
evaluate.

Coulomb's superposition integral derived in Section 2.3.2 is
often used with symmetric charge distributions to determine
if any field components are zero. Knowing the direction of
the electric field often suggests the appropriate Gaussian sur-
face upon which to integrate (11). This integration is usually
much simpler than using Coulomb's law for each charge
element.

2-4-3 Spherical Symmetry

(a) Surface Charge
A sphere of radius R has a uniform distribution of surface

charge o'o as in Figure 2-16a. Measure the angle 0 from the
line joining any point P at radial distance r to the sphere
center. Then, the distance from P to any surface charge
element on the sphere is independent of the angle 4. Each
differential surface charge element at angle 0 contributes
field components in the radial and 0 directions, but sym-
metrically located charge elements at -0 have equal field
magnitude components that add radially but cancel in the 0
direction.

Realizing from the symmetry that the electric field is purely
radial and only depends on r and not on 0 or 4, we draw
Gaussian spheres of radius r as in Figure 2-16b both inside
(r < R) and outside (r > R) the charged sphere. The Gaussian
sphere inside encloses no charge while the outside sphere

_··
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dE

enclosed s r

Figure 2-16 A sphere of radius R with uniformly distributed surface charge oo. (a)
Symmetrically located charge elements show that the electric field is purely radial. (b)
Gauss's law, applied to concentric spherical surfaces inside (r < R) and outside (r > R)
the charged sphere, easily shows that the electric field within the sphere is zero and
outside is the same as if all the charge Q = 47rR-2o were concentrated as a point charge
at the origin.

encloses all the charge Q = o0o47rR2

o047rR2=Q, r>R

cs E • dS = EoE,4iwr 2 =2)

0, r<R

so that the electric field is

'0 R 2 Q
2 - , r>R

Er= e0 r 4reor (13)
0, r<R

The integration in (12) amounts to just a multiplication of
eoEr and the surface area of the Gaussian sphere because on
the sphere the electric field is constant and in the same direc-
tion as the normal i,. The electric field outside the sphere is
the same as if all the surface charge were concentrated as a
point charge at the origin.

The zero field solution for r <R is what really proved
Coulomb's law. After all, Coulomb's small spheres were not
really point charges and his measurements did have small
sources of errors. Perhaps the electric force only varied
inversely with distance by some power close to two, r-2+,
where 8 is very small. However, only the inverse square law

dE

otal
rface
arge
Q= 4rR

2
o0

losed
IosedGaussianarge

!
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gives a zero electric field within a uniformly surface charged
sphere. This zero field result-is true for any closed conducting
body of .arbitrary shape charged on its surface with no
enclosed charge. Extremely precise measurements were made
inside such conducting surface charged bodies and the
electric field was always found to be zero. Such a closed
conducting body is used for shielding so that a zero field
environment can be isolated and is often called a Faraday
cage, after Faraday's measurements of actually climbing into
a closed hollow conducting body charged on its surface to
verify the zero field results.

To appreciate the ease of solution using Gauss's law, let us
redo the problem using the superposition integral of Section
2.3.2. From Figure 2-16a the incremental radial component
of electric field due to a differential charge element is

-ooR2 sin 0dO do
dE,= 92rr cos a (14)

From the law of cosines the angles and distances are related as

rp = + R - 2rR cos 0
2 2 2(15)

R = r2 +rQP - 2rrQpcosa

so that a is related to 0 as

r-R cos 0
cos a =2 2

[r +R -2rR cos 0] 2 (16)

Then the superposition integral of Section 2.3.2 requires us
to integrate (14) as

r "w o0 R2 sin 8(r-R cos 8) d0 d4
E6=Jo= 0 4ireo[r +R -2rR cos 0]132

After performing the easy integration over 4 that yields the
factor of 21r, we introduce the change of variable:

u= r2+R -2rR cos 0

du = 2rR sin 0d (18)

which allows us to rewrite the electric field integral as

'(+E)r roR[u+r -R ]du
E,= i

= (,_R-) 8eor/

-oR i 1/2 (r 2 -R 2 ) (r+R)2

oR 1I2 I (r-R)
=-oR (r+R)-r-RI -(r -R 2 )(rR -

(19)
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where we must be very careful to take the positive square root
in evaluating the lower limit of the integral for r < R. Evalu-
ating (19) for r greater and less than R gives us (13), but with
a lot more effort.

(b) Volume Charge Distribution
If the sphere is uniformly charged throughout with density

po, then the Gaussian surface in Figure 2-17a for r>R still
encloses the total charge Q =lrR p o. However, now the
smaller Gaussian surface with r <R encloses a fraction of the
total charge:

Po1rr = Q(r/R)-,
seoE • dS = eoE,4rr2

SooRR3= Q,

Er = (r > R)
4wenr

2

Total
volume
charge

/

Q = Po14)rR3
1

Enclosed

R

Figure 2-17 (a) Gat
electric field outside t:
concentrated as a poil
the contributions fror

r<R

r>R

\
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so that the electric field is

rpor _Qr
E SeO 47reoR3 r<R

E, = o (21)
poR 3 QS= 2 , r>R
3eo0 r- 4reor2 > R

This result could also have been obtained using the results
of (13) by breaking the spherical volume into incremental
shells of radius r', thickness dr', carrying differential surface
charge do, = Po dr' as in Figure 2-17b. Then the contribution to
the field is zero inside each shell but nonzero outside:

0, r < r'
dE, = por '2dr' (22)

eor

The total field outside the sphere is due to all the differential
shells, while the field inside is due only to the enclosed shells:

r r12po dr' por Qrr
S2 - 3, r<R

{eor 3eo 4ireoR3
E,= 1 z (23)E r'20dr' poRS Q

- 2'= r>R
o Er 2 3eor 4rl eor

which agrees with (21).

2-4-4 Cylindrical Symmetry

(a) Hollow Cylinder of Surface Charge
An infinitely long cylinder of radius a has a uniform dis-

tribution of surface charge oo, as shown in Figure 2-18a. The
angle 0 is measured from the line joining the field point P to
the center of the cylinder. Each incremental line charge ele-
ment dA = coa do contributes to the electric field at P as given
by the solution for an infinitely long line charge in Section
2.3.3. However, the symmetrically located element at -4
gives rise to equal magnitude field components that add
radially as measured from the cylinder center but cancel in
the 4 direction.

Because of the symmetry, the electric field is purely radial
so that we use Gauss's law with a concentric cylinder of radius
r and height L, as in Figure 2-18b where L is arbitrary. There
is no contribution to Gauss's law from the upper and lower
surfaces because the electric field is purely tangential. Along
the cylindrical wall at radius r, the electric field is constant and
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,dET = dEl + dE 2

a)

Er = oa r >aeo r

d = ooado

' O0

Po dr' (b)

Sp o
r'dr'

dE, = r>r'

0 r < r'

Figure 2-18 (a) Symmetrically located line charge elements on a cylinder with uni-
formly distributed surface charge show that the electric field is purely radial. (b)
Gauss's law applied to concentric cylindrical -surfaces shows that the field inside the
surface charged cylinder is zero while outside it is the same as if all the charge per unit
length o0 27ra were concentrated at the origin as a line charge. (c) In addition to using
the surfaces of (b) with Gauss's law for a cylinder of volume charge, we can also sum
the contributions from incremental hollow cylinders of surface charge.

purely normal so that Gauss's law simply yields

EoE dS = eor27rrL = (24)

0 r<a

where for r <a no charge is enclosed, while for r> a all the
charge within a height L is enclosed. The electric field outside
the cylinder is then the same as if all the charge per unit

dh 2 = ooad
+
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length A = o-o2rra were concentrated along the axis of the
cylinder:

o-oa A
- r>a

E,= Eor 2TEor (25)(25)
0, r<a

Note in (24) that the arbitrary height L canceled out.

(b) Cylinder of Volume Charge
If the cylinder is uniformly charged with density po, both

Gaussian surfaces in Figure 2-18b enclose charge

o E dS = oE, 2rL = L (26)
s poirr2L, r<a (26)

so that the electric field is

poa A
, r>a

E 2eor 21reor (27)
Er =por _ Ar 2 r<a

2e 0 27reoa

where A =poira2 is the total charge per unit length on the
cylinder.

Of course, this result could also have been obtained by
integrating (25) for all differential cylindrical shells of radius
r' with thickness dr' carrying incremental surface charge dor =
Po dr', as in Figure 2-18c.

a por dr=poa Adr'= , r>a
ear 2eor 27reor

Er= (28)
p or'  por =  Ar
for 2eo 2rTeoa

2-4-5 Gauss's Law and the Divergence Theorem

If a volume distribution of charge p is completely sur-
rounded by a closed Gaussian surface S, Gauss's law of (11) is

~seoE dS= pdV (29)

The left-hand side of (29) can be changed to a volume
integral using the divergence theorem:

seoE.dS= V (oE)dV= pdV (30)

I_ __ ·_
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Since (30) must hold for any volume, the volume integrands
in (30) must be equal, yielding the point form of Gauss's law:

V (eoE)=p (31)

Since the permittivity of free space eo is a constant, it can
freely move outside the divergence operator.

2-4-6 Electric Field Discontinuity Across a Sheet of Surface Charge

In Section 2.3.4a we found that the electric field changes
direction discontinuously on either side of a straight sheet of
surface charge. We can be more general by applying the
surface integral form of Gauss's law in (30) to the differential-
sized pill-box surface shown in Figure 2-19 surrounding a
small area dS of surface charge:

fseoE.dS= sodS o(E2,-E,.) dS= rdS (32)

where E2. and El. are the perpendicular components of
electric field on each side of the interface. Only the upper and
lower surfaces of the pill-box contribute in (32) because the
surface charge is assumed to have zero thickness so that the
short cylindrical surface has zero area. We thus see that the
surface charge density is proportional to the discontinuity in
the normal component of electric field across the sheet:

E0 (E 2. -El.) = o- n - EO(E 2 - EL) = o- (33)

where n is perpendicular to the interface directed from
region 1 to region 2.

dS
= ndS

Figure 2-19 Gauss's law applied to a differential sized pill-box surface enclosing some
surface charge shows that the normal component of e0E is discontinuous in the surface
charge density.
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2-5 THE ELECTRIC POTENTIAL

If we have two charges of opposite sign, work must be done
to separate them in opposition to the attractive coulomb
force. This work can be regained if the charges are allowed to
come together. Similarly, if the charges have the same sign,
work must be done to push them together; this work can be
regained if the charges are allowed to separate. A charge
gains energy when moved in a direction opposite to a force.
This is called potential energy because the amount of energy
depends on the position of the charge in a force field.

2-5-1 Work Required to Move a Point Charge

The work W required to move a test charge q, along any
path from the radial distance r, to the distance rb with a force
that just overcomes the coulombic force from a point charge
q, as shown in Figure 2-20, is

W= - F- dl

qq, 'bi, -dl
F7ev. r

Figure 2-20 It takes no work to move a test charge q, along the spherical surfaces
perpendicular to the electric field due to a point charge q. Such surfaces are called
equipotential surfaces.



The Electric Potential 85

The minus sign in front of the integral is necessary because
the quantity W represents the work we must exert on the test
charge in opposition to the coulombic force between charges.
The dot product in (1) tells us that it takes no work to move
the test charge perpendicular to the electric field, which in
this case is along spheres of constant radius. Such surfaces are
called equipotential surfaces. Nonzero work is necessary to
move q to a different radius for which dl = dr i,. Then, the
work of (1) depends only on the starting and ending positions
(r. and rb) of the path and not on the shape of the path itself:

qq, fr drW= -

4qq ((2)
4ireo \rb rar

We can convince ourselves that the sign is correct by examin-
ing the case when rb is bigger than r, and the charges q and q,
are of opposite sign and so attract each other. To separate the
charges further requires us to do work on q, so that W is
positive in (2). If q and q, are the same sign, the repulsive
coulomb force would tend to separate the charges further
and perform work on q,. For force equilibrium, we would
have to exert a force opposite to the direction of motion so
that W is negative.

If the path is closed so that we begin and end at the same
point with ra = rb, the net work required for the motion is
zero. If the charges are of the opposite sign, it requires
positive work to separate them, but on the return, equal but
opposite work is performed on us as the charges attract each
other.

If there was a distribution of charges with net field E, the
work in moving the test charge against the total field E is just
the sum of the works necessary to move the test charge
against the field from each charge alone. Over a closed path
this work remains zero:

W= -q,E dl = 0 E dl = 0 (3)

which requires that the line integral of the electric field
around the closed path also be zero.

2-5-2 The Electric Field and Stokes' Theorem

Using Stokes' theorem of Section 1.5.3, we can convert the
line integral of the electric field to a surface integral of the
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curl of the electric field:

E* dl= (VXE).dS (4)

From Section 1.3.3, we remember that the gradient of a scalar
function also has the property that its line integral around a
closed path is zero. This means that the electric field can be
determined from the gradient of a scalar function V called
the potential having units of volts [kg-m 2 -s-3-A-1]:

E = -V V (5)

The minus sign is introduced by convention so that the elec-
tric field points in the direction of decreasing potential. From
the properties of the gradient discussed in Section 1.3.1 we
see that the electric field is always perpendicular to surfaces of
constant potential.

By applying the right-hand side of (4) to an area of
differential size or by simply taking the curl of (5) and using
the vector identity of Section 1.5.4a that the curl of the
gradient is zero, we reach the conclusion that the electric field
has zero curl:

VxE=O (6)

2-5-3 The Potential and the Electric Field

The potential difference between the two points at ra and rb
is the work per unit charge necessary to move from ra to rb:

W
V(rb)- V(ra)=-

= - E dl= + E * dl (7)r. (7)

Note that (3), (6), and (7) are the fields version of Kirchoff's
circuit voltage law that the algebraic sum of voltage drops
around a closed loop is zero.

The advantage to introducing the potential is that it is a
scalar from which the electric field can be easily calculated.
The electric field must be specified by its three components,
while if the single potential function V is known, taking its
negative gradient immediately yields the three field
components. This is often a simpler task than solving for each
field component separately. Note in (5) that adding a constant
to the potential does not change the electric field, so the
potential is only uniquely defined to within a constant. It is
necessary to specify a reference zero potential that is often

_ ___· _I__
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taken at infinity. In actual practice zero potential is often
assigned to the earth's surface so that common usage calls the
reference point "ground."

The potential due to a single point charge q is

V(rb)- V(ra)= J, 4reor2  4 reor

= ( _1 (8)4reo rb r.

If we pick our reference zero potential at ra = oo, V(r) = 0 so
that rb = r is just the radial distance from the point charge.
The scalar potential V is then interpreted as the work per
unit charge necessary to bring a charge from infinity to some
distance r from the point charge q:

V(r) = (9)
41reor

The net potential from many point charges is obtained by
the sum of the potentials from each charge alone. If there is a
continuous distribution of charge, the summation becomes an
integration over all the differential charge elements dq:

v dq (10)
IIq 4 ireOrQP

where the integration is a line integral for line charges, a
surface integral for surface charges, and a volume integral
for volume charges.

The electric field formula of Section 2.3.2 obtained by
superposition of coulomb's law is easily re-obtained by taking
the negative gradient of (10), recognizing that derivatives are
to be taken with respect to field positions (x, y, z) while the
integration is over source positions (XQ, yQ, ZQ). The del
operator can thus be brought inside the integral and operates
only on the quantity rQp:

E= -VV= dq 4•e

dq
- -- oi, (11)Il q4EOr QP

where we use the results of Section 2.4. lb for the gradient of
the reciprocal distance.

M M ý
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2-5-4 Finite Length Line Charge

To demonstrate the usefulness of the potential function,
consider the uniform distribution of line charge Ao of finite
length 2L centered on the z axis in Figure 2-21. Distinguish-
ing between the position of the charge element dq = Ao dz' at
z' and the field point at coordinate z, the distance between
source and field point is

rQp = [rF
2

+ (Z _- )2] 1/2 (12)

Substituting into (10) yields

, L Ao dz'
V= -L 47reo[r2+ (z - z')2 ]1/

_Ao0 - L + 
[r2 + (Z - L )2 1/2

4reo z + [r2 +(z + L)2 1 1/2

Ao (sinhw z-L - sinh-lz+LZ

47reo r r )

)2] 1/2

- 2)211/2

Figure 2-21 The potential from a finite length of line charge is obtained by adding
the potentials due to each incremental line charge element.

I

= Xo dz'
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The field components are obtained from (13) by taking the
negative gradient of the potential:

av Ao ( 1 1
8z 4re•o [r +(z -L) 2]12 [r +(z+L)2l/2

8V Aor 1
Er= 2

ar 47reo ([r2+ (z- L 2]1/2 - L + [r + (L) 2] 1/2]

1
[r + ( + L)2] 2[z + L + [r 2 + (z + L)] 1/2]

S Ao0( z-L z+L

47reor \[r2 +(z -L) 2] /2 [r2 +(z+L)2] 1/2  (14)

As L becomes large, the field and potential approaches that
of an infinitely long line charge:

E,=0

Ao
lim E ror (15)

Ao
V= (ln r -In 2L)

The potential has a constant term that becomes infinite
when L is infinite. This is because the zero potential reference
of (10) is at infinity, but when the line charge is infinitely long
the charge at infinity is nonzero. However, this infinite
constant is of no concern because it offers no contribution to
the electric field.

Far from the line charge the potential of (13) approaches
that of a point charge 2AoL:

Ao(2L)lim V= (16)
r'=r

2
+z

2 >L2  47rror

Other interesting limits of (14) are

E, =0

lim A oL

Z=o E ,r=22reor(r2 + L 2)1/2

S ±AoL z>L

S 2vreo(z2 -L 2)' z <-L

lim 4rEoL Iz -L iz+LAz
r=o 2rEo(L -Z 2 ), -LzsL

Er = 0 (17)

M
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2-5-5 Charged Spheres

(a) Surface Charge
A sphere of radius R supports a uniform distribution of

surface charge oro with total charge Q= ao4wR , as shown in
Figure 2-22a. Each incremental surface charge element
contributes to the potential as

(18)dV= ooR2 sin Odd
dV= 

4

4·reoryp

where from the law of cosines

rQ = R +r -2rR cos (19)

so that the differential change in rQp about the sphere is

2rQp drQp = 2rR. sin 0 dO

do r'
2

dV= Ceor

do r'
eo

(20)

r>r'

r <r

= po dr'

+

Figure 2-22 (a) A sphere of radius R supports a uniform distribution of surface
charge ao. (b) The potential due to a uniformly volume charged sphere is found by
summing the potentials due to differential sized shells.

I
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Therefore, the total potential due to the whole charged
sphere is

r+R 2w OR

V - drQp d46
V= Q-=IrRI o4=reor

ouR rr+RooR ,+'
2eor jr-RI

2oR2a-oR2 QSeor4irer'O r>R
a-oR Q (21)

Eo 41reoR'

Then, as found in Section 2.4.3a the electric field is

aoR2 Q
E, V 6r l 2, r>R

E ar= er 2 4reor (22)
0 r<R

Outside the sphere, the potential of (21) is the same as if all
the charge Q were concentrated at the origin as a point
charge, while inside the sphere the potential is constant and
equal to the surface potential.

(b) Volume Charge
If the sphere is uniformly charged with density Po and total

charge Q = 'prR3po, the potential can be found by breaking
the sphere into differential size shells of thickness dr' and
incremental surface charge do, = po dr'.Then, integrating (21)
yields

R pOr 2 pOR Q
Sdr'• = , r>R

e or 3EOr 4ireor
V=

S Po' R p0r' P 2-2 (23)
por dr'+ dr'= R 2)
Eor 0o 2eo 3

3SQ / r2-
3 

RR ) r<R
81reoR 3

where we realized from (21) that for r < R the interior shells
have a different potential contribution than exterior shells.

Then, the electric field again agrees with Section 2.4.3b:

poR S Q

E,r = - or 4r (24)
ar por Qr

3eo 4ireoR r'
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(c) Two Spheres
Two conducting spheres with respective radii R, and R 2

have their centers a long distance D apart as shown in Figure
2-23. Different charges Q, and Q2 are put on each sphere.
Because D >> R + R2 , each sphere can be treated as isolated.
The potential on each sphere is then

V = 4reoR1 V =4roR (25)

If a wire is connected between the spheres, they are forced
to be at the same potential:

s 4q2
Vo= 2 (26)

41'eoR, 41'eoR2

causing a redistribution of charge. Since the total charge in
the system must be conserved,

q +q2 = I + Q2 (27)

Eq. (26) requires that the charges on each sphere be

R 1(Q 1+Q 2) R 2(Q 1+ 2 ) (28)
R,+R2 RI+R2

so that the system potential is

Q1+Q2
Vo = (29)

4reo(R I + R2 )

Even though the smaller sphere carries less total charge, from
(22) at r=R, where E,(R)= ol/eo, we see that the surface
electric field is stronger as the surface charge density is larger:

q. Q +Q2 V 0EI(r= RI)= 24ireoRl 41reoRi(R + R 2) R1 (30)(30)
q2 Q1+Q2 Vo

E2(r = R2 )= 41oR 41reoR 2(R1 +R 2 ) R2

For this reason, the electric field is always largest near
corners and edges of equipotential surfaces, which is why

q1 =V,

q2
q2

V2
= 

41reoR
2

V2RR

E 2 (r) V 2=R 2r2

•D >

Figure 2-23 The charges on two spheres a long distance apart (D >>R + R2 ) must
redistribute themselves when connected by a wire so that each sphere is at the same
potential. The surface electric field is then larger at the smaller sphere.
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sharp points must be avoided in high-voltage equipment.
When the electric field exceeds a critical amount Eb, called the
breakdown strength, spark discharges occur as electrons are
pulled out of the surrounding medium. Air has a breakdown
strength of Eb 3x 106 volts/m. If the two spheres had the
same radius of 1cm (10-2 m), the breakdown strength is
reached when Vo0 30,000 volts. This corresponds to a total
system charge of Q, + Q2 - 6.7 x 10- " coul.

2-5-6 Poisson's and Laplace's Equations

The general governing equations for the free space electric
field in integral and differential form are thus summarized as

feoE dS= pdV V E=p/o (31)

E*dl=0 > VxE= 0E= -VV (32)

The integral laws are particularly useful for geometries
with great symmetry and with one-dimensional fields where
the charge distribution is known. Often, the electrical poten-
tial of conducting surfaces are constrained by external
sources so that the surface charge distributions, themselves
sources of electric field are not directly known and are in part
due to other charges by induction and conduction. Because of
the coulombic force between charges, the charge distribution
throughout space itself depends on the electric field and it is
necessary to self-consistently solve for the equilibrium
between the electric field and the charge distribution. These
complications often make the integral laws difficult to use,
and it becomes easier to use the differential form of the field
equations. Using the last relation of (32) in Gauss's law of (31)
yields a single equation relating the Laplacian of the potential
to the charge density:

V (V V) = V2 V = -p/eo (33)

which is called Poisson's equation. In regions of zero charge
(p = 0) this equation reduces to Laplace's equation, V2 V = 0.

2-6 THE METHOD OF IMAGES WITH LINE CHARGES AND
CYLINDERS

2-6-1 Two Parallel Line Charges

The potential of an infinitely long line charge A is given in
Section 2.5.4 when the length of the line L is made very large.
More directly, knowing the electric field of an infinitely long



94 The Electric Field

line charge from Section 2.3.3 allows us to obtain the poten-
tial by direct integration:

av A A r
E,= - V= In- (1)

ar 21Teor 27reo r0

where ro is the arbitrary reference position of zero potential.
If we have two line charges of opposite polarity ±A a

distance 2a apart, we choose our origin halfway between, as
in Figure 2-24a, so that the potential due to both charges is
just the superposition of potentials of (1):

A ln/y2+(x+a)2•' /2
V-2 (rnY2 + (XUI a 2 (2)

2-ieo y2 +(x-a)2

where the reference potential point ro cancels out and we use
Cartesian coordinates. Equipotential lines are then

y2+(x+a)2 e-4,aV K (3)

y +(xa)2=e

where K 1 is a constant on an equipotential line. This relation is
rewritten by completing the squares as

x a(1+K1) 2 2 4K a 2 (4)
i- (1 -K (4)

which we recognize as circles of radius r=2aJK/II-K,J
with centers at y=0,x=a(1+K1)/(Ki-l), as drawn by
dashed lines in Figure 2-24b. The value of K = 1 is a circle of
infinite radius with center at x = ± o0 and thus represents the
x=0 plane. For values of K1 in the interval OsK 1 :5 1 the
equipotential circles are in the left half-plane, while for 1 -
K 1 S o0 the circles are in the right half-plane.

The electric field is found from (2) as

A ( - 4axyi,+2a(y2+ a 2 - x (5)E=-VV- 2 2 (5)
2ien [y +(x+a)2 ][y 2 +(x-a)2

One way to plot the electric field distribution graphically is
by drawing lines that are everywhere tangent to the electric
field, called field lines or lines of force. These lines are
everywhere perpendicular to the equipotential surfaces and
tell us the direction of the electric field. The magnitude is
proportional to the density of lines. For a single line charge,
the field lines emanate radially. The situation is more compli-
cated for the two line charges of opposite polarity in Figure
2-24 with the field lines always starting on the positive charge
and terminating on the negative charge.
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[y
2 + (x + a)

2 112

V=_-),
4re

y2 + (X -
2
a)

11 2

11V

yIn [[y
2

+(x+a)2]
o 2+ (x-a)2 1/

Field lines
+2

x + (y - cotK,) 2 
-

sin'K
2
K

O<Kj 41

Equipotential lines - - - -

a(1 +K1) 2 4a
2 

K 1

K 1 (1 -KI)2

/i /
/

1 <K, <

Figure 2-24 (a) Two parallel line charges of opposite polarity a distance 2a apart. (b)
The equipotential (dashed) and field (solid) lines form a set of orthogonal circles.
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For the field given by (5), the equation for the lines tangent
to the electric field is

dy E, 2xy d(x 2 +y')
- E= +a2 _X 2 2 + d(ln y)=O (6)
dx E. y +a -x a -(x +y )

where the last equality is written this way so the expression
can be directly integrated to

2

x +(y -a cot K2) = 2 K2 (7)
sin2 K2

where K 2 is a constant determined by specifying a single
coordinate (xo, yo) along the field line of interest. The field
lines are also circles of radius a/sin K 2 with centers at x =
0, y = a cot K 2 as drawn by the solid lines in Figure 2-24b.

2-6-2 The Method of Images

(a) General properties
When a conductor is in the vicinity of some charge, a

surface charge distribution is induced on the conductor in
order to terminate the electric field, as the field within the
equipotential surface is zero. This induced charge dis-
tribution itself then contributes to the external electric field
subject to the boundary condition that the conductor is an
equipotential surface so that the electric field terminates
perpendicularly to the surface. In general, the solution is
difficult to obtain because the surface charge distribution
cannot be known until the field is known so that we can use
the boundary condition of Section 2.4.6. However, the field
solution cannot be found until the surface charge distribution
is known.

However, for a few simple geometries, the field solution
can be found by replacing the conducting surface by
equivalent charges within the conducting body, called images,
that guarantee that all boundary conditions are satisfied.
Once the image charges are known, the problem is solved as if
the conductor were not present but with a charge distribution
composed of the original charges plus the image charges.

(b) Line Charge Near a Conducting Plane
The method of images can adapt a known solution to a new

problem by replacing conducting bodies with an equivalent
charge. For instance, we see in Figure 2-24b that the field
lines are all perpendicular to the x = 0 plane. If a conductor
were placed along the x = 0 plane with a single line charge A
at x = -a, the potential and electric field for x < 0 is the same
as given by (2) and (5).

I
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A surface charge distribution is induced on the conducting
plane in order to terminate the incident electric field as the
field must be zero inside the conductor. This induced surface
charge distribution itself then contributes to the external
electric field for x <0 in exactly the same way as for a single
image line charge -A at x = +a.

The force per unit length on the line charge A is due only to
the field from the image charge - A;

2  2

f = AE(-a, 0) = = i (8)
2ireo(2a) 4wrEoa

From Section 2.4.6 we know that the surface charge dis-
tribution on the plane is given by the discontinuity in normal
component of electric field:

-Aa
o(x = 0)= -oE(x = 0)= (y + a2) (9)

where we recognize that the field within the conductor is zero.
The total charge per unit length on the plane is obtained by
integrating (9) over the whole plane:

ATr= a(x=0) dy

Aa +00 dy

r JI- y' +a2

Aa 1 _,y I +0
= -- - tan-

ir a a -0o

= -A (10)

and just equals the image charge.

2-6-3 Line Charge and Cylinder

Because the equipotential surfaces of (4) are cylinders, the
method of images also works with a line charge A a distance D
from the center of a conducting cylinder of radius R as in
Figure 2-25. Then the radius R and distance a must fit (4) as

2a,/-K a(1+K 1)
R=I ,  +a+ K- =D (11)

where the upper positive sign is used when the line charge is
outside the cylinder, as in Figure 2-25a, while the lower
negative sign is used when the line charge is within the cylin-
der, as in Figure 2-25b. Because the cylinder is chosen to be in
the right half-plane, 1 5 K 1 : co, the unknown parameters K,

M ýýý
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(a) (b)

Figure 2-25 The electric field surrounding a line charge A a distance D from the
center of a conducting cylinder of radius R is the same as if the cylinder were replaced
by an image charge -A, a distance b = R 2/D from the center. (a) Line charge outside
cylinder. (b) Line charge inside cylinder.

and a are expressed in terms of the given values R and D
from (11) as

D 2 )*1

KI= Rýý- ,
D2-R2

a= + 2D

For either case, the image line charge then lies a distance b
from the center of the cylinder:

a(l+KI) R 2

K,-1 D

being inside the cylinder when the inducing charge is outside
(R < D), and vice versa, being outside the cylinder when the
inducing charge is inside (R >D).
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The force per unit length on the cylinder is then just due to
the force on the image charge:

A2 A2D
f 2•eo(D-b) 27.eo(D 2 -R 2) (14)

2-6-4 Two Wire Line

(a) Image Charges
We can continue to use the method of images for the case

of two parallel equipotential cylinders of differing radii R1
and R 2 having their centers a distance D apart as in Figure
2-26. We place a line charge A a distance b, from the center of
cylinder 1 and a line charge -A a distance b2 from the center
of cylinder 2, both line charges along the line joining the
centers of the cylinders. We simultaneously treat the cases
where the cylinders are adjacent, as in Figure 2-26a, or where
the smaller cylinder is inside the larger one, as in Figure
2-26b.

The position of the image charges can be found using (13)
realizing that the distance from each image charge to the
center of the opposite cylinder is D-b so that

R R

bi = R b= =E=- (15)
D b2' D-bl

where the upper signs are used when the cylinders are
adjacent and lower signs are used when the smaller cylinder is
inside the larger one. We separate the two coupled equations
in (15) into two quadratic equations in b1 and b2:

b2 [D -R2+R ]b+R=O
D

(16)
bF [D -R1 +R lb+R =b2 ' D b2 +R 2 = 0D

with resulting solutions

[D -R +R 2 ] D -R2 +R2 2
2D 2D )R-)R2

[ +R - R D2+ R -R' (17)
2D T\ 2D - ]I

We were careful to pick the roots that lay outside the region
between cylinders. If the equal magnitude but opposite
polarity image line charges are located at these positions, the
cylindrical surfaces are at a constant potential.
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R 2

2

D -b,

Figure 2-26 The solution for the electric field between two parallel conducting
cylinders is found by replacing the cylinders by their image charges. The surface
charge density is largest where the cylinder surfaces are closest together. This is called
the proximity effect. (a) Adjacent cylinders. (b) Smaller cylinder inside the larger one.

(b) Force of Attraction
The attractive force per unit length on cylinder 1 is the

force on the image charge A due to the field from the
opposite image charge -A:

A
2

2r7eo[+(D - bi) - b2]

A 2

2 2D2
2  2 2 1/2
P -R +R2 2]

417Tre o 2D) Rj

A2

S-R 2  (18)
4 Dreo[ -R

2
+R 2L \ 2D RJ

· __ ___ ___ I_

b, =
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R2
2

Sb -D

R12
=D+b 2

Fig. 2-26(b)

(c) Capacitance Per Unit Length
The potential of (2) in the region between the two cylinders

depends on the distances from any point to the line charges:

A S1
V= In s-

27Teo S2

To find the voltage difference between the cylinders we pick
the most convenient points labeled A and B in Figure 2-26:

sl= +(R,-bi)

s2 = +(DFb2 -R 1 ) s2 = R 2 - b2

although any two points on the surfaces could have been
used. The voltage difference is then

A (R, -hb ) (R -b \

sl = +(D-b, iTR2)

VI- V2 = (-i ( - 2
2neo (DTb2-RI)(D-bivR2)
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This expression can be greatly reduced using the relations

DFb=-, D-bi= + (22)
bi 2b

to

A blb2
Vi - V2= -A In

21reo RIR 2
2 2

A In{+[D -RI-R 21
2re-o 2RIR 2

2_D2-R 2 2 2 1/2
+ 2RR 1} (23)

R\ 2RIR2

The potential difference V1 - V2 is linearly related to the
line charge A through a factor that only depends on the
geometry of the conductors. This factor is defined as the
capacitance per unit length and is the ratio of charge per unit
length to potential difference:

A 2w0o

VI - V, [D -R1-R2]+ D-R, -RE
2R1R2 2RIR2

(= (24)

cosh 1 +
2RIR2

where we use the identity*

In [y + (y2- 1)1/2] = cosh-I y (25)

We can examine this result in various simple limits.
Consider first the case for adjacent cylinders (D > R1 + R2 ).

1. If the distance D is much larger than the radii,

2 reo 2ireo
lim Cra (26)o~Ra+RO Iln [D/(RIR2)]= cosh' [D2 /(2RIR 2)] (26)

2. The capacitance between a cylinder and an infinite plane
can be obtained by letting one cylinder have infinite
radius but keeping finite the closest distance s=

e" + e
- X

* y = cosh x = +
2

(e') 2 -2ye + 1 = 0

e = y ±(y2_ 1) 2

x = cosh-'y = in [y (y2- 1)1'2]



The Method of Images with Point Charges and Spheres 103

D-RI-R 2 between cylinders. If we let R, become
infinite, the capacitance becomes

2 ITE 0
lim C= 2 1/2

Rl s+R 2 s+R 2
D-R,-R2=S (finite) In R2 2__ 11/

2 xeo2-TEO (27)

cosh-1 (s•R 2

3. If the cylinders are identical so that RI=R 2 -R, the
capacitance per unit length reduces to

lim C 0 TE (28)
RD=Rr/R DD[D -I D

In T-+- - 1 cosh-'
2R \2R 2R

4. When the cylinders are concentric so that D=0, the
capacitance per unit length is

21re 22re o
lim C= - (29)
D=, In(R 1/R 2) cosh - [(Rf +R2)/(2RR 2)]

2-7 THE METHOD OF IMAGES WITH POINT CHARGES AND
SPHERES

2-7-1 Point Charge and a Grounded Sphere

A point charge q is a distance D from the center of the
conducting sphere of radius R at zero potential as shown in
Figure 2-27a. We try to use the method of images by placing a
single image charge q' a distance b from the sphere center
along the line joining the center to the point charge q.

We need to find values of q' and b that satisfy the zero
potential boundary condition at r = R. The potential at any
point P outside the sphere is

I q q'!
V 41 + (1)4 7Teo s s

where the distance from P to the point charges are obtained
from the law of cosines:

s = [r2 +D0 2 - 2rD cos 0 1/2
.. 92. 9 ..- 11

s' =b -+r--2r cos 01



104 The Electric Field
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qR
q D
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Figure 2-27 (a) The field due to a point charge q, a distance D outside a conducting
sphere of radius R, can be found by placing a single image charge -qRID at a distance
b = R/ID from the center of the sphere. (b) The same relations hold true if the charge
q is inside the sphere but now the image charge is outside the sphere, since D < R.

At r = R, the potential in (1) must be zero so that q and q'
must be of opposite polarity:

=9 (q2 2(S S' rR -)I =R

where we square the equalities in (3) to remove the square
roots when substituting (2),

q 2[b 2+R'-2Rbcos 0] = q'2 [R 2 +D 2 -2RD cos 0] (4)
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Since (4) must be true for all values of 0, we obtain the
following two equalities:

q2 (b 2+ R 2) = q' 2(R2 + D2 )
(5)

q b = q D

Eliminating q and q' yields a quadratic equation in b:

b'-bD[ 1+ +R 2 =O (6)

with solution

b=- 1[+1+ -R

2 {[ 1 ( R)2D1 (R)2] (7)

remembering from (3) that q and q' have opposite sign. Weignore the blower=D solution with q'= -q since the image charge
must always be outsidethesphere with valuregion of interest. If we allowed

this solution, the net charge at the position of the inducing
charge is zero, contrary to our statement that the net charge
is q.

The image charge distance b obeys a similar relation as was
found for line charges and cylinders in Section 2.6.3. Now,
however, the image charge magnitude does not equal the
magnitude of the inducing charge because not all the lines of
force terminate on the sphere. Some of the field lines
emanating from q go around the sphere and terminate at
infinity.

The force on the grounded sphere is then just the force on
the image charge -q' due to the field from q:

nn' 2R
2I

2
2 
2

4weo(D-b) 
4xeoD(D-b) 

R
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The electric field outside the sphere is found from (1) using
(2) as

E= -V V = - [(r-D cos 0)i,+D sin Oisl

q' ie]) (10)
+S- [(r- b cos 0)i, + b sin ] (10)

On the sphere where s'= (RID)s, the surface charge dis-
tribution is found from the discontinuity in normal electric
field as given in Section 2.4.6:

q(D - R2)-(r = R)= eoE,(r = R)= 41rR[R2 +D2 - 2RD cos /2

(11)
The total charge on the sphere

qT= o•(r=R)2rR2 sin 0 dO

2 R  [R +D2- 2RD cos 0]s

can be evaluated by introducing the change of variable

u=R2 + D 2 -2RD cos 0, du = 2RD sin 0 dO (13)

so that (12) integrates to

q(D 2 - R 2) (D+R)
• du

qT = 4D J(D-R,

q(D-2 - 2 2 (D+R)
2  qR

4D u / (D-R,) D (14)

which just equals the image charge q'.
If the point charge q is inside the grounded sphere, the

image charge and its position are still given by (8), as illus-
trated in Figure 2-27b. Since D < R, the image charge is now
outside the sphere.

2-7-2 Point Charge Near a Grounded Plane

If the point charge is a distance a from a grounded plane,
as in Figure 2-28a, we consider the plane to be a sphere of
infinite radius R so that D = R + a. In the limit as R becomes
infinite, (8) becomes

R
lim q'=-q, b =R-a (15)
R-~o (1+a/R)

D-R+a

I
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q
a-Eoi

x

nage charge

(a) (b)

Figure 2-28 (a) A point charge q near a conducting plane has its image charge -q
symmetrically located behind the plane. (b) An applied uniform electric field causes a
uniform surface charge distribution on the conducting plane. Any injected charge
must overcome the restoring force due to its image in order to leave the electrode.

so that the image charge is of equal magnitude but opposite
polarity and symmetrically located on the opposite side of the
plane.

The potential at any point (x, y, z) outside the conductor is
given in Cartesian coordinates as

V= q 1 1
1V /) (16)

(4Eo[(x+a)2+y2+z2]
1/2 [(x-a)2+ +z 1 2 (16)

with associated electric field

, q (x + a)i, + yi, + zi (x-a)ix+yi,+z*i,
E-V- 4eo[(x+a)2 + 2 + Z2]3/2 [(x-a)2 +y2 +z23

(17)

Note that as required the field is purely normal to the
grounded plane

E,(x = 0) =0, E,(x =0)=0 (18)

The surface charge density on the conductor is given by the
discontinuity of normal E:

o'(x = 0) = - eoE(x = 0)

q 2a

41r [y2 +z2 + a2 ]s3 /2

= qa ; r 2 2

2(r r + (19)

where the minus sign arises because the surface normal
points in the negative x direction.
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The total charge on the conducting surface is obtained by
integrating (19) over the whole surface:

qT= •o(x = 0)2rr dr

(a" rdr
=qa I (r +a2)s32

= (rqa )1/2o = -q (20)

As is always the case, the total charge on a conducting surface
must equal the image charge.

The force on the conductor is then due only to the field
from the image charge:

2
q

f = - i.oa (21)

This attractive force prevents, charges from escaping from
an electrode surface when an electric field is applied. Assume
that an electric field -Eoi, is applied perpendicular to the
electrode shown in Figure (2-28b). A uniform negative sur-
face charge distribution a = -EOEo as given in (2.4.6) arises to
terminate the electric field as there is no electric field within
the conductor. There is then an upwards Coulombic force on
the surface charge, so why aren't the electrons pulled out of
the electrode? Imagine an ejected charge -q a distance x
from the conductor. From (15) we know that an image charge
+q then appears at -x which tends to pull the charge -q back
to the electrode with a force given by (21) with a = x in
opposition to the imposed field that tends to pull the charge
away from the electrode. The total force on the charge -q is
then

2

f q= qEo- (22)
4rEo(2x)2

The force is zero at position x,

0= 0x =[16 0 (23)

For an electron (q = 1.6 X 10- 19 coulombs) in a field of Eo=
106 v/m, x,- 1.9X 10-8m. For smaller values of x the net
force is negative tending to pull the charge back to the elec-
trode. If the charge can be propelled past x, by external
forces, the imposed field will then carry the charge away from
the electrode. If this external force is due to heating of the
electrode, the process is called thermionic emission. High
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field emission even with a cold electrode occurs when the
electric field Eo becomes sufficiently large (on the order of
1010 v/m) that the coulombic force overcomes the quantum
mechanical binding forces holding the electrons within the
electrode.

2-7-3 Sphere With Constant Charge

If the point charge q is outside a conducting sphere (D > R)
that now carries a constant total charge Qo, the induced
charge is still q'= -qR/D. Since the total charge on the sphere
is Qo, we must find another image charge that keeps the
sphere an equipotential surface and has value Qo+qR/D.
This other image charge must be placed at the center of the
sphere, as in Figure 2-29a. The original charge q plus the
image charge q'= -qRID puts the sphere at zero potential.
The additional image charge at the center of the sphere raises
the potential of the sphere to

Qo +qR/DV = (24)
41reoR

The force on the sphere is now due to the field from the point
charge q acting on the two image charges:

f q qR (Qo+qR/D)

S- 41,o •+ "2
4ireo D(D4-b)2+ (Qo + qID)

(25)
q ( qRD (Qo+qR/D) (

4rEo (D -R 2)2 D

V= Vo

Sphere with constant Sphere at constant
charge Q0 voltage Vo

(a) (b)

Figure 2-29 (a) If a conducting sphere carries a constant charge Qo or (b) is at a
constant voltage Vo, an additional image charge is needed at the sphere center when a
charge q is nearby.
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2-7-4 Constant Voltage Sphere

If the sphere is kept at constant voltage V0 , the image
charge q'= -qRID at distance b = R 2/D from the sphere
center still keeps the sphere at zero potential. To raise the
potential of the sphere to V0 , another image charge,

Qo= 41reoRVo (26)

must be placed at the sphere center, as in Figure 2-29b. The
force on the sphere is then

fq= qR Qo (27)
4veo D(D- b)2 2D (27)

PROBLEMS

Section 2.1
1. Faraday's "ice-pail" experiment is repeated with the
following sequence of steps:

(i) A ball with total charge Q is brought inside an
insulated metal ice-pail without touching.

(ii) The outside of the pail is momentarily connected to
the ground and then disconnected so that once again
the pail is insulated.

(iii) Without touching the pail, the charged ball is removed.

(a) Sketch the charge distribution on the inside and outside
of the pail during each step.

(b) What is the net charge on the pail after the charged ball
is removed?

2. A sphere initially carrying a total charge Q is brought into
momentary contact with an uncharged identical sphere.

(a) How much charge is on each sphere?
(b) This process is repeated for N identical initially

uncharged spheres. How much charge is on each of the
spheres including the original charged sphere?

(c) What is the total charge in the system after the N
contacts?

Section 2.2
3. The charge of an electron was first measured by Robert A.
Millikan in 1909 by measuring the electric field necessary to
levitate a small charged oil drop against its weight. The oil
droplets were sprayed and became charged by frictional
electrification.
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+. + Total charge q
+ R +

+ +

+ +

StEo

A spherical droplet of radius R and effective mass density
p. carries a total charge q in a gravity field g. What electric
field Eoi, will suspend the charged droplet? Millikan found by
this method that all droplets carried integer multiples of
negative charge e - 1.6 x 10 - coul.

4. Two small conducting balls, each of mass m, are at the end
of insulating strings of length I joined at a point. Charges are

g

placed on the balls so that they are a distance d apart. A
charge QI is placed on ball 1. What is the charge Q2 on ball 2?

5. A point charge -Qi of mass m travels in a circular orbit of
radius R about a charge of opposite sign Q2.

Q2

(a) What is the equilibrium angular speed of the charge
-Qi?

(b) This problem describes Bohr's one electron model of
the atom if the charge -Q1 is that of an electron and Q2 = Ze
is the nuclear charge, where Z is the number of protons.
According to the postulates of quantum mechanics the
angular momentum L of the electron must be quantized,

L = mvR = nh/2i, n = 1, 2, 3, -

where h = 6.63 x 10 - 3 4 joule-sec is Planck's constant. What are
the allowed values of R?
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(c) For the hydrogen atom (Z = 1) what is the radius of the
smallest allowed orbit and what is the electron's orbital veloc-
ity?

6. An electroscope measures charge by the angular deflection
of two identical conducting balls suspended by an essentially
weightless insulating string of length 1. Each ball has mass M
in the gravity field g and when charged can be considered a
point charge.

I

Q/2 Q/2

A total charge Q is deposited on the two balls of the elec-
troscope. The angle 0 from the normal obeys a relation of the
form

tan 0 sin 2 0 = const

What is the constant?

7. Two point charges qi and q2 in vacuum with respective
masses mi and m2 attract (or repel) each other via the
coulomb force.

mi, q1 m2, q2
* 0

<- r--
ri

(a) Write a single differential equation for the distance
between the charges r = r2 - rl. What is the effective mass of
the charges? (Hint: Write Newton's law for each charge and
take a mass-weighted difference.)

(b) If the two charges are released from rest at t = 0 when a
distance ro from one another, what is their relative velocity
v = dr/dt as a function of r? Hint:

dv dv dr dv d 1 )

dt dr dt dr dr 2

^·· _II

B

B
8

s

s~
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(c) What is their position as a function of time? Separately
consider the cases when the charges have the same or
opposite polarity. Hint:

Let = /r

U2 du sin
2 2 a

udu _ -In• u+ a )
S2 2

(d) If the charges are of opposite polarity, at what time will
they collide? (Hint: If you get a negative value of time,
check your signs of square roots in (b).)

(e) If the charges are taken out of the vacuum and placed
in a viscous medium, the velocity rather than the acceleration
is proportional to the force

f 1V1 = f , 9 2V2 =f 2

where 1and 32 are the friction coefficients for each charge.
Repeat parts (a)-(d) for this viscous dominated motion.

8. A charge q of mass m with initial velocity v= voi, is
injected at x =0 into a region of uniform electric field E =
Eoi,. A screen is placed at the position x = L. At what height h
does the charge hit the screen? Neglect gravity.

hf

9. A pendulum with a weightless string of length I has on its
end a small sphere with charge q and mass m. A distance D

Q I Q

q~i2

q
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away on either side of the pendulum mass are two fixed
spheres each carrying a charge Q. The three spheres are of
sufficiently small size that they can be considered as point
charges and masses.

(a) Assuming the pendulum displacement f to be small
(6<< D), show that Newton's law can be approximately written
as

dt

What is 0w?Hint:

1 1 2f
sin 06~

1' (D f)2 D D

(b) At t = 0 the pendulum is released from rest with f = 6o.
What is the subsequent pendulum motion?

(c) For what values of qQ is the motion unbounded with
time?

Y 10. Charges Q, Q, and q lie on the corners of an equilateral
triangle with sides of length a.

(a) What is the force on the charge q?
(b) What must q be for E to be zero half-way up the altitude

at P?

---- 'a --

11. Find the electric field along the z axis due to four equal
magnitude point charges q placed on the vertices of a square
with sides of length a in the xy plane centered at the origin

.a i-
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when:

(a) the charges have the same polarity, q = q2= q3 = q4- 4q;
(b) the charges alternate in polarity, ql = q3 q, q2 = q4

-q;

(c) the charges are q, = q2 q, qs3 = q4-.

Section 2.3
12. Find the total charge in each of the following dis-
tributions where a is a constant parameter:

(a) An infinitely long line charge with density

A(z)= Aoe
- IzI

/a

(b) A spherically symmetric volume charge distributed
over all space

po
p(r) = 4[1+r/a]4

(Hint: Let u = 1+ r/a.)
(c) An infinite sheet of surface charge with density

- Ixl/a
O-o

e

[1l+(y/b)2 ]

13. A point charge q with mass M in a gravity field g is
released from rest a distance xo above a sheet of surface
charge with uniform density 0a0.
*q

xo Mg

+ + + ++++ + + + + + + O0

(a) What is the position of the charge as a function of time?
(b) For what value of o-0 will the charge remain stationary?
(c) If o-0 is less than the value of (b), at what time and with

what velocity will the charge reach the sheet?

f 14. A point charge q at z = 0 is a distance D away from an
Xo infinitely long line charge with uniform density Ao.

(a) What is the force on the point charge q?
(b) What is the force on the line charge?
(c) Repeat (a) and (b) if the line charge has a distribution

SA(Z)
= A 0 Z I

.<--•D >----•

+

+

+

+

+

+

+

+

+

+



15. A small sphere of mass M in a gravity field g carrying a
charge Q is connected by a massless string to a sheet of
surface charge of the same polarity with density co. What is
the angle 0 between the sheet and charge?

16. A line charge A along the z axis extends over the interval
-L tz sL.

z

. .

........ .. .......

x
(a) Find the electric field in the z = 0 plane.
(b) Using the results of (a) find the electric field in the z = 0

plane due to an infinite strip (-oos y coo) of height 2L with

116 The Electric Field

Mg

x

YI

~:':':"~'"'"'"`"";''"'''"'"""''""""':

-------· ·------ --- I



Probems 117

surface charge density oo.Check your results with the text for
L-oo.Hint: Let u=x2 +y 2

du = I ( (L 2 -x 2 )u- 2L 22

17. An infinitely long hollow semi-cylinder of radius R car-
ries a uniform surface charge distribution 0o.

(a) What is the electric field along the axis of the cylinder?
(b) Use the results of (a) to find the electric field along the

axis due to a semi-cylinder of volume charge p0 .
(c) Repeat (a) and (b) to find the electric field at the center

of a uniformly surface or volume charged hemisphere.

:' C

18. (a) Find the electric field along the z axis of a circular loop
centered in the xy plane of radius a carrying a uniform line charge
Xo for y > 0 and -Xo for y < 0.

Y

x

(b) Use the results of (a) to find the electric field along the z
axis of a circular disk of radius acarrying a uniform surface charge
0ofor y > 0 and -ao for y < 0.

19. (a) Find the electric field along the z axis due to a square
loop with sides of length a centered about the z axis in the xy
plane carrying a uniform line charge A. What should your
result approach for z >> a?

(b) Use the results of (a) to find the electric field along the z
axis due to a square of uniform surface charge Oo. What



pproach as a -oo? Hint: Let
o- -

2 x du 2 2u-z
u= z +-, I =-tan 2

4 J' u12u-z IzI z

20. A circular loop of radius a in the xy plane has a uniform
line charge distribution Ao for y > 0 and -A 0 for y <0.

+iy] +zi,

+ Xo coul/m

ctric field along the z axis?
of (a) to find the electric field along the z

axis due to a surface charged disk, whose density is cro for y > 0
and -o-O for y <0. Hint:

Sr 2 dr r n (r
2 2 23/2 T= 2 +ln (r+vr7 z2 )

(r +z ) 7r + z

(c) Repeat (a) if the line charge has distribution A = Ao sin 4.
(d) Repeat (b) if the surface charge has distribution o=

ao sin 4.

21. An infinitely long line charge with density Ao is folded in
half with both halves joined by a half-circle of radius a. What
is the electric field along the z axis passing through the center
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4- + + + ++/-a

It -Y

+ ++ + a4++

x

of the circle. Hint:

x dx -1
J [x2 + 23/2 2 2a1/2

dx x
[X22 211/2

S[x'+a']"' a [x +a ]"
i,r = cos 4 i + sin 4 i,

Section 2.4
22. Find the total charge enclosed within each of the follow-
ing volumes for the given electric fields:

(a) E = Ar 2 i, for a sphere of radius R;
(b) E = A r2ir for a cylinder of radius a and length L;
(c) E = A (xi, +yi,) for a cube with sides of length a having

a corner at the origin.

23. Find the electric field everywhere for the following
planar volume charge distributions:

(a) p(x)= poe - 0Ix,/ -aoOxoo

(b) p(x) -po,
I Po,

-b:s x 5--a
a <xsb

pox
(c) p(x)=--, -dx -d

d

+ 4++ +

f+ + ++
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p(x)

d) p(x) po(1+x/d), -dsxO0
po(1 - x/d), 05x5d

24. Find the electric field everywhere for the following
spherically symmetric volume charge distributions:

(a) p(r)=poe- '/, Osroo

(Hint: r2 e-/a dr = -a e-""[r+2a 2(r/a +)].)

(b) p(r)= pi, = ir<Rl

P2, RI<r<R2

(c) p(r)=porlR, O<r<R

25. Find the electric field everywhere for the following
cylindrically symmetric volume charge distributions:

(a) p(r)=poe -_ r" , O<r<oo

[Hint: I re-r/ dr = - a e-r"a (r/a + 1).]

(b) p(r)= pi, O<r<a
(P2, a<r<b

(c) p(r)=por/a, O<r<a

+~Y

rir = xi, +yiy

r'ir, = (x - d)i, + yiy

26. An infinitely long cylinder of radius R with uniform
volume charge density Po has an off-axis hole of radius b with
center a distance d away from the center of the cylinder.

__
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What is the electric field within the hole? (Hint: Replace the
hole by the superposition of volume charge distributions of
density po and -po and use the results of (27). Convert the
cylindrical coordinates to Cartesian coordinates for ease of
vector addition.)

Section 2.5
27. A line charge A of length 1 lies parallel to an infinite sheet
of surface charge oo. How much work is required to rotate
the line charge so that it is vertical?

I

00

28. A point charge q of mass m is injected at infinity with
initial velocity voi. towards the center of a uniformly charged
sphere of radius R. The total charge on the sphere Q is the
same sign as q.

+ 3-
xq V0

+

(a) What is the minimum initial velocity necessary for the
point charge to collide with the sphere?

(b) If the initial velocity is half of the result in (a), how close
does the charge get to the sphere?

29. Find the electric field and volume charge distributions
for the following potential distributions:

(a) V= Ax2

(b) V = Axyz

(c) V= Ar 2 sin4 + Brz

(d) V= Ar 9 sin 0 cos 4
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30. Which of the following vectors can be an electric field? If
so, what is the volume charge density?

(a) E= ax2y2i.

(b) E = a(i, cos 0-ie sin 0)

(c) E= a(yi.-xi,)

(d) E = (a/r 2 )[ir(1 +cos 4)+ij sin 0]
31. Find the potential difference V between the following
surface charge distributions:

o0 -oo

+ a +
- + + ++

++

- + +0

(a) (b) (c)

(a) Two parallel sheets of surface charge of opposite
polarity +oo and spacing a.

(b) Two coaxial cylinders of surface charge having infinite
length and respective radii a and b. The total charge per unit
length on the inner cylinder is Ao while on the outer cylinder
is -Ao.

(c) Two concentric spheres of surface charge with respec-
tive radii R, and R 2. The inner sphere carries a uniformly
distributed surface charge with total charge qgo. The outer
sphere has total charge -qo.

32. A hemisphere of radius R has a uniformly distributed
surface charge with total charge Q.

(a) Break the spherical surface into hoops of line charge of
thickness R dO. What is the radius of the hoop, its height z',
and its total incremental charge dq?

J •
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(b) What is the potential along the z axis due to this incre-
mental charged hoop? Eliminate the dependence on 8 and
express all variables in terms of z', the height of the differen-
tial hoop of line charge.

(c) What is the potential at any position along the z axis
due to the entire hemisphere of surface charge? Hint:

i dz' 2a++bz'
S[a + bz']l/2 = b

(d) What is the electric field along the z axis?
(e) If the hemisphere is uniformly charged throughout its

volume with total charge Q, find the potential and electric
field at all points along the z axis. (Hint: rIr/z+rZ dr=
- (z2+ r)3/ 2 .)

33. Two point charges q, and q2 lie along the z axis a distance
a apart.

,0,0)

Y

(a) Find the potential at the coordinate (r, 0, 4).
(Hint: r = r2 + (a/2)2 - ar cos 0.)

(b) What is the electric field?
(c) An electric dipole is formed if q2 = -ql. Find an

approximate expression for the potential and electric field for
points far from the dipole, r >>a.

(d) What is the equation of the. field lines in this far field
limit that is everywhere tangent to the electric field

dr E,

r dO Eo

Find the equation of the field line that passes through the
point (r = ro, 0 = 7r/2). (Hint: I cot 0 dO = In sin 0.)

34. (a) Find the potentials V1 , V2, and V 3 at the location of
each of the three-point charges shown.
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q2

P fe

qa/+++++)q3 (a) . . . .(a) .

(d)

(b) Now consider another set of point charges qi, q2, and qg
at the same positions and calculate the potentials V;, V2, and
V'. Verify by direct substitution that

q• 1,+qV 2 +q'sVs =• • +q2•V +qs V+
The generalized result for any number of charges is called
Green's reciprocity theorem,

NI (qiV-q4V,)=o
i=1

(c) Show that Green's reciprocity theorem remains
unchanged for perfect conductors as the potential on the
conductor is constant. The qi is then the total charge on the
conductor.

(d) A charge q at the point P is in the vicinity of a zero
potential conductor. It is known that if the conductor is
charged to a voltage V,, the potential at the point P in the
absence of the point charge is V,. Find the total charge q,
induced on the grounded conductor. (Hint: Let q = q, q =
qc, Vs = 0,q = 0, VI = VO, V = V.)

(e) If the conductor is a sphere of radius R and the point P
is a distance D from the center of the sphere, what is q ? Is
this result related to the method of images?

(f) A line charge A is a distance D from the center of a
grounded cylinder of radius a. What is the total charge per
unit length induced on the cylinder?

(g) A point charge q is between two zero potential perfect
conductors. What is the total charge induced on each
conducting surface? (Hint: Try q=q, q2= q(y = 0),q=
q(y =d), V2 = 0, Vs = 0, q'i = 0, V2 = Vo, V3 = 0.)

(h) A point charge q travels at constant velocity vo between
shorted parallel plate electrodes of spacing d. What is the
short circuit current as a function of time?
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Section 2.6
35. An infinitely long line charge A is a distance D from the
center of a conducting cylinder of radius R that carries a total
charge per unit length Ac. What is the force per unit length on

Xc

the cylinder? (Hint: Where can another image charge be
placed with the cylinder remaining an equipotential surface?)

36. An infinitely long sheet of surface charge of width d and
uniform charge density ao0 is placed in the yz plane.

00

0
0

o

+ ++ +++++ +++++ +++ +

A
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(a) Find the electric field everywhere in the yz plane.
(Hint: Break the sheet into differential line charge elements
dA = ao dy'.)

(b) An infinitely long conducting cylinder of radius a sur-
rounds the charged sheet that has one side along the axis of
the cylinder. Find the image charge and its location due to an
incremental line charge element uo dy' at distance y'.

(c) What is the force per unit length on the cylinder?
Hint:

I ln(1 -y') dy'=- -cy [In ( -cy')-1]

37. A line charge A is located at coordinate (a,b) near a
right-angled conducting corner.

y

*(a, b) * J (a, b)

_________________________l x •\\\\~\\\\N\N\\\, x

A -x

(a) (d)

(a) Verify that the use of the three image line charges
shown satisfy all boundary conditions.

(b) What is the force per unit length on A?
(c) What charge per unit length is induced on the surfaces

x=0andy=0?
(d) Now consider the inverse case when three line charges

of alternating polarity +A are outside a conducting corner.
What is the force on the conductor?

(e) Repeat (a)-(d) with point charges.

Section 2.7
38. A positive point charge q within a uniform electric field
Eoi, is a distance x from a grounded conducting plane.

(a) At what value of x is the force on the charge equal to
zero?

(b) If the charge is initially at a position equal to half the
value found in (a), what minimum initial velocity is necessary
for the charge to continue on to x = +oo? (Hint: E.=
-dVldx.)

Ah
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t Eoiý

eqEgix'*#

(c) If E=O0, how much work is necessary to move the
point charge from x = d to x = +oo?

39. A sphere of radius R2 having a uniformly distributed
surface charge Q surrounds a grounded sphere of radius R I.

(a) What is the total charge induced on the grounded
sphere? (Hint: Consider the image charge due to an
incremental charge dq = (Q/47r) sin 0 dO d,4 at r = R2 .)

(b) What are the potential and electric field distributions
everywhere?

40. A point charge q located a distance D (D < R) from the
center is within a conducting sphere of radius R that is at
constant potential Vo. What is the force on q?

41. A line charge of length L with uniform density Ao is
orientated the two ways shown with respect to a grounded
sphere of radius R. For both cases:
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i;

La

)10r

Y

and where is it located?
(b) What is the total charge induced on the sphere? Hint:

= In (z'+vrR eP)

42. A conducting hemispherical projection of radius R is
placed upon a ground plane of infinite extent. A point
charge q is placed a distance d (d > R) above the center of the
hemisphere.

*req

R

(a) What is the force on q? (Hint: Try placing three
image charges along the z axis to make the plane and hemi-
sphere have zero potential.)

(b) What is the total charge induced on the hemisphere at
r= R and on the ground plane IyI >R? Hint:

J rdr -1
[r2+d2]s1 2 =r" 2 -+d

onsider the incremental charge element Ao dz' a dis-

rf om the sphere center What is its image charge
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43. A point charge q is placed between two parallel grounded
conducting planes a distance d apart.

(a) The point charge q a distance a above the lower plane
and a distance b below the upper conductor has symmetric-
ally located image charges. However, each image charge itself
has an image in the opposite conductor. Show that an infinite
number of image charges are necessary. What are the loca-
tions of these image charges?

(b) Show that the total charge on each conductor cannot be
found by this method as the resulting series is divergent.

(c) Now consider a point charge q, a radial distance Ro
from the center of two concentric grounded conducting
spheres of radii R 1 and R2 . Show that an infinite number of
image charges in each sphere are necessary where, if we
denote the nth image charge in the smaller sphere as q. a
distance b. from the center and the nth image charge in the
outer sphere as q', a distance b'~ from the center, then

R,

R

bn

R 2

b.+l =- n4

b.
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(d) Show that the equations in (c) can be simplified to

(R 1\
qn+i -qn-I =j 0

(e) Try power-law solutions

q, = AA", b, = Ba

and find the characteristic values of A and a that satisfy the
equations in (d).

(f) Taking a linear combination of the solutions in (e),
evaluate the unknown amplitude coefficients by substituting
in values for n = 1 and n = 2. What are all the q, and bn?

(g) What is the total charge induced on the inner sphere?

(Hint: C a" = a/(1 - a) for a < 1)

(h) Using the solutions of (f) with the difference relations of
(c), find q",and b'.

(i) Show that Y q' is not a convergent series so that the

total charge on the outer sphere cannot be found by this
method.

(j) Why must the total induced charge on both spheres be
-q? What then is the total induced charge on the outer
sphere?

(k) .Returning to our original problem in (a) and (b) of a
point charge between parallel planes, let the radii of the
spheres approach infinity such that the distances

d= R2 -R 1, a= R2 -Ro, b=Ro-R 1

remains finite. What is the total charge induced on each plane
conductor?

44. A point charge Q is a distance D above a ground plane.
Directly below is the center of a small conducting sphere of
radius R that rests on the plane.

(a) Find the first image charges and their positions in the
sphere and in the plane.

(b) Now find the next image of each induced in the other.
Show that two sets of image charges are induced on the
sphere where each obey the difference equations

q.R R 2

+2R - b.,' 2R - b,
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(c) Eliminating the b., show that the governing difference
equation is

-- -+-= 0
q.+i q. q.-I

Guess solutions of the form

P, = l/q, = AA"

and find the allowed values of A that satisfy the difference
equation. (Hint: For double roots of A the total solutidn is of
the form P, = (AI + A2 n)A .)

(d) Find all the image charges and their positions in the
sphere and in the plane.

(e). Write the total charge induced on the sphere in the
form

0 A
qT = Y A

n=1 [1-an

What are A and a?
(f) We wish to generalize this problem to that of a sphere

resting on the ground plane with an applied field E = -Eo0 i at
infinity. What must the ratio QID 2 be, such that as Q and D
become infinite the field far from the sphere in the 0 = v/2
plane is -Eoi.?

(g) In this limit what is the total charge induced on the

sphere? (Hint: Y -= V/6.)
45. A conducting sphere of radius R at potential Vo has its
center a distance D from an infinite grounded plane.

j
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(a) Show that an infinite number of image charges in the
plane and in the sphere are necessary to satsify the boundary
conditions

b, =
2D-b,-1

What are ql and q2?
(b) Show that the governing difference equation is

--I= + =0
qn-1 q. qn+l

What is c?
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q•= q.n-R
2D-b.-j'
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(c) Solve the difference equation in (b) assuming solutions
of the form

P,= 1/q. = AA"

What values of A satisfy (b)? Hint:

c/2 + (c/2)r-1= 1
c/2 - ,I(c/2) -

(d) What is the position of each image charge? What is the
limiting position of the image charges as n -+ o?

(e) Show that the capacitance (the ratio of the total charge
on the sphere to the voltage Vo) can be written as an infinite
series

C=Co(A2 -1) 1 4A A2 A3

What are Co and A?
(f) Show that the image charges and their positions for two

spheres obey the difference equations

q'R R2
q,+l = .- b.+ = +R

R 2 nq, R2
q= b=D"D b' b" D b,

where we use the upper signs for adjacent spheres and the
lower signs when the smaller sphere of radius R1 is inside the
larger one.

q. , b
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(g) Show that the governing difference equation is of the
form

Pn+l cPn +P , -1I = 0

What are P. and c?
(h) Solve (g) assuming solutions of the form

Pn =AA n

(i) Show that the capacitance is of the form

C _21 A A 2

What are Co, 6, and A?
(j) What is the capacitance when the two spheres are

concentric so that D = 0. (Hint: a" = 1/(1 - a) for a < 1.)
n=O
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The presence of matter modifies the electric field because
even though the material is usually charge neutral, the field
within the material can cause charge motion, called conduc-
tion, or small charge displacements, called polarization.
Because of the large number of atoms present, 6.02 x 1023 per
gram molecular weight (Avogadro's number), slight
imbalances in the distribution have large effects on the fields
inside and outside the materials. We must then self-
consistently solve for the electric field with its effect on charge
motion and redistribution in materials, with the charges.
resultant effect back as another source of electric field.

3-1 POLARIZATION

In many electrically insulating materials, called dielectrics,
electrons are tightly bound to the nucleus. They are not
mobile, but if an electric field is applied, the negative cloud of
electrons can be slightly displaced from the positive nucleus,
as illustrated in Figure 3-la. The material is then said to have
an electronic polarization. Orientational polarizability as in
Figure 3-1 b occurs in polar molecules that do not share their

No field

l \

\ /

Electric field E

Electronic polarization

+q
_E : F =qE

-4-
d Torque = dx qE

=pxE

F = -qE
p = qd

Orientation and ionic polarization

Figure 3-1 An electric dipole consists of two charges of equal magnitude but opposite
sign, separated by a small vector distance d. (a) Electronic polarization arises when the
average motion of the electron cloud about its nucleus is slightly displaced. (b) Orien-
tation polarization arises when an asymmetric polar molecule tends to line up with an
applied electric field. If the spacing d also changes, the molecule has ionic polarization.
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electrons symmetrically so that the net positive and negative
charges are separated. An applied electric field then exerts a
torque on the molecule that tends to align it with the field.
The ions in a molecule can also undergo slight relative dis-
placements that gives rise to ionic polarizability.

The slightly separated charges for these cases form electric
dipoles. Dielectric materials have a distribution of such
dipoles. Even though these materials are charge neutral
because each dipole contains an equal amount of positive and
negative charges, a net charge can accumulate in a region if
there is a local imbalance of positive or negative dipole ends.
The net polarization charge in such a region is also a source
of the electric field in addition to any other free charges.

3S--1 The Electric Dipole

The simplest model of an electric dipole, shown in Figure
3-2a, has a positive and negative charge of equal magnitude q
separated by a small vector displacement d directed from the
negative to positive charge along the z axis. The electric
potential is easily found at any point P as the superposition of
potentials from each point charge alone:

q qV= (1)
41reor+ 41reor-

The general potential and electric field distribution for any
displacement d can be easily obtained from the geometry
relating the distances r, and r- to the spherical coordinates r
and 0. By symmetry, these distances are independent of the
angle 4. However, in dielectric materials the separation
between charges are of atomic dimensions and so are very
small compared to distances of interest far from the dipole.
So, with r, and r_ much greater than the dipole spacing d, we
approximate them as

d
r+ - r -- cos

lim (2)
r~d d

r_=r+- cos 0
2

Then the potential of (1) is approximately

qd cos 0 p i, (3)
V2 (3)4weor- - 41reor

where the vector p is called the dipole moment and is defined
as

p = qd (coul-m)
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-0

Figure 3-2 (a) The potential at any point P due to the electric dipole is equal to the
sum of potentials of each charge alone. (b) The equi-potential (dashed) and field lines
(solid) for a point electric dipole calibrated for 4v•eolp = 100.

v V.

4•eor
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Because the separation of atomic charges is on the order of
1 A(10 - 10 m) with a charge magnitude equal to an integer
multiple of the electron charge (q = 1.6x 10-19 coul), it is
convenient to express dipole moments in units of debyes
defined as 1 debye=3.33x10-30 coul-m so that dipole
moments are of order p = 1.6 x 10-29 coul-m 4.8 debyes.
The electric field for the point dipole is then

p 3 (p * i,)i, - pE= -V- 3 [2 cos i, +sin i] = 3 (p i ) i (5)
4rreor 47reor

the last expressions in (3) and (5) being coordinate indepen-
dent. The potential and electric field drop off as a single
higher power in r over that of a point charge because the net
charge of the dipole is zero. As one gets far away from the
dipole, the fields due to each charge tend to cancel. The point
dipole equipotential and field lines are sketched in Figure
3-2b. The lines tangent to the electric field are

dr E,= 2 cot 0 r = ro sin 2 0 (6)
r dO Eo

where ro is the position of the field line when 0 = 7r/2. All field
lines start on the positive charge and terminate on the nega-
tive charge.

If there is more than one pair of charges, the definition of
dipole moment in (4) is generalized to a sum over all charges,

P = qiri (7)
all charges

where ri is the vector distance from an origin to the charge qi
as in Figure 3-3. When the net charge in the system is zero
(_ qj = 0), the dipole moment is independent of the choice of
origins for if we replace ri in (7) by ri +ro, where ro is the
constant vector distance between two origins:

p=Z qi(ri + ro)
0

= qijri + ro /q

_=qiri (8)

The result is unchanged from (7) as the constant ro could be
taken outside the summation.

If we have a continuous distribution of charge (7) is further
generalized to

r
p = rdq

all q
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p = fr dq

all q

Figure 3-3 The dipole moment can be defined for any distribution of charge. If the
net charge in the system is zero, the dipole moment is independent of the location of
the origin.

Then the potential and electric field far away from any
dipole distribution is given by the coordinate independent
expressions in (3) and (5) where the dipole moment p is given
by (7) and (9).

3-1-2 Polarization Charge

We enclose a large number of dipoles within a dielectric
medium with the differential-sized rectangular volume
Ax Ay Az shown in Figure 3-4a. All totally enclosed dipoles,
being charge neutral, contribute no net charge within the
volume. Only those dipoles within a distance d n of each
surface are cut by the volume and thus contribute a net
charge where n is the unit normal to the surface at each face,
as in Figure 3-4b. If the number of dipoles per unit volume is
N, it is convenient to define the number density of dipoles as
the polarization vector P:

P= Np= Nqd

The net charge enclosed near surface 1 is

dqi = (Nqd.)l. Ay Az = P.(x) Ay Az

while near the opposite surface 2

dq2 = -(Nqdt) 1 .+a, Ay Az = -P.(x +Ax) Ay Az (12)
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a

T / S,

Figure 3-4 (a) The net charge enclosed within a differential-sized volume of dipoles
has contributions only from the dipoles that are cut by the surfaces. All totally enclosed
dipoles contribute no net charge. (b) Only those dipoles within a distance d -n of the
surface are cut by the volume.

where we assume that Ay and Az are small enough that the
polarization P is essentially constant over the surface. The
polarization can differ at surface 1 at coordinate x from that
at surface 2 at coordinate x + Ax if either the number density
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N, the charge.q,or the displacement d is a function of x. The
difference in sign between (11) and (12) is because near S1 the
positive charge is within the volume, while near S2 negative
charge remains in the volume. Note also that only the
component of d normal to the surface contributes to the
volume of net charge.

Similarly, near the surfaces Ss and S4 the net charge
enclosed is

dq3 = (Nqd,)1, Ax Az = P,(y) Ax Az
(13)

dq4 = -(Nqd,) 1 ,+a, Ax Az = -P,(y +Ay) Ax Az

while near the surfaces S 5 and S6 with normal in the z direc-
tion the net charge enclosed is

dq5 = (Nqd.)I, Ax Ay = P,(z) Ax Ay
(14)

dq6 = -(Nqdd)l=+a, Ax Ay = -P,(z +Az) Ax Ay

The total charge enclosed within the volume is the sum of
(11)-(14):

dqT = dqI + dq2 + dqs + dq4 + dqs + dqa

(P.(x)-P.(x+Ax) P,(y)-P,(y+Ay)

+ P(z)-P(z +Az)) Ax Ay Az (15)
Az

As the volume shrinks to zero size, the polarization terms in
(15) define partial derivatives so that the polarization volume
charge density is

pd =li qT (aP + +P, = -V - P (16)
A.0o Ax Ay Az ax aVy az 6
Ay-.O

This volume charge is also a source of the electric field and
needs to be included in Gauss's law

V - (eoE) = pf+po = p -V • P (17)

where we subscript the free charge pf with the letter f to
distinguish it from the polarization charge p,. The total
polarization charge within a region is obtained by integrating
(16) over the volume,

q = pPidV=- V.PdV=- P dS (18)

where we used the divergence theorem to relate the polariza-
tion charge to a surface integral of the polarization vector.
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3-1-3 The Displacement Field

Since we have no direct way of controlling the polarization
charge, it is convenient to cast Gauss's law only in terms of
free charge by defining a new vector D as

D=eoE+P (19)

This vector D is called the displacement field because it differs
from e0E due to the slight charge displacements in electric
dipoles. Using (19), (17) can be rewritten as

V - (EOE+P)= V - D= p1 (20)

where pf only includes the free charge and not the bound
polarization charge. By integrating both sides of (20) over a
volume and using the divergence theorem, the new integral
form of Gauss's law is

V.DdV=f D-dS= pdV (21)

In free space, the polarization P is zero so that D = soE and
(20)-(21) reduce to the free space laws used in Chapter 2.

3-1-4 Linear Dielectrics

It is now necessary to find the constitutive law relating the
polarization P to the applied electric field E. An accurate
discussion would require the use of quantum mechanics,
which is beyond the scope of this text. However, a simplified
classical model can be used to help us qualitatively under-
stand the most interesting case of a linear dielectric.

(a) Polarizability
We model the atom as a fixed positive nucleus with a sur-

rounding uniform spherical negative electron cloud, as
shown in Figure 3-5a. In the absence of an applied electric
field, the dipole moment is zero because the center of charge
for the electron cloud is coincident with the nucleus. More
formally, we can show this using (9), picking our origin at the
position of the nucleus:

0 2w R o

p = Q(0) - f f irpor 3 sin 0 drdO d (22)
/ ~=oJo =o

Since the radial unit vector i, changes direction in space, it is
necessary to use Table 1-2 to write i, in terms of the constant
Cartesian unit vectors:

i, = sin 0 cos i. +sin 0 sin 4i, +cos Oi.
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-~ Z
o = 

-L.

No electric field Electric field applied r = a + r
2 -2 racos

(R> Ro )

(a)

Figure 3-5 (a) A simple atomic classical model has a negative spherical electron cloud
of small radius Ro centered about a positive nucleus when no external electric field is
present. An applied electric field tends to move the positive charge in the direction of
the field and the negative charge in the opposite direction creating an electric dipole.
(b) The average electric field within a large sphere of radius R (R >> Ro) enclosing many
point dipoles is found by superposing the average fields due to each point charge.

When (23) is used in (22) the x and y components integrate to
zero when integrated over 0, while the z component is zero
when integrated over 0 so that p = 0.

An applied electric field tends to push the positive charge
in the direction of the field and the negative charge in the
opposite direction causing a slight shift d between the center
of the spherical cloud and the positive nucleus, as in Figure
3-5a. Opposing this movement is the attractive coulombic
force. Considering the center of the spherical cloud as our
origin, the self-electric field within the cloud is found from
Section 2.4.3b as

Qr
E, = 3 (24)

In equilibrium the net force F on the positive charge is zero,

F=Q (E 4- reoR)3 =0 (25)

where we evaluate (24) at r = d and EL, is the local polarizing
electric field acting on the dipole. From (25) the equilibrium
dipole spacing is

d = -- EELo (26)
Q

so that the dipole moment is written as

p = Qd = aELo, a = 4ireoR (27)

where a is called the polarizability.

__~__________li_______L

"B d

R 03

(a)

n
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(b) The Local Electric Field
If this dipole were isolated, the local electric field would

equal the applied macroscopic field. However, a large
number density N of neighboring dipoles also contributes to
the polarizing electric field. The electric field changes dras-
tically from point to point within a small volume containing
many dipoles, being equal to the superposition of fields due
to each dipole given by (5). The macroscopic field is then the
average field over this small volume.

We calculate this average field by first finding the average
field due to a single point charge Q a distance a along the z
axis from the center of a spherical volume with radius R
much larger than the radius of the electron cloud (R >> Ro)as
in Figure 3-5b. The average field due to this charge over the
spherical volume is

1 <E" " Q(ri,-ai2 )r'sinOdrdOd,
r 0 Jo ,~o 42reo[a +r - 2ra cos 0]31

(28)

where we used the relationships

rQp=a2 - 2racos , rQp = ri, -ai (29)

Using (23) in (28) again results in the x and y components
being zero when integrated over 4. Only the z component is
now nonzero:

EQ 2( " fR r3 (cos 0-a/r)sin Odrd0
1rR (4rEo)0=0 ,o [a24+r -2ra cos0] 2

(30)

We introduce the change of variable from 0 to u

u = r +a2-2arcos 0, du = 2ar sin 0dO (31)

so that (30) can be integrated over u and r. Performing the u
integration first we have

<E>= 3s + 2 r (r2drd u
8iR JEoJ-ro J,-.)

2
4a

2 u drd

3Q r r 2(r -a +u)\ (r+a) dr

83 =o0j=0 4a U I u=(-a)
2

3Q R r-a
, __r2(lr1 TJ )dr (32)

8?TwR soa r=O |r-a

We were careful to be sure to take the positive square root
in the lower limit of u. Then for r > a, the integral is zero so
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that the integral limits over r range from 0 to a:

< E, >=-- -3Q I- 2r 2 dr= -Qa 33)
8rR soa' o 41reoR

To form a dipole we add a negative charge -Q, a small
distance d below the original charge. The average electric
field due to the dipole is then the superposition of (33) for
both charges:

<E> = Q -[a-(a-d)]= Qd s

4wsoR 4soR3 4rsoRS
(34)

If we have a number density N of such dipoles within the
sphere, the total number of dipoles enclosed is ,iTrR'N so that
superposition of (34) gives us the average electric field due to
all the dipoles in-terms of the polarization vector P = Np:

-wRNp P
<E > =- •- = (35)

4vsoR 3eo

The total macroscopic field is then the sum of the local field
seen by each dipole and the average resulting field due to all
the dipoles

P
E= <E> +E = - - E o+ E (36)

360

so that the polarization P is related to the macroscopic electric
field from (27) as

P = Np= NaEL, = Na(E+ (37)

which can be solved for P as

Na Na/eo
P = E = ,eoE, x, N (38)

1- Na/3eo I - Na/3eo

where we introduce the electric susceptibility X, as the pro-
portionality constant between P and soE. Then, use of (38) in
(19) relates the displacement field D linearly to the electric
field:

D= eoE+P= o(1 +x,)E= Eoe,E= eE (39)

where E, = 1+x, is called the relative dielectric constant and
e = eeo is the permittivity of the dielectric, also simply called
the dielectric constant. In free space the susceptibility is zero
(X, = 0) so that e, = 1 and the permittivity is that of free space,
e = so. The last relation in (39) is usually the most convenient
to use as all the results of Chapter 2 are also correct within
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linear dielectrics if we replace eo by e. Typical values of
relative permittivity are listed in Table 3-1 for various com-
mon substances. High dielectric constant materials are usually
composed of highly polar molecules.

Table 3-1 The relative permittivity for various common substances at room
temperature

E, = E/eo

Carbon Tetrachloride" 2.2
Ethanola 24
Methanol" 33
n-Hexane" 1.9
Nitrobenzene" 35
Pure Watera 80
Barium Titanateb(with 20% Strontium Titanate) >2100
Borosilicate Glass 4.0
Ruby Mica (Muscovite)b 5.4
Polyethyleneb 2.2
Polyvinyl Chlorideb 6.1
Teflonb Polytetrafluorethylene) 2.1
Plexiglas 3.4
Paraffin Waxb 2.2

"From Lange's Handbook of Chemistry, 10th ed., McGraw-Hill, New York, 1961, pp.
1234-37.

bFrom A. R. von Hippel (Ed.) DielectricMaterialsandApplications,M.I.T., Cambridge,
Mass., 1966, pp. 301-370

The polarizability and local electric field were only intro-
duced so that we could relate microscopic and macroscopic
fields. For most future problems we will describe materials by
their permittivity e because this constant is most easily
measured. The polarizability is then easily found as

Na Na e - Eo
E -60 - Na/ e- (40)

1-Na/3eo 3ea e+2eo80

It then becomes simplest to work with the field vectors D and
E. The polarization can always be obtained if needed from
the definition

P = D-eoE = (e - eo)E (41)

EXAMPLE 3-1 POINT CHARGE WITHIN A DIELECTRIC SPHERE

Find all the fields and charges due to a point charge q
within a linear dielectric sphere of radius R and permittivity e
surrounded by free space, as in Figure 3-6.
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e - co)q

41reR
2

q (e -Eo) q

Co+qp = c q

e4 ,

Figure 3-6 The electric field due to a point charge within a dielectric sphere is less
than the free space field because of the partial neutralization of the point charge by the
accumulation of dipole ends of opposite charge. The total polarization charge on the
sphere remains zero as an equal magnitude but opposite sign polarization charge
appears at the spherical interface.

SOLUTION

Applying Gauss's law of (21) to a sphere of any radius r
whether inside or outside the sphere, the enclosed free
charge is always q:

sD dS=D,47rr =q D,=r2 q allr1 47rr

The electric field is then discontinuous at r = R,

- 2 r<R
e 47rer

r = Dr q= q ,r>R
Lo 47EOr

2
r

due to the abrupt change of permittivities. The polarization
field is

(e-e)q r<R
Pr = D, - EoEr = 47rer 

2

O, r>R

~_· _II
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The volume polarization charge pp is zero everywhere,

r 8rp,=-P -P=rl (r2P,)=0, 0<r<R

except at r = 0 where a point polarization charge is present,
and at r = R where we have a surface polarization charge
found by using (18) for concentric Gaussian spheres of radius
r inside and outside the dielectric sphere:

-(e-eo)q/E, 
r<R

qJ,=-j P• dS=-P,4rr2= rR
O, r>R

We know that for r <R this polarization charge must be a
point charge at the origin as there is no volume charge
contribution yielding a total point charge at the origin:

80
qT = qp +q = -q

This reduction of net charge is why the electric field within
the sphere is less than the free space value. The opposite
polarity ends of the dipoles are attracted to the point charge,
partially neutralizing it. The total polarization charge
enclosed by the sphere with r > R is zero as there is an
opposite polarity surface polarization charge at r = R with
density,

(e -e o)q
P 4reR 2

The total surface charge op,4rR2 = (( -eo)q/e is equal in
magnitude but opposite in sign to the polarization point
charge at the origin. The total p6larization charge always
sums to zero.

3-1-5 Spontaneous Polarization

(a) Ferro-electrics
Examining (38) we see that when Na/3eo = 1 the polariza-

tion can be nonzero even if the electric field is zero. We can
just meet this condition using the value of polarizability in
(27) for electronic polarization if the whole volume is filled
with contacting dipole spheres of the type in Figure 3-5a so
that we have one dipole for every volume of 3rRS. Then any
slight fluctuation in the local electric field increases the
polarization, which in turn increases the local field resulting
in spontaneous polarization so that all the dipoles over a
region are aligned. In a real material dipoles are not so
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densely packed. Furthermore, more realistic statistical models
including thermally induced motions have shown that most
molecules cannot meet the conditions for spontaneous
polarization.

However, some materials have sufficient additional contri-
butions to the polarizabilities due to ionic and orientational
polarization that the condition for spontaneous polarization is
met. Such materials are called ferro-electrics, even though
they are not iron compounds, because of their similarity in
behavior to iron compound ferro-magnetic materials, which
we discuss in Section 5.5.3c. Ferro-electrics are composed of
permanently polarized regions, called domains, as illustrated
in Figure 3-7a. In the absence of an electric field, these
domains are randomly distributed so that the net macroscopic
polarization field is zero. When an electric field is applied, the
dipoles tend to align with the field so that domains with a
polarization component along the field grow at the expense of
nonaligned domains. Ferro-electrics typically have very high
permittivities such as barium titanate listed in Table 3-1.

The domains do not respond directly with the electric field
as domain orientation and growth is not a reversible process
but involves losses. The polarization P is then nonlinearly
related to the electric field E by the hysteresis curve shown in
Figure 3-8. The polarization of an initially unpolarized
sample increases with electric field in a nonlinear way until
the saturation value Psat is reached when all the domains are
completely aligned with the field. A further increase in E does
not increase P as all the dipoles are completely aligned.

As the field decreases, the polarization does not retrace its
path but follows a new path as the dipoles tend to stick to their
previous positions. Even when the electric field is zero, a

- E

No applied field Electric tield applied

(a) (b)

Figure 3-7 (a) In the absence of an applied electric field, a ferro-electric material
generally has randomly distributed permanently polarized domains. Over a macro-
scopic volume, the net polarization due to all the domains is zero. (b) When an electric
field is applied, domains with a polarization component in the direction of the field
grow at the expense of nonaligned domains so that a net polarization can result.

I I_

-· -····· ·· ·
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D

Figure 3-8 A typical ferro-electric hysteresis curve shows a saturation value P.., when
all the domains align with the field, a remanent polarization P, when the electric field is
removed, and a negative coercive electric field - E,, necessary to bring the polarization
back to zero.

remanent polarization P, remains. To bring the polarization
to zero requires a negative coercive field -Ec. Further magni-
tude increases in negative electric field continues the sym-
metric hysteresis loop until a negative saturation is reached
where all the dipoles have flipped over. If the field is now
brought to zero and continued to positive field values, the
whole hysteresis curve is traversed.

(b) Electrets
There are a class of materials called electrets that also

exhibit a permanent polarization even in the absence of an
applied electric field. Electrets are typically made using
certain waxes or plastics that are heated until they become
soft. They are placed within an electric field, tending to align
the dipoles in the same direction as the electric field, and then
allowed to harden. The dipoles are then frozen in place so
that even when the electric field is removed a permanent
polarization remains.

Other interesting polarization phenomena are:

Electrostriction-slightchange in size of a dielectric due to the
electrical force on the dipoles.

Piezo-electricity-when the electrostrictive effect is reversible
so that a mechanical strain also creates a field.

Pyro-electricity-induced polarization due to heating or
cooling.

E
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3-2 CONDUCTION

3-2-1 Conservation of Charge

In contrast to dielectrics, most metals have their outermost
band of electrons only weakly bound to the nucleus and are
free to move in an applied electric field. In electrolytic solu-
tions, ions of both sign are free to move. The flow of charge,
called a current, is defined as the total charge flowing through
a surface per unit time. In Figure 3-9a a single species of free
charge with density pf and velocity vi flows through a small
differential sized surface dS. The total charge flowing through
this surface in a time At depends only on the velocity
component perpendicular to the surface:

AQ = piAtvi - dS (1)

The tangential component of the velocity parallel to the sur-
face dS only results in charge flow along the surface but not
through it. The total differential current through dS is then
defined as

AQ,
dI = = pv's *dS= Jf • dS ampere (2)

All the charge in
dotted region has

I.ft V in q

Vni L1

AQ=- I; pf Atvi - dS= -#JlAt - dS
S' S

(b)

Figure 3-9 The current through a surface is defined as the number of charges per
second passing through the surface. (a) The current is proportional to the component
of charge velocity perpendicular to the surface. (b) The net change of total charge
within a volume is equal to the difference of the charge entering to that leaving in a
small time At.
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where the free current density of these charges Jf is a vector
and is defined as

Ji = pfivi amp/m2  (3)

If there is more than one type of charge carrier, the net
charge density is equal to the algebraic sum of all the charge
densities, while the net current density equals the vector sum
of the current densities due to each carrier:

pf=lpf, Jf=Xpfivi (4)

Thus, even if we have charge neutrality so that pf = 0, a net
current can flow if the charges move with different velocities.
For example, two oppositely charged carriers with densities
P I= -P2 Po moving with respective velocities v .and v2 have

P =PI +P2= 0, J = P IVI +P 2V2 = P(VI - 2) (5)

With vI v2 a net current flows with zero net charge. This is
typical in metals where the electrons are free to flow while the
oppositely charged nuclei remain stationary.

The total current I, a scalar, flowing through a macroscopic
surface S, is then just the sum of the total differential currents
of all the charge carriers through each incremental size surface
element:

I=f * dS (6)

Now consider the charge flow through the closed volume V
with surface S shown in Figure 3-9b. A time At later, that
charge within the volume near the surface with the velocity
component outward will leave the volume, while that charge
just outside the volume with a velocity component inward will
just enter the volume. The difference in total charge is
transported by the current:

AQ= fv [pf(t + At) - p(t)] dV

=-¶ p.viAt - dS= - JAt - dS (7)

The minus sign on the right is necessary because when vi is in
the direction of dS, charge has left the volume so that the
enclosed charge decreases. Dividing (7) through by At and
taking the limit as At - 0, we use (3) to derive the integral
conservation of charge equation:

f r ao~_
SJ - dS+ dV= 0

atvO

M ýýý



154 Polarizationand Conduction

Using the divergence theorem, the surface integral can be
converted to a volume integral:

V . J f + p f] dV = 0 V - Jf+• = 0 (9)

where the differential point form is obtained since the
integral must be true for any volume so that the bracketed
term must be zero at each point. From Gauss's law (V - D =pf)
(8) and (9) can also be written as

J,+L dS= 0, V - J,+ = 0 (10)
fS ( at) - at O (10)

where J, is termed the conduction current density and aD/at
is called the displacement current density.

This is the field form of Kirchoff's circuit current law that
the algebraic sum of currents at a node sum to zero. Equation
(10) equivalently tells us that the net flux of total current,
conduction plus displacement, is zero so that all the current
that enters a surface must leave it. The displacement current
does not involve any charge transport so that time-varying
current can be transmitted through space without charge
carriers. Under static conditions, the displacement current is
zero.

3-2-2 Charged Gas Conduction Models

(a) Governing Equations.
In many materials, including good conductors like metals,

ionized gases, and electrolytic solutions as well as poorer
conductors like lossy insulators and semiconductors, the
charge carriers can be classically modeled as an ideal gas
within the medium, called a plasma. We assume that we have
two carriers of equal magnitude but opposite sign :q with
respective masses m, and number densities n,. These charges
may be holes and electrons in a semiconductor, oppositely
charged ions in an electrolytic solution, or electrons and
nuclei in a metal. When an electric field is applied, the posi-
tive charges move in the direction of the field while the
negative charges move in the opposite direction. These
charges collide with the host medium at respective frequen-
cies v+ and v-, which then act as a viscous or frictional dis-
sipation opposing the motion. In addition to electrical and
frictional forces, the particles exert a force on themselves
through a pressure term due to thermal agitation that would
be present even if the particles were uncharged. For an ideal
gas the partial pressure p is

p = nkT Pascals [kg-s- 2 -m- '] (11)
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where n is the number density of charges, T is the absolute
temperature, and k = 1.38 X 10-23 joule/K is called Boltz-
mann's constant.

The net pressure force on the small rectangular volume
shown in Figure 3-10 is

(p(x-Ax)-p(x). p(y)-p(y+Ay).

()(A) Ax Ay Az (12)

where we see that the pressure only exerts a net force on the
volume if it is different on each opposite surface. As the
volume shrinks to infinitesimal size, the pressure terms in (12)
define partial derivatives so that the volume force density
becomes

li = P i 0+ , +Lp i = -Va (13)lim (L ,.(
x-A.o Ax AAz ax ay az

Az -O

Then using (11)-(13), Newton's force law for each charge
carrier within the small volume is

av, 1
m. - qE - m v±v, -- V(n±kT) (14)at n.

Ax)

ay)

-l. V

------30

x

Figure 3-10 Newton's force law, applied to a small rectangular volume Ax Ay Az
moving with velocity v, enclosing positive charges with number density 4. The pressure
is the force per unit area acting normally inward on each surface and only contributes
to the net force if it is different on opposite faces.

Z
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where the electric field E is due to the imposed field plus the
field generated by the charges, as given by Gauss's law.

(b) Drift-Diffusion Conduction
Because in many materials the collision frequencies are

typically on the order of v - 101s Hz, the inertia terms in (14)
are often negligible. In this limit we can easily solve (14) for
the velocity of each carrier as

1 /1
lim v,=- ±qE--V(nkT) (15)

avIMC.i v mVve n,

The charge and current density for each carrier are simply
given as

p *= qn±, J. = pav* = ±qnav* (16)

Multiplying (15) by the charge densities then gives us the
constitutive law for each current as

J. = *qn,.vL = ±p±/,±E- D±Vp± (17)

where A, are called the particle mobilities and D. are their
diffusion coefficients

A* =-q[A-kg-'-s- 2 ], D.= kT [m 2-s-'] (18)

assuming that the system is at constant temperature. We see
that the ratio DL//A± for each carrier is the same having units
of voltage, thus called the thermil voltage:

D. ATS= kvolts [kg-m 2-A - - s -3] (19)
IA* q

This equality is known as Einstein's relation.
In equilibrium when the net current of each carrier is zero,

(17) can be written in terms of the potential as (E = -V V)

J+ = J_ = 0 = -p±aC±V V~:DVp± (20)

which can be rewritten as

V[± V+1ln p] = 0 (21)

The bracketed term can then only be a constant, so the charge
density is related to the potential by the Boltzmann dis-
tribution:

p±= po e * /T (22)

where we use the Einstein relation of (19) and ±po is the
equilibrium charge density of each carrier when V= 0 and
are of equal magnitude because the system is initially neutral.

1 ` --
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To find the spatial dependence of p and V we use (22) in
Poisson's equation derived in Section 2.5.6:

V2V (P++P-) Po (e-qVIAT_ qVkT 2PO _V
(=e e-)= sinhi

8 8E AT
(23)

This equation is known as the Poisson-Boltzmann equation
because the charge densities obey Boltzmann distributions.

Consider an electrode placed at x = 0 raised to the potential
Vo with respect to a zero potential at x = +0o, as in Figure
3-l1 a. Because the electrode is long, the potential only varies

V= Vo

E Q 0E E,

i•08

0 0 0
0 0 00

0 0
0

0

x~d

(b)

Figure 3-11 Opposite
inserted into a conduct
out its field for distanc
with respect to a zero I
of Vo. (b) Point charge

0
0 000

000G
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with the x coordinate so that (23) becomes

d 2  l - qV 12_ ekT
d-2 l2 sinh V= 0, V= , (24)

dx l kT' 2poq

where we normalize the voltage to the thermal voltage kT/q
and ld is called the Debye length.

If (24) is multiplied by dVldx, it can be written as an exact
differential:

d-x -[()2 a cos ] = 0 (25)

The bracketed term must then be a constant that is evaluated
far from the electrode where the potential and electric field
x = -dV/dx are zero:

_x 2 1)] >1/2 = (26)
dl" 2 2 x>0

E~ (cosh - 1) = - sinh -(26)
dx 1d 1d 2 x<0

The different signs taken with the square root are necessary
because the electric field points in opposite directions on each
side of the electrode. The potential is then implicitly found by
direct integration as

tanh (V/4) ixld >0
tanh ( Vo/4) U iex<0 (27)

The Debye length thus describes the characteristic length
over which the applied potential exerts influence. In many
materials the number density of carriers is easily of the order
of no= 102 0/m 3, so that at room temperature (T 2930 K), id is
typically 10-7 m.

Often the potentials are very small so that qV/kT<< 1. Then,
the hyperbolic terms in (27), as well as in the governing
equation of (23), can be approximated by their arguments:

2 V
V - 2 = 0 (28)

This approximation is only valid when the potentials are
much less than the thermal voltage kT/q, which, at room
temperature is about 25 myv. In this limit the solution of (27)
shows that the voltage distribution decreases exponentially.
At higher values of Vo, the decay is faster, as shown in Figure
3-1 la.

If a point charge Q is inserted into the plasma medium, as
in Figure 3-11b, the potential only depends on the radial
distance r. In the small potential limit, (28) in spherical coor-
dinates is

I ( 2 aV V

2 r -r /- =0 (29)
r ar r ar l

II __~I~
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Realizing that this equation can be rewritten as

02 (rV)
- (rV)- =0O (30)

we have a linear constant coefficient differential equation in
the variable (rV) for which solutions are

rV= A e-r/d +A 2 e+rld (31)

Because the potential must decay and not grow far from
the charge, A2 = 0 and the solution is

V= - e- /Ie (32)
47rer

where we evaluated A by realizing that as r -*0 the potential
must approach that of an isolated point charge. Note that for
small r the potential becomes very large and the small poten-
tial approximation is violated.

(c) Ohm's Law
We have seen that the mobile charges in a system described

by the drift-diffusion equations accumulate near opposite
polarity charge and tend to shield out its effect for distances
larger than the Debye length. Because this distance is usually
so much smaller than the characteristic system dimensions,
most regions of space outside the Debye sheath are charge
neutral with equal amounts of positive and negative charge
density ±:Po.In this region, the diffusion term in (17) is negli-
gible because there are no charge density gradients. Then the
total current density is proportional to the electric field:

J = J++J- = po(v+-v_) = qno(iz+ + I_)E = oE (33)

where o, [siemans/m (m-3-kg-'-sS-A2 )] is called the Ohmic
conductivity and (33) is the point form of Ohm's law. Some-
times it is more convenient to work with the reciprocal
conductivity p,= (1/ar) (ohm-m) called the resistivity. We will
predominantly use Ohm's law to describe most media in this
text, but it is important to remember that it is often not valid
within the small Debye distances near charges. When Ohm's
law is valid, the net charge is zero, thus giving no contribution
to Gauss's law. Table 3-2 lists the Ohmic conductivities for
various materials. We see that different materials vary over
wide ranges in their ability to conduct charges.

The Ohmic conductivity of "perfect conductors" is large
and is idealized to be infinite. Since all physical currents in
(33) must remain finite, the electric field within the conductor
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is zero so that it imposes an equipotential surface:

E=O

lim J= o'E V=const (34)
a-0oI J = finite

Table 3-2 The Ohmic conductivity
for various common substances at
room temperature

uo [siemen/m]
Silver" 6.3 x 107
Copper" 5.9x 107
Gold" 4.2 x 107
Lead" 0.5 x 107

Tin" 0.9X 107

Zinc" 1.7x 10 7

Carbon" 7.3 x 10- 4

Mercuryb 1.06 X 106
Pure Waterb 4 x 10 - 6

Nitrobenzeneb 5 x 10-7
Methanolb 4 x 10- 5

Ethanolb 1.3 x 10- 7

Hexaneb <x 10- s

"From Handbook of Chemistry and Phy-
sics, 49th ed., The Chemical Rubber Co.,
1968,p. E80.

bFrom Lange's Handbook of Chemistry,
10th ed., McGraw-Hill, New York, 1961,
pp. 1220-21.

Throughout this text electrodes are generally assumed to
be perfectly conducting and thus are at a constant potential.
The external electric field must then be incident perpendic-
ularly to the surface.

(d) Superconductors
One notable exception to Ohm's law is for superconducting

materials at cryogenic temperatures. Then, with collisions
negligible (v,,= 0) and the absolute temperature low (T 0),
the electrical force on the charges is only balanced by their
inertia so that (14) becomes simply

= +--E (35)
Ot m*

We multiply (35) by the charge densities that we assume to be
constant so that the constitutive law relating the current
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density to the electric field is
2(+qnvs)_oJ. q n, = , q fna(qnv,) aJ, E=w. eE, W, = (36)

at at m* m*e

where wo• is called the plasma frequency for each carrier.
For electrons (q = -1.6 x 10' 19 coul, m_ = 9.1 x 10- ' kg) of

density n-- 1020/m S within a material with the permittivity
of free space, e = o 8.854X 10-12 farad/m, the plasma
frequency is

o,p_ = n'n/me 5.6 x 10 11radian/sec

=f,_ = w,_/27r - 9 X 1010 Hz (37)

If such a material is placed between parallel plate elec-
trodes that are open circuited, the electric field and current
density J= J++J must be perpendicular to the electrodes,
which we take as the x direction. If the electrode spacing is
small compared to the width, the interelectrode fields far
from the ends must then be x directed and be only a function
of x. Then the time derivative of the charge conservation
equation in (10) is

(U,+J_)+e- =o (38)

The bracketed term is just the time derivative of the total
current density, which is zero because the electrodes are open
circuited so that using (36) in (38) yields

2E 2 2 2
t+opE = 0, wp =w + _p- (39)

which has solutions

E = A1 sin wt +A2 cos Wot (40)

Any initial perturbation causes an oscillatory electric field at
the composite plasma frequency ,p.The charges then execute
simple harmonic motion about their equilibrium position.

3-3 FIELD BOUNDARY CONDITIONS

In many problems there is a surface of discontinuity
separating dissimilar materials, such as between a conductor
and a dielectric, or between different dielectrics. We must
determine how the fields change as we cross the interface
where the material properties change abruptly.
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3-3-1 Tangential Component of E

We apply the line integral of the electric field around a
contour of differential size enclosing the interface between
dissimilar materials, as shown in Figure 3-12a. The long
sections a and c of length dl are tangential to the surface and
the short joining sections b and d are of zero length as the
interface is assumed to have zero thickness. Applying the line
integral of the electric field around this contour, from Section
2.5.6 we obtain

L E dl= (E , - E2) dl = 0

where E1 , and E2 , are the components of the electric field
tangential to the interface. We get no contribution from the
normal components of field along sections b and d because
the contour lengths are zero. The minus sign arises along c
because the electric field is in the opposite direction of the
contour traversal. We thus have that the tangential

.. z -- , -1

dS D2

2 + + + + +Gf

+ b ni(D 2 -Di)=Ui

1 D

dS

Figure 3-12 (a) Stokes' law applied to a line integral about an interface of dis-
continuity shows that the tangential component of electric field is continuous across
the boundary. (b) Gauss's law applied to a pill-box volume straddling the interface
shows that the normal component of displacement vector is discontinuous in the free
surface charge density of.

i 1

tl
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components of the electric field are continuous across the
interface

Elt=E 2 =>n x (E2 - El)= 0 (2)

where n is the interfacial normal shown in Figure 3-12a.
Within a perfect conductor the electric field is zero. There-

fore, from (2) we know that the tangential component of E
outside the conductor is also zero. Thus the electric field must
always terminate perpendicularly to a perfect conductor.

3-3-2 Normal Component of D

We generalize the results of Section 2.4.6 to include dielec-
tric media by again choosing a small Gaussian surface whose
upper and lower surfaces of area dS are parallel to a surface
charged interface and are joined by an infinitely thin cylin-
drical surface with zero area, as shown in Figure 3-12b. Then
only faces a and b contribute to Gauss's law:

D dS= (D2 -D 1 .)dS= oydS (3)
dS

where the interface supports a free surface charge density ao
and D2, and D1n are the components of the displacement
vector on either side of the interface in the direction of the
normal n shown, pointing from region I to region 2. Reduc-
ing (3) and using more compact notation we have

D2,-D, = of, n(D 2 - D) = of (4)

where the minus sign in front of DI arises because the normal
on the lower surface b is -n. The normal components of the
displacement vector are discontinuous if the interface has a
surface charge density. If there is no surface charge (of = 0),
the normal components of D are continuous. If each medium
has no polarization, (4) reduces to the free space results of
Section 2.4.6.

At the interface between two different lossless dielectrics,
there is usually no surface charge (of= 0), unless it was
deliberately placed, because with no conductivity there is no
current to transport charge. Then, even though the normal
component of the D field is continuous, the normal
component of the electric field is discontinuous because the
dielectric constant in each region is different.

At the interface between different conducting materials,
free surface charge may exist as the current may transport
charge to the surface discontinuity. Generally for such cases,
the surface charge density is nonzero. In particular, if one
region is a perfect conductor with zero internal electric field,
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the surface charge density on the surface is just equal to the
normal component of D field at the conductor's surface,

oa = n D (5)

where n is the outgoing normal from the perfect conductor.

3-3-3 Point Charge Above a Dielectric Boundary

If a point charge q within a region of permittivity el is a
distance d above a planar boundary separating region I from
region II with permittivity E2, as in Figure 3-13, the tangential
component of E and in the absence of free surface charge the
normal component of D, must be continuous across the
interface. Let us try to use the method of images by placing an
image charge q' at y = -d so that the solution in region I is
due to this image charge plus the original point charge q. The
solution for the field in region II will be due to an image
charge q" at y = d, the position of the original point charge.
Note that the appropriate image charge is always outside the
region where the solution is desired. At this point we do not
know if it is possible to satisfy the boundary conditions with
these image charges, but we will try to find values of q' and q"
to do so.

Region I 
q

e Y d

6 2

Region II )

Region I eq * q" 2 
q

el 61 + E2

q, q q(E-2 -e Region II
q C,2 + E1

(b)

Figure 3-13 (a) A point charge q above a flat dielectric boundary requires different
sets of image charges to solve for the fields in each region. (b) The field in region I is
due to the original charge and the image charge q' while the field in region II is due
only to image charge q".

I _
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The potential in each region is

1 q (6)

E= -V VI

- 4,re1 [x2+(y-d)2+z2 ]/2+ [X2+(y+d) 2 + z2]3/2 ) (7)VII= y-2

q"2 [x xi+(y-d)i2 +zi]+]/
EII= -V l = _ [2 + (Y _ d) + Z I)

To satisfy the continuity of tangential electric field at y 0 we

haveEE = -V VI
__ (87)

EEi = -V V 2

With no surface charge, the normal component of D must becontinuous at y = 0,

eIEI = e 2E, 1 1 > -q +q'= -q" (9)

Solving (8) and (9) for the unknown charges we find
(2- (81)

81 +82
2162 

(10)continuous 
at y = 0,

The force on the point charge q is due only to the field

from image charge q':
qq q2 - 1)

3-3-4 Normal Component of P and EE

By integrating the flux of polarization over the same Gaus-
sian pillbox surface, shown in Figure 3-12b, we relate the
discontinuity in normal component of polarization to thesurface polarization charge density due using the relations
surface polarization charge density cr, using the relations

M M
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from Section 3.1.2:

fsP-dS=- odSP 2nP -P. = -o' n (P2 -P 1 ) = -ap

(12)

The minus sign in front of ,p results because of the minus sign
relating the volume polarization charge density to the diver-
gence of P.

To summarize, polarization charge is the source of P, free
charge is the source of D, and the total charge is the source of
eoE. Using (4) and (12), the electric field interfacial dis-
continuity is

n* (E2 -Ei) = n [(D2 -DI)-(P 2-PI)] af+O', (13)
so Eo

For linear dielectrics it is often convenient to lump polariza-
tion effects into the permittivity e and never use the vector P,
only D and E.

For permanently polarized materials, it is usually con-
venient to replace the polarization P by the equivalent
polarization volume charge density and surface charge
density of (12) and solve for E using the coulombic super-
position integral of Section 2.3.2. In many dielectric prob-
lems, there is no volume polarization charge, but at surfaces
of discontinuity a surface polarization charge is present as
given by (12).

EXAMPLE 3-2 CYLINDER PERMANENTLY POLARIZED ALONG ITS
AXIS

A cylinder of radius a and height L is centered about the z
axis and has a uniform polarization along its axis, P = Poi., as
shown in Figure 3-14. Find the electric field E and displace-
ment vector D everywhere on its axis.

SOLUTION

With a constant polarization P, the volume polarization
charge density is zero:

p. = -V . P =0

Since P= 0 outside the cylinder, the normal component of P
is discontinuous at the upper and lower surfaces yielding
uniform surface polarization charges:

o,(z = L/2)= Po, Top(z = -L12)= -Po

I
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op = PO

z =-L/2

Op = -Po

-L/2

-L/2

-.5111

eoEz D -P

(b)

Figure 3-14 (a) The electric field due to a uniformly polarized cylinder of length L is
the same as for two disks of surface charge of opposite polarity + Po at z = L/2. (b) The
perpendicular displacement field D, is continuous across the interfaces at z = ± L/2
while the electric field E. is discontinuous.

.5)

---
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The solution for a single disk of surface charge was obtained
in Section 2.3.5b. We superpose the results for the two
disks taking care to shift the axial distance appropriately by
. L/2 yielding the concise solution for the displacement field:

P0 ( (z+ L2) (z - L/2)

2 • [a +(z +L/2)2V [a2 +(z -L/2)2 ] 2

The electric field is then

.=DJeo, IzL >L/2
= L(D,-Po)/eo IzI <L/2

These results can be examined in various limits. If the
radius a becomes very large, the electric field should
approach that of two parallel sheets of surface charge ±Po, as
in Section 2.3.4b:

lim E, =f0, J z >L/2
lm . -Poleo, Izi <L/2

with a zero displacement field everywhere.
In the opposite limit, for large z (z >>a, z >>L) far from the

cylinder, the axial electric field dies off as the dipole field with
0=0

lim E= E o , p=Powa9L

with effective dipole moment p given by the product of the
total polarization charge at z = L/2, (Poira ), and the length L.

3-3-5 Normal Component of J

Applying the conservation of total current equation in
Section 3.2.1 to the same Gaussian pillbox surface in Figure
3-12b results in contributions again only from the upper and
lower surfaces labeled "a" and "b":

n (J2-J + (D2 -D)) =0 (14)

where we assume that no surface currents flow along the
interface. From (4), relating the surface charge density to the
discontinuity in normal D, this boundary condition can also
be written as

n* (J9-J)+ ý=0 (15)at
which tells us that if the current entering a surface is different
from the current leaving, charge has accumulated at the

1
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interface. In the dc steady state the normal component of J is
continuous across a boundary.

3-4 RESISTANCE

3-4-1 Resistance Between Two Electrodes

Two conductors maintained at a potential difference V
within a conducting medium will each pass a total current I,
as shown in Figure 3-15. By applying the surface integral
form of charge conservation in Section 3.2.1 to a surface S'
which surrounds both electrodes but is far enough away so
that J and D are negligibly small, we see that the only nonzero
current contributions are from the terminal wires that pass
through the surface. These must sum to zero so that the

J, Ea -• far from the electrodes
r3

Ir* fJ'dS= 0
S.

S 

-

I

\\

Figure 3-15 A voltage applied across two electrodes within an ohmic medium causes
a current to flow into one electrode and out the other. The electrodes have equal
magnitude but opposite polarity charges so that far away the fields die off as a dipole
oc(1/rs). Then, even though the surface S' is increasing as r' , the flux of current goes
to zero as 1/r.
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currents have equal magnitudes but flow in opposite direc-
tions. Similarly, applying charge conservation to a surface S
just enclosing the upper electrode shows that the current I
entering the electrode via the wire must just equal the total
current (conduction plus displacement) leaving the electrode.
This total current travels to the opposite electrode and leaves
via the connecting wire.

The dc steady-state ratio of voltage to current between the
two electrodes in Figure 3-15 is defined as the resistance:

R = ohm [kg-m 2 -S-3-A - 2] (1)I

For an arbitrary geometry, (1) can be expressed in terms of
the fields as

SEdl LE-dl
J dS oE - dS (2)

where S is a surface completely surrounding an electrode and
L is any path joining the two electrodes. Note that the field
line integral is taken along the line from the high to low
potential electrode so that the voltage difference V is equal to
the positive line integral. From (2), we see that the resistance
only depends on the geometry and conductivity aoand not on
the magnitude of the electric field itself. If we were to
increase the voltage by any factor, the field would also
increase by this same factor everywhere so that this factor
would cancel out in the ratio of (2). The conductivity a may
itself be a function of position.

3-4-2 Parallel Plate Resistor

Two perfectly conducting parallel plate electrodes of arbi-
trarily shaped area A and spacing I enclose a cylinder of
material with Ohmic conductivity oa, as in Figure 3-16a. The
current must flow tangential to the outer surface as the
outside medium being free space has zero conductivity so that
no current can pass through the interface. Because the
tangential component of electric field is continuous, a field
does exist in the free space region that decreases with
increasing distance from the resistor. This three-dimensional
field is difficult to calculate because it depends on three coor-
dinates.

The electric field within the resistor is much simpler to
calculate because it is perpendicular to the electrodes in the x
direction. Gauss's law with no volume charge then tells us that
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Figure 3-16 Simple resistor electrode geometries. (a) Parallel plates. (b) Coaxial
cylinders. (c) Concentric spheres.

this field is constant:

dEr
v (sE) = o >-• =>E = Eo (3)

dx

However, the line integral of E between the electrodes must
be the applied voltage v:

E.dx=v Eo= v/1 (4)

The current density is then

J = oEoix = (orv/1)i (5)

so that the total current through the electrodes is

I= J• dS= (ov/)A (6)

where the surface integral is reduced to a pure product
because the constant current density is incident perpendic-
ularly on the electrodes. The resistance is then

Iv spacing
R = .(7)I oA (conductivity) (electrode area)

Typical resistance values can vary over many orders of
magnitude. If the electrodes have an area A = 1 cm2 (10- m )
with spacing I = 1 mm (10 - 3 m) a material like copper has a
resistance R -0.17 x 10-6 ohm while carbon would have a
resistance R - 1.4 x 104 ohm. Because of this large range of
resistance values sub-units often used are micro-ohms
(1 fl= 10- 6 f), milli-ohms (1 mfl= 10- 3 1), kilohm (1 kfl =
10 [l), and megohms (1 Mf = 106 fl), where the symbol 0 is
used to represent the unit of ohms.

x
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Although the field outside the resistor is difficult to find, we
do know that for distances far from the resistor the field
approaches that of a point dipole due to the oppositely
charged electrodes with charge density

rf(x =0) = -o-(x = 1)=eEo = evl1 (8)

and thus dipole moment

p = -or1 (x = O)Ali. = -eAvi, (9)

The minus sign arises because the dipole moment points
from negative to positive charge. Note that (8) is only
approximate because all of the external field lines in the free
space region must terminate on the side and back of the
electrodes giving further contributions to the surface charge
density. Generally, if the electrode spacing I is much less than
any of the electrode dimensions, this extra contribution is
very small.

3-4-3 Coaxial Resistor

Two perfectly conducting coaxial cylinders of length 1,
inner radius a, and outer radius b are maintained at a poten-
tial difference v and enclose a material with Ohmic conduc-
tivity or, as in Figure 3-16b. The electric field must then be
perpendicular to the electrodes so that with no free charge
Gauss's law requires

S"(eE)= 0l• (rE r) = 0 4 E, = c (10)
rr r

where c is an integration constant found from the voltage
condition

SErdr = c In r =vcc (l)

The current density is then

or
J,= -E,= (12)

rIn (bla)

with the total current at any radius r being a constant

I= fJr d4 dz = av2 (13)
=o0 o in (b/a)

so that the resistance is

v In (bla)
R (14)I 2?'ol
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3-4-4 Spherical Resistor

We proceed in the same way for two perfectly conducting
concentric spheres at a potential difference v with inner
radius R1 and outer radius R2 , as in Figure 3-16c. With no
free charge, symmetry requires the electric field to be purely
radial so that Gauss's law yields

ia c
V - (eE)= 0•7r(r E,)= O E,= r  (15)

where c is a constant found from the voltage condition as

E,dr = - = v (16)
S R(1R, -/R 2 )

The electric field and current density are inversely pro-
portional to the square of the radius

], = oE, = 2( R (17)
"(1/RI- 1/R2)

so that the current density is constant at any radius r

2* 4tro
I= 2 = Jr 2 sin 0 dO do = (1/R- (18)

with resistance

v (1/RI-1/R2)
R (19)

I 4 7rT

3-5 CAPACITANCE

3-5-1 Parallel Plate Electrodes

Parallel plate electrodes of finite size constrained to poten-
tial difference v enclose a dielectric medium with permittivity
e. The surface charge density does not distribute itself uni-
formly, as illustrated by the fringing field lines for infinitely
thin parallel plate electrodes in Figure 3-17a. Near the edges
the electric field is highly nonuniform decreasing in magni-
tude on the back side of the electrodes. Between the elec-
trodes, far from the edges the electric field is uniform, being
the same as if the electrodes were infinitely long. Fringing
field effects can be made negligible if the electrode spacing I is
much less than the depth d or width w. For more accurate
work, end effects can be made even more negligible by using a
guard ring encircling the upper electrode, as in Figure 3-17b.
The guard ring is maintained at the same potential as the
electrode, thus except for the very tiny gap, the field between

M ýýl
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x , Area A

0 I+++++++++++++++++++++++++++++++++++++++++++++++

(b)

Figure 3-17 (a) Two infinitely thin parallel plate electrodes of finite area at potential
difference v have highly nonuniform fields outside the interelectrode region. (b) A
guard ring around one electrode removes end effects so that the field between the
electrodes is uniform. The end effects now arise at the edge of the guard ring, which is
far from the region of interest.

I .
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the electrodes is as if the end effects were very far away and
not just near the electrode edges.

We often use the phrase "neglect fringing" to mean that the
nonuniform field effects near corners and edges are negli-
gible.

With the neglect of fringing field effects near the electrode
ends, the electric field is perpendicular to the electrodes and
related to the voltage as

E. dx = v > E = v/1 (1)

The displacement vector is then proportional to the electric
field terminating on each electrode with an equal magnitude
but opposite polarity surface charge density given by

Dx = eE, = or(x = 0) = -o'f(x = 1)= ev/l (2)

The charge is positive where the voltage polarity is positive,
and vice versa, with the electric field directed from the posi-
tive to negative electrode. The magnitude of total free charge
on each electrode is

eA
qf= of(x = O)A = -v (3)

The capacitance C is defined as the magnitude of the ratio
of total free charge on either electrode to the voltage
difference between electrodes:

C If = eA
- qfA

v l

(permittivity) (electrode area) farad [A2 4 -kg -2
farad [A -s4-kg- -m- ]spacing

(4)

Even though the system remains neutral, mobile electrons on
the lower electrode are transported through the voltage
source to the upper electrode in order to terminate the dis-
placement field at the electrode surfaces, thus keeping the
fields zero inside the conductors. Note that no charge is
transported through free space. The charge transport
between electrodes is due to work by the voltage source and
results in energy stored in the electric field.

In SI units, typical capacitance values are very small. If the
electrodes have an area of A = 1cm 2 (10- 4 m2) with spacing of
l= 1 mm (10- s m), the free space capacitance is C-
0.9x 10- 2 farad. For this reason usual capacitance values are
expressed in microfarads ( f== 10-6 farad), nanofarads
(1 nf = 10- 9 farad), and picofarads (1 pf = 10-' farad).
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With a linear dielectric of permittivity e as in Figure 3-18a,
the field of (1) remains unchanged for a given voltage but the
charge on the electrodes and thus the capacitance increases
with the permittivity, as given by (3). However, if the total
free charge on each electrode were constrained, the voltage
difference would decrease by the same factor.

These results arise because of the presence of polarization
charges on the electrodes that partially cancel the free charge.
The polarization vector within the dielectric-filled parallel
plate capacitor is a constant

P. = D. - EoE. = (e - so)E. = (e - eo)vI/ (5)

so that the volume polarization charge density is zero.
However, with zero polarization in the electrodes, there is a
discontinuity in the normal component of polarization at the
electrode surfaces. The boundary condition of Section 3.3.4
results in an equal magnitude but opposite polarity surface
polarization charge density on each electrode, as illustrated in

(a) n+

t t h Q

Dipoles
® Free charge

Depth d

E, = r In (b/a

+

V

r2( 1 1 )R1 R2/

Depth I q(R 1 ) = eE,(r = R)4rR = -q(R2) =

q(a) = eEr(r = a) 2"al = -q(b) = 4rev

eEr(r = b)r = R2)4R2
In(b/a) R-i R2

(b) (c)

Figure 3-18 The presence of a dielectric between the electrodes increases the capaci-
tance because for a given voltage additional free charge is needed on each electrode to
overcome the partial neutralization of the attracted opposite polarity dipole ends. (a)
Parallel plate electrodes. (b) Coaxial cylinders. (c) Concentric spheres.

___~
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Figure 3-18a:

o(x = 0)= -o(x= ) = -P. = -(e -o)v/II (6)

Note that negative polarization charge appears on the posi-
tive polarity electrode and vice versa. This is because opposite
charges attract so that the oppositely charged ends of the
dipoles line up along the electrode surface partially neu-
tralizing the free charge.

3-5-2 Capacitance for any Geometry

We have based our discussion around a parallel plate
capacitor. Similar results hold for any shape electrodes in a
dielectric medium with the capacitance defined as the magni-
tude of the ratio of total free charge on an electrode to
potential difference. The capacitance is always positive by
definition and for linear dielectrics is only a function of the
geometry and dielectric permittivity and not on the voltage
levels,

C=- = =feEDds (7)
v 1,E-dl 1, E dl

as multiplying the voltage by a constant factor also increases
the electric field by the same factor so that the ratio remains
unchanged.

The integrals in (7) are similar to those in Section 3.4.1 for
an Ohmic conductor. For the same geometry filled with a
homogenous Ohmic conductor or a linear dielectric, the
resistance-capacitance product is a constant independent of
the geometry:

RC- LE-d1 sfE -dSe (8)
RofsE.dS ILE.dl o

Thus, for a given geometry, if either the resistance or capaci-
tance is known, the other quantity is known immediately from
(8). We can thus immediately write down the capacitance of
the geometries shown in Figure 3-18 assuming the medium
between electrodes is a linear dielectric with permittivity 6
using the results of Sections 3.4.2-3.4.4:

1 eA
Parallel Plate R= I C= -

o'A I

In (bla) 2•e81
Coaxial R C = (9)2alrrl In (b/a)

Spherical R= R- /R2 C = 4r
41ro- (1/R- l/R2)
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3-5-3 CurrentFlow Through a Capacitor

From the definition of capacitance in (7), the current to an
electrode is

i d q d (Cv) d dC
S (• -)=C-+v- (10)
dt dt dt dt

where the last term only arises if the geometry or dielectric
permittivity changes with time. For most circuit applications,
the capacitance is independent of time and (10) reduces to the
usual voltage-current circuit relation.

In the capacitor of arbitrary geometry, shown in Figure
3-19, a conduction current i flows through the wires into the
upper electrode and out of the lower electrode changing the
amount of charge on each electrode, as given by (10). There is
no conduction current flowing in the dielectric between the
electrodes. As discussed in Section 3.2.1 the total current,
displacement plus conduction, is continuous. Between the
electrodes in a lossless capacitor, this current is entirely dis-
placement current. The displacement field is itself related to
the time-varying surface charge distribution on each elec-
trode as given by the boundary condition of Section 3.3.2.

3-5-4 Capacitance of Two Contacting Spheres

If the outer radius R 2 of the spherical capacitor in (9) is put
at infinity, we have the capacitance of an isolated sphere of
radius R as

C= 41reR (11)

------------ ---- V--------- "------- -

S-----------

dq_

Figure 3-19 The conduction current i that travels through the connecting wire to an
electrode in a lossless capacitor is transmitted through the dielectric medium to the
opposite electrode via displacement current. No charge carriers travel through the
lossless dielectric.



Capacitance 179

If the surrounding medium is free space (e = e0) for R = 1 m,
we have that C - -x 10- 9 farad 111 pf.

We wish to find the self-capacitance of two such contacting
spheres raised to a potential Vo, as shown in Figure 3-20. The
capacitance is found by first finding the total charge on the
two spheres. We can use the method of images by first placing
an image charge q =Q=47reRVo at the center of each
sphere to bring each surface to potential Vo. However, each
of these charges will induce an image charge q2 in the other
sphere at distance b2 from the center,

Q R 2 R
q2= , b2= -= (12)2 D 2

where we realize that the distance from inducing charge to
the opposite sphere center is D = 2R. This image charge does
not raise the potential of either sphere. Similarly, each of
these image charges induces another image charge qs in the
other sphere at disance bs,

q2R Q R2

S= = bs = - = R (13)D-b 2  3' D-b 2

which will induce a further image charge q4, ad infinitum. An
infinite number of image charges will be necessary, but with
the use of difference equations we will be able to add all the
image charges to find the total charge and thus the capaci-
tance.

The nth image charge q. and its distance from the center b.
are related to the (n - 1)th images as

q_-iR R 9

q - b. = (14)
D-b,-I D-bn-1

At potential Vo

qn_ R R2
qn D -n b=_Db_ bý O - b, _

Figure 3-20 Two identical contacting spheres raised to a potential Vo with respect to
infinity are each described by an infinite number of image charges q. each a distance b.
from the sphere center.

= M ý ý ý
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where D= 2R. We solve the first relation for b.-i as

D-b,-I= R
(15)

b, = q R+D
qn+,

where the second relation is found by incrementing n in the
first relation by 1. Substituting (15) into the second relation of
(14) gives us a single equation in the q.'s:

qR Rq, 1 2 1
+D=-q 1+-+ 1= 0 (16)

q.+, qn-1 q.+, q. q.-I

If we define the reciprocal charges as

p. = /q,, (17)

then (16) becomes a homogeneous linear constant coefficient
difference equation

Pn+i +2pn + P.-i = 0 (18)

Just as linear constant coefficient differential equations have
exponential solutions, (18) has power law solutions of the
form

p, = AA " (19)

where the characteristic roots A, analogous to characteristic
frequencies, are found by substitution back into (18),

A"+ +2A" +A - ' =0 A2 + 2+ = (A + 1)2 =O (20)

to yield a double root with A = -1. Because of the double root,
the superposition of both solutions is of the form

Pn = AI(-1)" +A2n(-)" n(21)

similar to the behavior found in differential equations with
double characteristic frequencies. The correctness of (21) can
be verified by direct substitution back into (18). The constants
Al and A 2 are determined from ql and q2 as

p = I/Q = - A - A 2  A=0

1 2 +A 2A 1 (22)

q2 Q Q
so that the nth image charge is

1 1 -(-I--1n
Qn= = = i n n

Pn -- 1)n/ n

__
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The capacitance is then given as the ratio of the total charge
on the two spheres to the voltage,

2 -2' (--1) 2Q21 1 ,

Vo Vo n,1 n Vo

= 8reR In 2 (24)

where we recognize the infinite series to be the Taylor series
expansion of In(l+x) with x=l1. The capacitance of two
contacting spheres is thus 2 In 2 - 1.39 times the capacitance
of a single sphere given by (11).

The distance from the center to each image charge is
obtained from (23) substituted into (15) as

= ((-1)" (n + 1) (n- 1)
b. - ) +) 2R = 1- R (25)

n(-1)" n

We find the force of attraction between the spheres by
taking the sum of the forces on each image charge on one of
the spheres due to all the image charges on the other sphere.
The force on the nth image charge on one sphere due to the
mth image charge in the other sphere is

-qq., _Q2(_-)(-) " + nm
fn, n -i7 - (26)

41• [2R - b, - b,] 2 4eR (m + n)

where we used (23) and (25). The total force on the left
sphere is then found by summing over all values of m and n,

0 C l -
-- . (-I) " + "

nm
f= I Y . 2 +M)2

m=ln1 4reR2 m=L=L (n+m)

S 2 [ln 2 - ] (27)

where the double series can be explicitly expressed.* The
force is negative because the like charge spheres repel each
other. If Qo = 1 coul with R = 1 m, in free space this force is
f 6.6x 108 nt, which can lift a mass in the earth's gravity
field of 6.8 x 107 kg (=3 x 107 lb).

3-6 LOSSY MEDIA

Many materials are described by both a constant permit-
tivity e and constant Ohmic conductivity o. When such a
material is placed between electrodes do we have a capacitor

* See Albert D. Wheelon, Tables of Summable Series and Integrals Involving Bessel
Functions, Holden Day, (1968) pp. 55, 56.
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or a resistor? We write the governing equations of charge
conservation and Gauss's law with linear constitutive laws:

V- Jr+M= , Jf= oE+pfU (1)

V-D=p f, D=eE (2)

We have generalized Ohm's law in (1) to include convection
currents if the material moves with velocity U. In addition to
the conduction charges, any free charges riding with the
material also contribute to the current. Using (2) in (1) yields
a single partial differential equation in pf:

(V E)+V (pfU)+ = 0+> V *(pfU)+-pf= 0 (3)
Pf/e

3-6-1 Transient Charge Relaxation

Let us first assume that the medium is stationary so that
U = 0. Then the solution to (3) for any initial possibly spatially
varying charge distribution po(x, y, z, t = 0) is

pf=Po(x,y, z, t = 0) e- , 7 = e/o (4)

where 7 is the relaxation time. This solution is the continuum
version of the resistance-capacitance (RC) decay time in
circuits.

The solution of (4) tells us that at all positions within a
conductor, any initial charge density dies off exponentially
with time. It does not spread out in space. This is our
justification of not considering any net volume charge in
conducting media. If a system has no volume charge at t = 0

(Po = 0), it remains uncharged for all further time. Charge is
transported through the region by the Ohmic current, but the
net charge remains zero. Even if there happens to be an initial
volume charge distribution, for times much longer than the
relaxation time the volume charge density becomes negligibly
small. In metals, 7 is on the order of 10 - '9 sec, which is the
justification of assuming the fields are zero within an elec-
trode. Even though their large conductivity is not infinite, for
times longer than the relaxation time 7, the field solutions are
the same as if a conductor were perfectly conducting.

The question remains as to where the relaxed charge goes.
The answer is that it is carried by the conduction current to
surfaces of discontinuity where the conductivity abruptly
changes.
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3-6-2 Uniformly Charged Sphere

A sphere of radius R2 with constant permittivity e and
Ohmic conductivity ao is uniformly charged up to the radius
RI with charge density Po at time t = 0, as in Figure 3-21.
From R 1 to R 2 the sphere is initially uncharged so that it
remains uncharged for all time. The sphere is surrounded by
free space with permittivity e0 and zero conductivity.

From (4) we can immediately write down the volume
charge distribution for all time,

P=poe-/T, r<Rl
=,0, r>Rl(5

where 7=e/ol. The total charge on the sphere remains
constant, Q = 1wrR po, but the volume charge is transported
by the Ohmic current to the interface at r = R 2 where it
becomes a surface charge. Enclosing the system by a Gaussian
surface with r > R2 shows that the external electric field is
time independent,

QE, = or, r > R 2  (6)
4·rore

Similarly, applying Gaussian surfaces for r < R and RI < r<
R 2 yields

pore-l'_ Qr e -u
4rsR•,' 0<r<R1

Se 4w7E, = e_•,9 (7)
4rer2 ,  RI<r<R2

4P

+2

P/ =0+ +\p + + +
+ R

+ + +j 60a
+ E

%++

7

at = - (I-e
- t

i7S4rR2

Figure 3-21 An initial volume charge distribution within an Ohmic conductor decays
exponentially towards zero with relaxation time 7 = es/ and appears as a surface
charge at an interface of discontinuity. Initially uncharged regions are always un-
charged with the charge transported through by the current.
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The surface charge density at r = R 2 builds up exponentially
with time:

0f(r = R 2 ) = eoE,(r = R 2 +)- eE,(r = R 2-)

=- (1-e-)e(8)
47rR

The charge is carried from the charged region (r < R 1) to the
surface at r = R2 via the conduction current with the charge
density inbetween (R1 < r < R2) remaining zero:

SI oe-"', 0<r<Rl

J.= E,= oQ e-
4--er - RI<r<R2 (9)

0, r>R2

Note that the total current, conduction plus displacement, is
zero everywhere:

Qro e - "'
-rE4retR' O<r<R1

-J = Jd = = &_1
at 4 , R 1<r<R2 (10)

41er2

0, r>R2

3-6-3 Series Lossy Capacitor

(a) Charging transient
To exemplify the difference between resistive and capaci-

tive behavior we examine the case of two different materials in
series stressed by a step voltage first turned on at t = 0, as
shown in Figure 3-22a. Since it takes time to charge up the
interface, the interfacial surface charge cannot instan-
taneously change at t = 0 so that it remains zero at t = 0+. With
no surface charge density, the displacement field is continu-
ous across the interface so that the solution at t - 0+ is the
same as for two lossless series capacitors independent of the
conductivities:

D. = e,E, = 1 E (11)

The voltage constraint requires that

SE dx = Eia+Eb= V (12)
I*1
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x x x
-9

VW)

+ I
Depth d el e2 V

e2a+e 1b El e2 Cl e2

t = 0+

(a)

x x

V

+ Depthd oo 2V

o2 a +ab 02 01 02 01

t=(o

t=O (b)

C1 R1 =-d R2 = 2ld

elld e2ld

Ct ra

Figure 3-22 Two different lossy dielectric materials in series between parallel plate
electrodes have permittivities and Ohmic conductivities that change abruptly across
the interface. (a) At t = 0, right after a step voltage is applied, the interface is
uncharged so that the displacement field is continuous with the solution the same as
for two lossless dielectrics in series. (b) Since the current is discontinuous across the
boundary between the materials, the interface will charge up. In the dc steady state the
current is continuous. (c) Each region is equivalent to a resistor and capacitor in
parallel.

so that the displacement field is

D.(t = 0+) = (13)
e2a +e lb

The total current from the battery is due to both conduction
and displacement currents. At t = 0, the displacement current

o1D 0o2D1

a+

!
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is infinite (an impulse) as the displacement field instan-
taneously changes from zero to (13) to produce the surface
charge on each electrode:

of(x = O)= -of(x = a +b)= D. (14)

After the voltage has been on a long time, the fields
approach their steady-state values, as in Figure 3-22b.
Because there are no more time variations, the current
density must be continuous across the interface just the same
as for two series resistors independent of the permittivities,

J.(t - oo) = a'E1= o'2E2 = (15)
o2a +olb

where we again used (12). The interfacial surface charge is
now

(e ol - e 1o2)Vory(x = a) = 62E2- EIEI = - 1 0 2)V (16)
2cr + o2 lb

What we have shown is that for early times the system is
purely capacitive, while for long times the system is purely
resistive. The inbetween transient interval is found by using
(12) with charge conservation applied at the interface:

(dn- (J-Jl+d (D,-DI) =0

0"2E 2 - OlE 1+-d [E 2E 2 - 1 EE ]= 0 (17)
dt

With (12) to relate E2 to El we obtain a single ordinary
differential equation in EI,

dE1 E1 0'2 V
+ (18)

dt 7• 2a + e lb

where the relaxation time is a weighted average of relaxation
times of each material:

b+ 2a (19)
crb + o-a

Using the initial condition of (13) the solutions for the fields
are

EI= 2V (1-e- ' ) + 12V e_1
a-ra+ olb Ena +e lb

(20)
E2= a-1V (1-e "')+ eV e-U

oaa +oib e6a+elb



Lossy Media 187

Note that as t -0oo the solutions approach those of (15). The
interfacial surface charge is

(820l1 812)
of(x = a) = e 2E2 e-El = (1-e - ' ')V (21)

o-2a +olb

which is zero at t = 0 and agrees with (16) for t oo.

The total current delivered by the voltage source is

dEl dE2
i(oE -+e- Id= '2EE+e--) Id

di 22 2 di

001 a 2+ El1 \ 82 02 -\t1

c2 a+ lb 7T) e2a+eib o 2a+orlb)

+ 8((t) IdV (22)
E2a + e lb

where the last term is the impulse current that instan-
taneously puts charge on each electrode in zero time at t = 0:

8( 0)= >f 08(t) dt = 1
o0, t=O0

To reiterate, we see that for early times the capacitances
dominate and that in the steady state the resistances dominate
with the transition time depending on the relaxation times
and geometry of each region. The equivalent circuit for the
system is shown in Figure 3-22c as a series combination of a
parallel resistor-capacitor for each region.

(b) Open Circuit
Once the system is in the dc steady state, we instantaneously

open the circuit so that the terminal current is zero. Then,
using (22) with i = 0, we see that the fields decay indepen-
dently in each region with the relaxation time of each region:

E 2 V -81, 6

cr2a + oa b o1
(23)

E2 = V e 2-, 72 =
a2 a + oab oU2

The open circuit voltage and interfacial charge then decay as

V
V = Ea +E2 b = [o 2a e-'"'I + o b e '2]

o-2a + rlb
(24)

of E 2E 2 - 1E = V [E20l e- 'T2 - e 12 e- / ''

a 2a + or b
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(c) Short Circuit
If the dc steady-state system is instead short circuited, we

set V= 0 in (12) and (18),

Ela + E2b=0
(25)

di+
dt 7

where 7 is still given by (19). Since at t = 0 the interfacial
surface charge cannot instantaneously change, the initial
fields must obey the relation

lim(s 2E 2 - IEl)= -1 -2 -+ (eE 2 1 1 2)V (26)
t-o b o2a + orb

to yield the solutions

E2 b (e 2 o 1 - elo2)bV e -/ (27)
E. = e (27)

a (sa +elb) (er2a+ crb)

The short circuit current and surface charge are then

L\•b+ 2a (c'2 a+rb) ea+b (28)

= 2E2 -e = (E 2 l - e •2)

o2a +orb

The impulse term in the current is due to the instantaneous
change in displacement field from the steady-state values
found from (15) to the initial values of (26).

(d) Sinusoidal Steady State
Now rather than a step voltage, we assume that the applied

voltage is sinusoidal,

v(t)= Vo cos wt (29)

and has been on a long time.
The fields in each region are still only functions of time and

not position. It is convenient to use complex notation so that
all quantities are written in the form

v(t) = Re (Vo0 e
* )

El(t)=Re ($le"), E2(t)=Re ( 2 ) (30)

Using carets above a term to designate a complex amplitude,
the applied voltage condition of (12) requires

Pla + sb = Vo
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while the interfacial charge conservation equation of (17)
becomes

a2E2 - 0E 1 +j( (e 2 E2 - 1E) = [02 +j062]E 2

-[o +jwes]•1= 0 (32)

The solutions are

F 1 F2 Vo (33)
(iwsE2 + 2 ) (iaEl+1) [b(al+jcee)+a(o'2+jWae 2 )]

which gives the interfacial surface charge amplitude as

°'= e 2 •2 I1I= (34)
[b(a1 +jOai1)+a(a-2+jW6 2 )]

As the frequency becomes much larger than the reciprocal
relaxation times,

(0 >-, >W-, (35)
61 82

the surface charge density goes to zero. This is because the
surface charge cannot keep pace with the high-frequency
alternations, and thus the capacitive component dominates.
Thus, in experimental work charge accumulations can be
prevented if the excitation frequencies are much faster than
the reciprocal charge relaxation times.

The total current through the electrodes is

I =(ol+ jOa)Elld= ('2+jae 2)E 21d

Id(o1+jWe )(a2+ jie2)Vo
[b(oi+jOe ) + a(o2 +jis•2)1

Vo
R 2= (36)
R2 R1

R2 C2ja+1 R 1Cijw+1

with the last result easily obtained from the equivalent circuit
in Figure 3,22c.

3-6-4 Distributed Systems

(a) Governing Equations
In all our discussions we have assumed that the electrodes

are perfectly conducting so that they have no resistance and
the electric field terminates perpendicularly. Consider now
the parallel plate geometry shown in Figure 3-23a, where the
electrodes have a large but finite conductivity ac. The elec-
trodes are no longer equi-potential surfaces since as the cur-
rent passes along the conductor an Ohmic iR drop results.
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OC RAs

+

v(t)

ThAZ
i~ti

R As

0

AS)

v(i - As) -v(z) = 2i()R As

i(s) -i(s + As) = CAs
dt

+GAsv(s)

Figure 3-23 Lossy parallel plate electrodes with finite Ohmic conductivity o, enclose
a lossy dielectric with permittivity e and conductivity o. (a) This system can be modeled
by a distributed resistor-capacitor network. (b) Kirchoff's voltage and current laws
applied to a section of length Az allow us to describe the system by partial differential
equations.

The current is also shunted through the lossy dielectric so
that less current flows at the far end of the conductor than
near the source. We can find approximate solutions by break-
ing the continuous system into many small segments of length
Az. The electrode resistance of this small section is

Az
R Az =

oad

where R= 1/(o-,ad) is just the resistance per unit length.
We have shown in the previous section that the dielectric can
be modeled as a parallel resistor-capacitor combination,

edAz 1 s
Cz =z s GAz odAz

C is the capacitance per unit length and G is the conductance
per unit length where the conductance is the reciprocal of the
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resistance. It is more convenient to work with the conduc-
tance because it is in parallel with the capacitance.

We apply Kirchoff's voltage and current laws for the section
of equivalent circuit shown in Figure 3-23b:

v(z -Az)- v(z) = 2i(z)R Az
(39)

dv(z)
i(z)- i(z + Az) = CAz + GAzv(z)

dt

The factor of 2 in the upper equation arises from the equal
series resistances of the upper and lower conductors. Divi-
ding through by Az and taking the limit as Az becomes
infinitesimally small yields the partial differential equations

av
-- = 2iR

az
(40)

- = C.ý + Gv
az at

Taking 8/az of the upper equation allows us to substitute in
the lower equation to eliminate i,

a2v av
--y= 2RC- + 2RGv (41)

which is called a transient diffusion equation. Equations (40)
and (41) are also valid for any geometry whose cross sectional
area remains constant over its length. The 2R represents the
series resistance per unit length of both electrodes, while C
and G are the capacitance and conductance per unit length of
the dielectric medium.

(b) Steady State
If a dc voltage Vo is applied, the steady-state voltage is

d v
-2RGv = v = Asinh /2-Gz +A2coshN z (42)dz

where the constants are found by the boundary conditions at
z =0 and z = 1,

v(z = 0)= Vo, i(z = 1)= 0 (43)

We take the z = I end to be open circuited. Solutions are

v(z)= V0 cosh 2 (z- 1)

cosh 2A2- l
(44)

1 dv = -G sinh i2½ (z -1)
i(z) Vo

2R dz 2R cosh - l2G1
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(c) Transient Solution
If this dc voltage is applied as a step at t = 0, it takes time for

the voltage and current to reach these steady-state dis-
tributions. Because (41) is linear, we can use superposition
and guess a solution for the voltage that is the sum of the
steady-state solution in (44) and a transient solution that dies
off with time:

Vo cosh 2/i (z -1) ,
v(z, t) = cosh RG (z) e-a (45)

cosh ,1lR I

At this point we do not know the function vi(z) or a. Substi-
tuting the assumed solution of (45) back into (41) yields the
ordinary differential equation

-+p2v=0, P2 =2RCa -2RG (46)

which has the trigonometric solutions

^(z)= al sin pz +a 2 cos pz (47)

Since the time-independent' part of (45) already satisfies the
boundary conditions at z = 0, the transient part must be zero
there so that a2 = 0. The transient contribution to the current
i, found from (40),

=Vo f--G sinh -2 (z -1)
S2R cosh l2RG

(48)
1 diO(z) pa (48)

i(z) = cos pz2R dz 2R

must still be zero at z = 1, which means that p1 must be an odd
integer multiple of iT/2,

1 I 2+ G
pl=(2n+1)-~a. ((2n+l)= + , n = 0, 1,2,

2 2RC 21 C'
(49)

Since the boundary conditions allow an infinite number of
values of a, the most general solution is the superposition of
all allowed solutions:

cosh 2R (z -1) )
v(z, t) = VDo + Y A. sin(2n+ 1) e-"

cosh N/i- 1 0 21
(50)

This solution satisfies the boundary conditions but not the
initial conditions at t = 0 when the voltage is first turned on.
Before the voltage source is applied, the voltage distribution
throughout the system is zero. It must remain zero right after

1
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being turned on otherwise the time derivative in (40) would
be infinite, which requires nonphysical infinite currents. Thus
we impose the initial condition

cosh -ý2_R (z -1) rz
v(z, t=0)=0O= Vo s + YI An sin(2n+1) -

cosh ,l . =o 21
(51)

We can solve for the amplitudes An by multiplying (51)
through by sin (2m+ 1) rz/21 and then integrating over z
from 0 to 1:

Vo2• cosh 2R-G(z - 1)sin(2m+1) dz
cosh I2RGo 21

10 Z iTrz
+J An sin(2n +1) -sin(2m +1) - dz (52)

n=o 21 21

The first term is easily integrated by writing the hyperbolic
cosine in terms of exponentials,* while the last term integrates
to zero for all values of m not equal to n so that the ampli-
tudes are

1 rVo (2n + 1)
A= 2RG + [(2n + 1) /rl21]2

The total solutions are then

Vo cosh N2--2(z- 1)
v(z,t)=

cosh v i;R I

7rVo (2n + 1) sin [(2n + 1) (lrz/21)]e-"-'

12 n=oo 2RG+[(2n+l) (r/21)]2

1 av
i(z, t)= I

2R az

Vo 12R sinhVi (z - 1)

cosh l/2I

Sr2 Vo (2n + 1)2 cos [(2n + 1)(wz/21)] e-"-'
41R ,=o 2RG + [(2n + 1) ('rj21)]2

* cosh a(z - 1)sin bz dz

=a+ b [a sin bz sinh a(z -l)-b cos bz cosh a(z -1)]

0 m n
sin (2n + l)bz sin (2m+ 1)bz dz = m n

11/2 m=n
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The fundamental time constant corresponds to the smallest
value of a, which is when n = 0:

1 C
To= -= 2 (55)

ao G+

For times long compared to •0 the system is approximately in
the steady state. Because of the fast exponential decrease for
times greater than zero, the infinite series in (54) can often be
approximated by the first term. These solutions are plotted in
Figure 3-24 for the special case where G = 0. Then the
voltage distribution builds up from zero to a constant value
diffusing in from the left. The current near z = 0 is initially
very large. As time increases, with G = 0, the current every-
where decreases towards a zero steady state.

3-6-5 Effects of Convection

We have seen that in a stationary medium any initial charge
density decays away to a surface of discontinuity. We now
wish to focus attention on a dc steady-state system of a
conducting medium moving at constant velocity Ui., as in
Figure 3-25. A source at x = 0 maintains a constant charge
density po. Then (3) in the dc steady state with constant

8RC1
2

To = ,

vf=, I
VO

a/I /fl

Figure 3-24 The transient voltage and current spatial distributions for various times
for the lossy line in Figure 3-23a with G = 0 for a step voltage excitation at z = 0 with
the z = I end open circuited. The diffusion effects arise because of the lossy electrodes
where the longest time constant is T0 = 8RC/2IIr'.
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p (x = 0) = Po

, 1 PU

-T-

P1 W ý poe x1AM =E apIm

I
Figure 3-25 A moving conducting material with velocity Ui, tends to take charge
injected at x =0 with it. The steady-state charge density decreases exponentially from
the source.

velocity becomes

dpf, ad+p+"a P = 0 (56)
dx EU

which has exponentially decaying solutions

pf = Po e - a , 1= (57)

where 1. represents a characteristic spatial decay length. If
the system has cross-sectional area A, the total charge q in the
system is

q = pfA dx = polA (58)

3-6-6 The Earth and its Atmosphere as a Leaky Spherical Capacitor*

In fair weather, at the earth's surface exists a dc electric
field with approximate strength of 100 V/m directed radially
toward the earth's center. The magnitude of the electric field
decreases with height above the earth's surface because of the
nonuniform electrical conductivity oa(r) of the atmosphere
approximated as

cr(r)= ro + a(r- R )2 siemen/m (59)

where measurements have shown that

ro- 3 10-14

a .5 x 10- 20 (60)

* M. A. Uman, "The EarthandIts Atmosphere asa Leaky SphericalCapacitor,"Am. J. Phys.
V. 42, Nov. 1974, pp. 1033-1035.
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and R -6 x 106 meter is the earth's radius. The conductivity
increases with height because of cosmic radiation in the lower
atmosphere. Because of solar radiation the atmosphere acts
as a perfect conductor above 50 km.

In the dc steady state, charge conservation of Section 3-2-1
with spherical symmetry requires

18 C
VJ= (rJ,)= > J, = (r)E,= (61)

r2 8r r

where the constant of integration C is found by specifying the
surface electric field E,(R)* - 100 V/m

O(R)E,(R)R 2

J,(r) = 2 (62)

At the earth's surface the current density is then

J,(R) = o(R)E,(R) = roE,(R) -- 3 x 10-12 amp/m2 (63)

The total current directed radially inwards over the whole
earth is then

I = IJ,(R)47rR 21 - 1350 amp (64)

The electric field distribution throughout the atmosphere
is found from (62) as

J , (r ) =(R)E,(R)R2
E,(r) 2(r) (65)

o(r) r o(r)

The surface charge density on the earth's surface is

(r = R) = EoE,(R) - -8.85 x 10- 1' Coul/m 2 (66)

This negative surface charge distribution (remember: E,(r)<
0) is balanced by positive volume charge distribution
throughout the atmosphere

Eo 2 soo(R)E,(R)R 2 d 1
p,(r)=eoV - E= r--(rE,)= 2 L\(r~r 22 r dr o(r)

S-soo(R)E,(R)R 2 (67)
r2((r)) 2a(r-R)

The potential difference between the upper atmosphere
and the earth's surface is

V= J- E,(r)dr

o(R)E(R)2r2[o[o+a(r-R)2]
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1 (R2 t)

r(R 2 )+ C10(R+'2 )2

( 1 a la

r(R)E,(R)

a(R' + 0)'

Using the parameters of (60), we see that rola<< R 2 so that
(68) approximately reduces to

aR2 aR2

IoE,(R)n (69)

- 384,000 volts

If the earth's charge were not replenished, the current flow
would neutralize the charge at the earth's surface with a time
constant of order

£07 = -= 300 seconds (70)
0o

It is thought that localized stormy regions simultaneously
active all over the world serve as "batteries" to keep the earth
charged via negatively chairged lightning to ground and
corona at ground level, producing charge that moves from
ground to cloud. This thunderstorm current must be
upwards and balances the downwards fair weather current of
(64).

3.7 FIELD-DEPENDENT SPACE CHARGE DISTRIBUTIONS

A stationary Ohmic conductor with constant conductivity
was shown in Section 3-6-1 to not support a steady-state
volume charge distribution. This occurs because in our clas-
sical Ohmic model in Section 3-2-2c one species of charge
(e.g., electrons in metals) move relative to a stationary back-
ground species of charge with opposite polarity so that charge
neutrality is maintained. However, if only one species of

(68)
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charge is injected into a medium, a net steady-state volume
charge distribution can result.

Because of the electric force, this distribution of volume
charge py contributes to and also in turn depends on the
electric field. It now becomes necessary to simultaneously
satisfy the coupled electrical and mechanical equations.

3-7-1 Space Charge Limited Vacuum Tube Diode

In vacuum tube diodes, electrons with charge -e and mass
m are boiled off the heated cathode, which we take as our zero
potential reference. This process is called thermionic emis-
sion. A positive potential Vo applied to the anode at x = l
accelerates the electrons, as in Figure 3-26. Newton's law for a
particular electron is

dv dV
m = - eE = e (1)

dt dx

In the dc steady state the velocity of the electron depends only
on its position x so that

dv dv dx dv d 2 d
m-= =mymv ( )= -(e V) (2)

dt dx dt dx dx dx

V0
+II

1ll

-e +

2eV 1/2 +
V= [ - Em

J -Joix

+

= JoA

Area A

Cathode Anode

I I - x0 I

(a) (b)

Figure 3-26 Space charge limited vacuum tube diode. (a) Thermionic injection of
electrons from the heated cathode into vacuum with zero initial velocity. The positive
anode potential attracts the electrons whose acceleration is proportional to the local
electric field. (b) Steady-state potential, electric field, and volume charge distributions.

|Ill

0 1
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With this last equality, we have derived the energy conser-
vation theorem

d [mv2 -eV] = O mv2 - eV= const (3)
dx

where we say that the kinetic energy 2mv
2 plus the potential

energy -eV is the constant total energy. We limit ourselves
here to the simplest case where the injected charge at the
cathode starts out with zero velocity. Since the potential is also
chosen to be zero at the cathode, the constant in (3) is zero.
The velocity is then related to the electric potential as

= (2e V)I/ 1/ (4)

In the time-independent steady state the current density is
constant,

dJx
JJ=O - O=J = -Joi. (5)

dx

and is related to the charge density and velocity as

In 1/2

o = -PfvjpJf = -JO(2e) 1 9 V -
1
2  (6)

Note that the current flows from anode to cathode, and
thus is in the negative x direction. This minus sign is
incorporated in (5) and (6) so that Jo is positive. Poisson's
equation then requires that

V2V= -P dV Jo 'm 1/2v-
\•eW (7)

Power law solutions to this nonlinear differential equation are
guessed of the form

V = Bx (8)

which when substituted into (7) yields

Bp(p - 1)x -2 = o (; 12 B-1/2X-02 (9)/

For this assumed solution to hold for all x we require that

p 4
-2= -p = (10)

2 3

which then gives us the amplitude B as

B 4= [ /22/s (11)

I
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so that the potential is

V(x)-= 9'- 12 2Ex 4 (12)

The potential is zero at the cathode, as required, while the
anode potential Vo requires the current density to be

V(x = ) = Vo = I 1/22/ 4/3

4e \2e /2 /2

o = V;9 (13)

which is called the Langmuir-Child law.
The potential, electric field, and charge distributions are

then concisely written as

V(x) = Vo(! )

dV(x) 4 Vo (I\s
E(x) = - - ) (14)

dE(x) 4 Vo (x)- 2 /s

and are plotted in Figure 3-26b. We see that the charge
density at the cathode is infinite but that the total charge
between the electrodes is finite,

q-= p(x)Adx= -- ve-A (15)

being equal in magnitude but opposite in sign to the total
surface charge on the anode:

4Vo
qA= of(x=1)A= -eE(x=1)A= + -4-A (16)

3 1

There is no surface charge on the cathode because the electric
field is zero there.

This displacement x of each electron can be found by
substituting the potential distribution of (14) into (4),

S(2eVo 2 ( )2/i s dx_ 2eVo ,1/2v - ~-5 =(--2 dt (17)

which integrates to

x= 7iýi) ' (18)
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The charge transit time 7 between electrodes is found by
solving (18) with x = 1:

= 3(1 (19)

For an electron (m = 9.1 x 10 - s ' kg, e = 1.6 10-' 9 coul) with
100 volts applied across 1 = 1 cm (10 -2 m) this time is 7~
5 x 10 - 9 sec. The peak electron velocity when it reaches the
anode is v(x = 1)-6x 106 m/sec, which is approximately 50
times less than the vacuum speed of light.

Because of these fast response times vacuum tube diodes
are used in alternating voltage applications for rectification as
current only flows when the anode is positive and as
nonlinear circuit elements because of the three-halves power
law of (13) relating current and voltage.

3-7-2 Space Charge Limited Conduction in Dielectrics

Conduction properties of dielectrics are often examined by
injecting charge. In Figure 3-27, an electron beam with cur-
rent density J = -Joi, is suddenly turned on at t = 0.* In media,
the acceleration of the charge is no longer proportional to the
electric field. Rather, collisions with the medium introduce a
frictional drag so that the velocity is proportional to the elec-
tric field through the electron mobility /A:

v = -AE (20)

As the electrons penetrate the dielectric, the space charge
front is a distance s from the interface where (20) gives us

ds/dt = -tE(s) (21)

Although the charge density is nonuniformly distributed
behind the wavefront, the total charge Q within the dielectric
behind the wave front at time t is related to the current
density as

JoA = pE.A = - Q/t Q = -JoAt (22)

Gauss's law applied to the rectangular surface enclosing all
the charge within the dielectric then relates the fields at the
interface and the charge front to this charge as

E- dS = (E(s)-oE(0)]A = Q = -JoAt (23)

* See P. K. Watson, J. M. Schneider, andH. R. Till, Electrohydrodynamic Stability of Space
Charge Limited Currents In Dielectric Liquids. IL. ExperimentalStudy, Phys. Fluids 13
(1970), p. 1955.
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Electron beam
A= - 1-i

Space charge limited Surface of integration for Gauss's
condition: E(O)=0w: Es- A==-At

. eo law: fE__ [(s)-eoE(OI]A=Q=-JoAe
- I
0 /

sltl

~+e-= E Moving space charge front
Se, p = 0 E =ds

Electrode area -Es)
7Electrode area A

Sjo 1/2 t
E• j =

Figure 3-27 (a) An electron beam carrying a current -Joi, is turned on at t = 0. The
electrons travel through the dielectric with mobility gp. (b) The space charge front, at a
distance s in front of the space charge limited interface at x = 0, travels towards the
opposite electrode. (c) After the transit time t, = [2el/IJo]1'2 the steady-state potential,
electric field, and space charge distributions.

The maximum current flows when E(O) = 0, which is called
space charge limited conduction. Then using (23) in (21)
gives us the time dependence of the space charge front:

ds iJot iLJot2
= O s(t) =dt e 2e

Behind the front Gauss's law requires

dE~, P Jo dE. Jo
-=E E dE.

dx e eAE. x dx EL-

(24)

(25)

~I
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while ahead of the moving space charge the charge density is
zero so that the current is carried entirely by displacement
current and the electric field is constant in space. The spatial
distribution of electric field is then obtained by integrating
(25) to

E•= -I2JOx , 0:xs(t) (26)
-%2_Jos/e, s(t)Sxli

while the charge distribution is

S=dE -eJo/(2x), O -x s(t) (27)
Pf=e (27)

dx 0, s(t):x5l

as indicated in Figure 3-27b.
The time dependence of the voltage across the dielectric is

then

v(t) = Edx = ojx d+-x d

Jolt Aj2t3
e 6 , s(t)_l (28)
6 6E2

These transient solutions are valid until the space charge
front s, given by (24), reaches the opposite electrode with s = I
at time

€= 12-e11to (29)

Thereafter, the system is in the dc steady state with the
terminal voltage Vo related to the current density as

9e;L V2
Jo= 8- (30)

8 1S

which is the analogous Langmuir-Child's law for collision
dominated media. The steady-state electric field and space
charge density are then concisely written as

3 Vo 2 dE 3E V0 1 (31)
2 1 dx- 4 1.

and are plotted in Figure 3-27c.
In liquids a typical ion mobility is of the order of

10-7 m 2/(volt-sec) with a permittivity of e = 2e0
1.77Ox 10- farad/m. For a spacing of I= O-2 m with a
potential difference of Vo = 10 V the current density of (30)
is Jo 2 10-4 amp/m2 with the transit time given by (29)
rr0.133 sec. Charge transport times in collison dominated
media are much larger than in vacuum.
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3-8 ENERGY STORED IN A DIELECTRIC MEDIUM

The work needed to assemble a charge distribution is
stored as potential energy in the electric field because if the
charges are allowed to move this work can be regained as
kinetic energy or mechanical work.

3-8-1 Work Necessary to Assemble a Distribution of Point Charges

(a) Assembling the Charges
Let us compute the work necessary to bring three already

existing free charges qj, q2, and qs from infinity to any posi-
tion, as in Figure 3-28. It takes no work to bring in the first
charge as there is no electric field present. The work neces-
sary to bring in the second charge must overcome the field
due to the first charge, while the work needed to bring in the
third charge must overcome the fields due to both other
charges. Since the electric potential developed in Section
2-5-3 is defined as the work per unit charge necessary to bring
a point charge in from infinity, the total work necessary to
bring in the three charges is

q, \+ Iq__+ q2W=q,()+q2r +qsl + (1)
4 irer 2l ' 4wer15 4rrer 2sl

where the final distances between the charges are defined in
Figure 3-28 and we use the permittivity e of the medium. We
can rewrite (1) in the more convenient form

W= _[ q2 + qs +q q, + 3

2 4 4erel24erTsJ, 4ITerl2 4r823J

q 4q+ 2 (2)
14rer3s 47rer23s

I
/

/
/

/
/

/
I

/
/

/
p.

Figure 3-28 Three already existing point charges are brought in from an infinite
distance to their final positions.
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where we recognize that each bracketed term is just the
potential at the final position of each charge and includes
contributions from all the other charges, except the one
located at the position where the potential is being evaluated:

W= 2[q V1 +q2 V 2 +q 3 Vs] (3)

Extending this result for any number N of already existing
free point charges yields

1 N

W= E 4qV,, (4)

The factor of - arises because the potential of a point charge
at the time it is brought in from infinity is less than the final
potential when all the charges are assembled.

(b) Binding Energy of a Crystal
One major application of (4) is in computing the largest

contribution to the binding energy of ionic crystals, such as
salt (NaCI), which is known as the Madelung electrostatic
energy. We take a simple one-dimensional model of a crystal
consisting of an infinitely long string of alternating polarity
point charges ±q a distance a apart, as in Figure 3-29. The
average work necessary to bring a positive charge as shown in
Figure 3-29 from infinity to its position on the line is obtained
from (4) as

1 2q 1 1 1 1
W ----- 1+---+---+ -- (5)

2 47rea 2 3 4 5 6

The extra factor of 2 in the numerator is necessary because
the string extends to infinity on each side. The infinite series
is recognized as the Taylor series expansion of the logarithm

2 3 4 5

In (l +x)=x--+---+-- (6)
2345

+q -q +q -q +q -q +q -q +q -q +q

Figure 3-29 A one-dimensional crystal with alternating polarity charges q a dis-
tance a apart.
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where x = 1 so that*

-4iaW = In 2 (7)

This work is negative because the crystal pulls on the charge
as it is brought in from infinity. This means that it would take
positive work to remove the charge as it is bound to the
crystal. A typical ion spacing is about 3 A (3 x 10-'1 m) so that
if q is a single proton (q = 1.6x 10- coul), the binding energy
is W 5.3x10-' joule. Since this number is so small it is
usually more convenient to work with units of energy per unit
electronic charge called electron volts (ev), which are obtained
by dividing W by the charge on an electron so that, in this
case, W -3.3 ev.

If the crystal was placed in a medium with higher permit-
tivity, we see from (7) that the binding energy decreases. This
is why many crystals are soluble in water, which has a relative
dielectric constant of about 80.

3-8-2 Work Necessary to Form a Continuous Charge Distribution

Not included in (4) is the self-energy of each charge itself
or, equivalently, the work necessary to assemble each point
charge. Since the potential V from a point charge q is pro-
portional to q, the self-energy is proportional q2 . However,
evaluating the self-energy of a point charge is difficult
because the potential is infinite at the point charge.

To understand the self-energy concept better it helps to
model a point charge as a small uniformly charged spherical
volume of radius R with total charge Q = srRspo. We assem-
ble the sphere of charge from spherical shells, as shown in
Figure 3-30, each of thickness dr. and incremental charge
dq. = 4rr2 drpo. As we bring in the nth shell to be placed at
radius r. the total charge already present and the potential
there are

4 q. rPoo

q3 4wrer. 3e

* Strictly speaking, this series is only conditionallyconvergentfor x = 1 and its sum depends on
the groupingof individual terms. If the series in (6) for x = 1 is rewritten as

1 1 1 1 1 1 1 11----+-----+...+ ..+ I---- I.... kl
2 4 3 6 8 2k-1 4k-2 4k

then its sum is 2 In 2. [See J.Pleinesand S.Mahajan,On ConditionallyDivergentSeriesand
a PointChargeBetween Two ParallelGrounded Planes,Am. J. Phys. 45 (1977) p. 868. ]
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= Po4r4. dr,

Figure 3-30 A point charge is modelled as a small uniformly charged sphere. It is
assembled by bringing in spherical shells of differential sized surface charge elements
from infinity.

so that the work required to bring in the nth shell is

dW. = V. dq. = dr. (9)

The total work necessary to assemble the sphere is obtained
by adding the work needed for each shell:

W= dW. = 3 e dr = 20reR (10)

For a finite charge Q of zero radius the work becomes
infinite. However, Einstein's theory of relativity tells us that
this work necessary to assemble the charge is stored as energy
that is related to the mass as

W=mc= SQ 2 3Q 2

W=mc9= RR = , (11)20ireR 204rEmc2

which then determines the radius of the charge. For the case
of an electron (Q = 1.6 x 10- 19 coul, m = 9.1 x 10- s1 kg) in free
space (e = E0 = 8.854 X 10-12 farad/m), this radius is

3(1.6 x 10-19)Relectron =-12)9 1X
20ir(8.854x 10-1)(9x10 10'-)(3 x 10 )

-1.69x 10- 15 m (12)

We can also obtain the result of (10) by using (4) where each
charge becomes a differential element dq, so that the sum-
mation becomes an integration over the continuous free
charge distribution:

W= f, Vdq, (13)
Ilqlq
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For the case of the uniformly charged sphere, dqr = Po dV, the
final potential within the sphere is given by the results of
Section 2-5-5b:

V=P (R-2_L (14)
2e \ 3/

Then (13) agrees with (10):

1 P R ( 3 d2 r 41rpoR5  3SQ2
W= oVdV=41rp R _ rdr

2 4e 3 ) 15e 201reR

(15)

Thus, in general, we define (13) as the energy stored in the
electric field, including the self-energy term. It differs from
(4), which only includes interaction terms between different
charges and not the infinite work necessary to assemble each
point charge. Equation (13) is valid for line, surface, and
volume charge distributions with the differential charge ele-
ments given in Section 2-3-1. Remember when using (4) and
(13) that the zero reference for the potential is assumed to be
at infinity. Adding a constant Vo to the potential will change
the energy u'nless the total charge in the system is zero

W= f (V+ Vo) dq

= V dq, + Vo f

= Vdq1  (16)

3-8-3 Energy Density of the Electric Field

It is also convenient to express the energy W stored in a
system in terms of the electric field. We assume that we have a
volume charge distribution with density pf. Then, dqf= pydV,
where p, is related to the displacement field from Gauss's law:

W=J fp, VdV=½ V(V. D) dV (17)

Let us examine the vector expansion

V -(VD)=(D.V)V+ V(V. D)= V(V D)=V *(VD)+D'E
(18)

where E= -V V. Then (17) becomes

W= D. EdV+t V (VD)dV (19)

__
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The last term on the right-hand side can be converted to a
surface integral using the divergence theorem:

SV (VD)dV = SVDdS (20)

If we let the volume V be of infinite extent so that the enclos-
ing surface S is at infinity, the charge distribution that only
extends over a finite volume looks like a point charge for
which the potential decreases as 1/r and the displacement
vector dies off as l/r 2 . Thus the term, VD at best dies off as
1/r s . Then, even though the surface area of S increases as r ,

the surface integral tends to zero as r becomes infinite as l/r.
Thus, the second volume integral in (19) approaches zero:

lim V (VD)dV= VD"dS=O (21)

This conclusion is not true if the charge distribution is of
infinite extent, since for the case of an infinitely long line or
surface charge, the potential itself becomes infinite at infinity
because the total charge on the line or surface is infinite.
However, for finite size charge distributions, which is always
the case in reality, (19) becomes

W= space D.EdV

= eE2 dV (22)
all space

where the integration extends over all space. This result is
true even if the permittivity e is a function of position. It is
convenient to define the energy density as the positive-
definite quantity:

w = 2eE2 joule/m s [kg-m- -s- ] (23)
where the total energy is

W = space wdV (24)W= wdVV(24)

Note that although (22) is numerically equal to (13), (22)
implies that electric energy exists in those regions where a
nonzero electric field exists even if no charge is present in that
region, while (13) implies that electric energy exists only
where the charge is nonzero. The answer as to where the
energy is stored-in the charge distribution or in the electric
field-is a matter of convenience since you cannot have one
without the other. Numerically both equations yield the same
answers but with contributions from different regions of
space.
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3-8-4 Energy Stored in Charged Spheres

(a) Volume Charge
We can also find the energy stored in a uniformly charged

sphere using (22) since we know the electric field in each
region from Section 2-4-3b. The energy density is then

Q'
r>R

w = !E = 2r (25)
2 Q22

32r2eR 
, r<R

with total stored energy

W= wdV

2 -R 4 - Q3
r dr + (26)

which agrees with (10) and (15).

(b) Surface Charge
If the sphere is uniformly charged on its surface Q =

4nrR2 cro, the potential and electric field distributions are

4 0, r<R

V(r)= E, = (27)

Q----§, r>RL4r 4Irer

Using (22) the energy stored is

e Q \2 C dr Q2

2 4ie 41JR r 8weR (28)

This result is equally as easy obtained using (13):

W = ooV(r = R) dS

= 'oV(r = R)4rR2 8 R (29)

The energy stored in a uniformly charged sphere is 20%
larger than the surface charged sphere for the same total
charge Q. This is because of the additional energy stored
throughout the sphere's volume. Outside the sphere (r > R)
the fields are the same as is the stored energy.
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(c) Binding Energy of an Atom
In Section 3-1-4 we modeled an atom as a fixed positive

point charge nucleus Q with a surrounding uniform spheri-
cal cloud of negative charge with total charge -Q, as in
Figure 3-31. Potentials due to the positive point and negative
volume charges are found from Section 2-5-5b as

QV+(r) =
41reor

3Q 2 Q23 (R L), r<R8weoRs 3

V_(r) =

Sr > R (30)
41reor

The binding energy of the atom is easily found by super-
position considering first the uniformly charged negative
sphere with self-energy given in (10), (15), and (26) and then
adding the energy of the positive point charge:

3Q2 2Q9
W= +Q[V_(r = 0)] =- (31)

207reoR 407reoR

This is the work necessary to assemble the atom from
charges at infinity. Once the positive nucleus is in place, it
attracts the following negative charges so that the field does
work on the charges and the work of assembly in (31) is
negative. Equivalently, the magnitude of (31) is the work
necessary for us to disassemble the atom by overcoming the
attractive coulombic forces between the opposite polarity
charges.

When alternatively using (4) and (13), we only include the
potential of the negative volume charge at r = 0 acting on the
positive charge, while we include the total potential due to
both in evaluating the energy of the volume charge. We do

Total negative
charge - Q

r---- --V() 3Q(R 2 
_r2/3)Q 4reor 8weoR
3

- -=- - - - -_
dr 4weor

2 4weo
R 3

Figure 3-31 An atom can be modelled as a point charge Q representing the nucleus,
surrounded by a cloud of uniformly distributed electrons with total charge - Q within
a sphere of radius R.
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not consider the infinite self-energy of the point charge that
would be included if we used (22):

W= QV.(r = 0)-2 -o [V+(r)+ V-(r)] i- dr

- 3Q 3Q 2 R r 3 r2 
r 4 dr

16EoR 8eoR 2 R 2R

9Q2
- (32)

40wsreoR

3-8-5 Energy Stored in a Capacitor

In a capacitor all the charge resides on the electrodes as a
surface charge. Consider two electrodes at voltage VI and V2
with respect to infinity, and thus at voltage difference V=
V2 - V1, as shown in Figure 3-32. Each electrode carries
opposite polarity charge with magnitude Q. Then (13) can be
used to compute the total energy stored as

W=[ Vio. dSi+ V20 2 ds2 (33)

Since each surface is an equipotential, the voltages VI and V2

may be taken outside the integrals. The integral then reduces
to the total charge ± Q on each electrode:

w=4VIJ oa dS1+ V2 2 2dS
-Q Q

=(V2 V- )Q=Q QV (34)

e(r)
V= V2 -V

S2-

W = Q-V2= cV C= Q2/C

Figure 3-32 A capacitor stores energy in the electric field.
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Since in a capacitor the charge and voltage are linearly related
through the capacitance

Q = CV (35)
the energy stored in the capacitor can also be written as

W=QV=CV2 - (36)

This energy is equivalent to (22) in terms of the electric field
and gives us an alternate method to computing the capaci-
tance if we know the electric field distribution.

EXAMPLE 3-3 CAPACITANCE OF AN ISOLATED SPHERE

A sphere of radius R carries a uniformly distributed sur-
face charge Q. What is its capacitance?

SOLUTION

The stored energy is given by (28) or (29) so that (36) gives
us the capacitance:

C = Q 2 /2 W = 41reR

3.9 FIELDS AND THEIR FORCES

3-9-1 Force Per Unit Area on a Sheet of Surface Charge

A confusion arises in applying Coulomb's law to find the
perpendicular force on a sheet of surface charge as the
normal electric field is different on each side of the sheet.
Using the over-simplified argument that half the surface
charge resides on each side of the sheet yields the correct
force

f= o-,(E +E) dS (1)

where, as shown in Figure 3-33a, El and E2 are the electric
fields on each side of the sheet. Thus, the correct field to use
is the average electric field -(El + E2) across the sheet.

For the tangential force, the tangential components of E
are continuous across the sheet (El, = E2 =-E,) so that

, = s of(E, +E 2,) dS= IoyE,dS (2)
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E

90 x

Figure 3-33 (a) The normal component of electric field is discontinuous across the
sheet of surface charge. (b) The sheet of surface charge can be modeled as a thin layer
of volume charge. The electric field then varies linearly across the volume.

The normal fields are discontinuous across the sheet so that
the perpendicular force is

o = e(E 2 , - E.) f. = e (E2. - E1 .)(E. + E 2 ) dS

To be mathematically rigorous we can examine the field
transition through the sheet more closely by assuming the
surface charge is really a uniform volume charge distribution
po of very narrow thickness 8, as shown in Figure 3-33b. Over
the small surface element dS, the surface appears straight so
that the electric field due to the volume charge can then only
vary with the coordinate x perpendicular to the surface. Then
the point form of Gauss's law within the volume yields

d = P= E. = + const
dx e e

The constant in (4) is evaluated by the boundary conditions
on the normal components of electric field on each side of the

214

:0-b 8 -e

Eln

Elt
/E,

El, =E 2V =EI

E2n -- Eln e P0e

~I

e(E. .- E .) dS



Fields and Their Forces 215

sheet

E.(x = O)= Ej., E.(x = 8)= E2. (5)

so that the electric field is

x
Ex= (E 2.- E,,) +El, (6)

As the slab thickness 8 becomes very small, we approach a
sheet charge relating the surface charge density to the dis-
continuity in electric fields as

lim po8 = a- = e (E2n -El.) (7)
Po--O
8-0

Similarly the force per unit area on the slab of volume charge
is

F. = poE.dx

=' po((E 2 n-E1 .) +E,. dx
2 8

=[po(E2.-EE)--+E1 ,.x

Po8= (E,,+E2.) (8)
2

In the limit of (7), the force per unit area on the sheet of
surface charge agrees with (3):

lim F.= -(E.+E2.) = (E -El (9)
PoB=rf 2 2

3-9-2 Forces on a Polarized Medium

(a) Force Density
In a uniform electric field there is no force on a dipole

because the force on each charge is equal in magnitude but
opposite in direction, as in Figure 3-34a. However, if the
dipole moment is not aligned with the field there is an align-
ing torque given by t =p xE. The torque per unit volume T
on a polarized medium with N dipoles per unit volume is
then

T= Nt=Np xE= PxE
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qE

F-

F=F, +F_- =0

t=dxF÷ =qdxE=pxE

Unifprm field Nonuniform field

(a) (b)

Figure 3-34 (a) A torque is felt by a dipole if its moment is not aligned with the
electric field. In a uniform electric field there is no net force on a dipole because the
force on each charge is equal in magnitude but opposite in direction. (b) There is a net
force on a dipole only in a nonuniform field.

For a linear dielectric, this torque is zero because the
polarization is induced by the field so that P and E are in the
same direction.

A net force can be applied to a dipole if the electric field is
different on each end, as in Figure 3-34b:

f = -q[E(r)-E(r+d)] (11)

For point dipoles, the dipole spacing d is very small so that the
electric field at r + d can be expanded in a Taylor series as

E(r + d) - E(r)+ d. - E(r)+ d, E(r)+ d. a E(r)ax ay az
= E(r) + (d - V)E(r) (12)

Then the force on a point dipole is

f = (qd V)E(r)= (p V)E(r) (13)

If we have a distribution of such dipoles with number
density N, the polarization force density is

F = Nf = (Np - V)E = (P . V)E (14)

Of course, if there is any free charge present we must also
add the coulombic force density pfE.

(b) Permanently Polarized Medium
A permanently polarized material with polarization Poi, is

free to slide between parallel plate electrodes, as is shown in
Figure 3-35.

216
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Figure 3-35 (a) A permanently polarized electret partially inserted into a capacitor
has a force on it due to the Coulombic attraction between the dipole charges and the
surface charge on the electrodes. The net force arises in the fringing field region as the
end of the dipole further from the electrode edge feels a smaller electric field.
Depending on the voltage magnitude and polarity, the electret can be pulled in or
pushed out of the capacitor. (b) A linear dielectric is always attracted into a free space
capacitor because of the net force on dipoles in the nonuniform field. The dipoles are
now aligned with the electric field, no matter the voltage polarity.

We only know the electric field in the interelectrode region
and from Example 3-2 far away from the electrodes:

Vo
E,(x = Xo) = -,

s

Po
E,(x = -oo)=

EO

Y

St

217

P0 j

E+

F =q(E -- E_)

I - II

I

(15)
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Unfortunately, neither of these regions contribute to the
force because the electric field is uniform and (14) requires a
field gradient for a force. The force arises in the fringing
fields near the electrode edges where the field is nonuniform
and, thus, exerts less of a force on the dipole end further
from the electrode edges. At first glance it looks like we have a
difficult problem because we do not know the fields where the
force acts. However, because the electric field has zero curl,

VxE= E0 OE, (16)y ax=

the x component of the force density can be written as

ayaE,F.=P,

'axaE,

= -(PE,)- E, a (17)
ax ax

The last term in (17) is zero because P, = Po is a constant. The
total x directed force is then

f J F. dx dy dz

£o a
1= . ,o T- (P,E,) dxdydz (18)

We do the x integration first so that the y and z integrations
are simple multiplications as the fields at the limits of the x
integration are independent of y and z:

Posd
fJ = PoEsdlx- = PoVod +- (19)6 o

There is a force pulling the electret between the electrodes
even if the voltage were zero due to the field generated by the
surface charge on the electrodes induced by the electret. This
force is increased if the imposed electric field and polarization
are in the same direction. If the voltage polarity is reversed,
the force is negative and the electret is pushed out if the
magnitude of the voltage exceeds Pos/eo.

(c) Linearly Polarized Medium
The problem is different if the slab is polarized by the

electric field, as the polarization will then be in the direction
of the electric field and thus have x and y components in the
fringing fields near the electrode edges where the force
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arises, as in Figure 3-35b. The dipoles tend to line up as
shown with the positive ends attracted towards the negative
electrode and the negative dipole ends towards the positive
electrode. Because the farther ends of the dipoles are in a
slightly weaker field, there is a net force to the right tending
to draw the dielectric into the capacitor.

The force density of (14) is

F,= P. . +P, = (E o)E. +EYE (20)
ax ay ax ay

RrecaeP the elecptric field i curl free as given in (1) the
-- ------- -. - - , a -

force density is further simplified to

(e - o) 2)
F. -) (E2 +EY) (21)

2 ax

The total force is obtained by integrating (21) over the
volume of the dielectric:

fj d (E- (Ej +Ej) dxdyddz
I=0-o "o f o 2 ax(

(e - eo)sd(E +E)1 O (E- EO) V-(d
2 (E+E )=-M- 2 (22)
2 2 s

where we knew that the fields were zero at x = -co and uni-
form at x = xo:

E,(xo) = Vo/s, E,(xo)= 0 (23)

The force is now independent of voltage polarity and always
acts in the direction to pull the dielectric into the capacitor if
S>60o.

3-9-3 Forces on a Capacitor

Consider a capacitor that has one part that can move in the
x direction so that the capacitance depends on the coordinate
x"

q = C(x)v (24)

The current is obtained by differentiating the charge with
respect to time:

Sdq d dv dC(x)
- [C(x)vl = C(x)-+ V ddt dx dt dt

dv dG(x) dx

I

= C(x) -+ v
at a x t
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Note that this relation has an extra term over the usual circuit
formula, proportional to the speed of the moveable member,
where we expanded the time derivative of the capacitance by
the chain rule of differentiation. Of course, if the geometry is
fixed and does not change with time (dx/dt = 0), then (25)
reduces to the usual circuit expression. The last term is due to
the electro-mechanical coupling.

The power delivered to a time-dependent capacitance is

d
p = vi = v- [C(x)v] (26)

dt

which can be expanded to the form

d 2 1 2 dC(x)

P = dt

d 1, 1 2 dC(x) dx
= -[ X)vd ]+v (27)

dt dx dt

where the last term is again obtained using the chain rule of
differentiation. This expression can be put in the form

dW dx
p=-+f- (28)

where we identify the power p delivered to the capacitor as
going into increasing the energy storage W and mechanical
power f dx/dt in moving a part of the capacitor:

W=C(x)v,  = v dC(x) (29)
dx

Using (24), the stored energy and force can also be ex-
pressed in terms of the charge as

1 q2  1 q2 dC(x) 1 2d[L/C(x)]
W= -- -f-2 C(x)' 2 C2x) dX d

(30)

To illustrate the ease in using (29) or (30) to find the force,
consider again the partially inserted dielectric in Figure
3-35b. The capacitance when the dielectric extends a distance
x into the electrodes is

exd (1 -x)d
C(x) -+ so- (31)S S

so that the force on the dielectric given by (29) agrees with
(22):

dC(x). Vid
" x = 2 " V - sO

dx s

__I ___I_
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Note that we neglected the fringing field contributions to
the capacitance in (31) even though they are the physical
origin of the force. The results agree because this extra
capacitance does not depend on the position x of the dielec-
tric when x is far from the electrode edges.

This method can only be used for linear dielectric systems
described by (24). It is not valid for the electret problem
treated in Section 3-9-2b because the electrode charge is not
linearly related to the voltage, being in part induced by the
electret.

EXAMPLE 3-4 FORCE ON A PARALLEL PLATE CAPACITOR

Two parallel, perfectly conducting electrodes of area A
and a distance x apart are shown in Figure 3-36. For each of
the following two configurations, find the force on the upper
electrode in the x direction when the system is constrained to
constant voltage Vo or constant charge Qo.

.-------- -------------

- - - - - - - - - - - - - - - - - - - - + V

x

11

Figure 3-36 A parallel plate capacitor (a) immersed within a dielectric fluid or with
(b) a free space region in series with a solid dielectric.

SVo
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(a) Liquid Dielectric
The electrodes are immersed within a liquid dielectric with

permittivity e, as shown in Figure 3-36a.

SOLUTION

The capacitance of the system is

C(x) = eA/x

so that the force from (29) for constant voltage is

. dC(x) 1 eA V
dx 2 x2

The force being negative means that it is in the direction
opposite to increasing x, in this case downward. The capacitor
plates attract each other because they are oppositely charged
and opposite charges attract. The force is independent of
voltage polarity and gets infinitely large as the plate spacing
approaches zero. The result is also valid for free space with
e = eo. The presence of the dielectric increases the attractive
force.

If the electrodes are constrained to a constant charge Qo
the force is then attractive but independent of x:

S2 d 1 1 Q
dx -C(x) 2EA

For both these cases, the numerical value of the force is the
same because Qo and Vo are related by the capacitance, but
the functional dependence on x is different. The presence of
a dielectric now decreases the force over that of free space.

(b) Solid Dielectric
A solid dielectric with permittivity e of thickness s is inserted
between the electrodes with the remainder of space having
permittivity eo, as shown in Figure 3-36b.

SOLUTION

The total capacitance for this configuration is given by the
series combination of capacitance due to the dielectric block
and the free space region:

EcoA
C(x)=

eOS + (x -s)

_I
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The force on the upper electrode for constant voltage is

2 d E2%oA V
f=~~~v Cd(x)= 2[eos +e(x -s)]

If the electrode just rests on the dielectric so that x = s, the
force is

62=2AV
2sos

This result differs from that of part (a) when x = s by the
factor e,= e/eo because in this case moving the electrode even
slightly off the dielectric leaves a free space region in between.
In part (a) no free space gap develops as the liquid dielectric
fills in the region, so that the dielectric is always in contact
with the electrode. The total force on the electrode-dielectric
interface is due to both free and polarization charge.

With the electrodes constrained to constant charge, the
force on the upper electrode is independent of position and
also independent of the permittivity of the dielectric block:

1 .d 1 1 Q_
odx C(x) 2 eoA

3-10 ELECTROSTATIC GENERATORS

3-10-1 Van de Graaff Generator

In the 1930s, reliable means of generating high voltages
were necessary to accelerate charged particles in atomic
studies. In 1931, Van de Graaff developed an electrostatic
generator where charge is sprayed onto an insulating moving
belt that transports this charge onto a conducting dome, as
illustrated in Figure 3-37a. If the dome was considered an
isolated sphere of radius R, the capacitance is given as C =
4wreoR. The transported charge acts as a current source feed-
ing this capacitance, as in Figure 3-37b, so that the dome
voltage builds up linearly with time:

dv i
=C v = t (1)

dt C

This voltage increases until the breakdown strength of the
surrounding atmosphere is reached, whereupon a spark dis-
charge occurs. In air, the electric field breakdown strength Eb
is 3 x 106 V/m. The field near the dome varies as E,= VR/r 2 ,
which is maximum at r = R, which implies a maximum voltage
of Vm = EbR. For Vma,,= 106 V, the radius of the sphere
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Figure 3-37 (a) A Van de Graaff generator consists of a moving insulating belt that
transports injected charge onto a conducting dome which can thus rise to very high
voltages, easily in excess of a million volts. (b) A simple equivalent circuit consists of the
convecting charge modeled as a current source charging the capacitance of the dome.

must be R m so that the capacitance is C -37 pf. With a
charging current of one microampere, it takes it 37 sec to
reach this maximum voltage.

3-10-2 Self-Excited Electrostatic Induction Machines

In the Van de Graaff generator, an external voltage source
is necessary to deposit charge on the belt. In the late 1700s,
self-excited electrostatic induction machines were developed
that did not require any external electrical source. To under-
stand how these devices work, we modify the Van de Graaff
generator configuration, as in Figure 3-38a, by putting
conducting segments on the insulating belt. Rather than
spraying charge, we place an electrode at voltage V with
respect to the lower conducting pulley so that opposite
polarity charge is induced on the moving segments. As the
segments move off the pulley, they carry their charge with
them. So far, this device is similar to the Van de Graaff
generator using induced charge rather than sprayed charge
and is described by the same equivalent circuit where the
current source now depends on the capacitance C, between
the inducing electrode and the segmented electrodes, as in
Figure 3-38b.

_I
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n = no. of segm
entering dom

per second

Charges induced
onto a segmente

belt
q = -Ci V

+
C v

+V-

(a)

Figure 3-38 A modified Van de Graaff generator as an electrostatic induction
machine. (a) Here charges are induced onto a segmented belt carrying insulated
conductors as the belt passes near an electrode at voltage V. (b) Now the current source
feeding the capacitor equivalent circuit depends on the capacitance Ci between the
electrode and the belt.

Now the early researchers cleverly placed another
induction machine nearby as in Figure 3-39a. Rather than
applying a voltage source, because one had not been invented
yet, they electrically connected the dome of each machine to
the inducer electrode of the other. The induced charge on
one machine was proportional to the voltage on the other
dome. Although no voltage is applied, any charge imbalance
on an inducer electrode due to random noise or stray charge
will induce an opposite charge on the moving segmented belt
that carries this charge to the dome of which some appears on
the other inducer electrode where the process is repeated
with opposite polarity charge. The net effect is that the charge
on the original inducer has been increased.

More quantitatively, we use the pair of equivalent circuits in
Figure 3-39b to obtain the coupled equations

- nCiv, = Cdv, nCiV2 = C (2)
dt dt

where n is the number of segments per second passing
through the dome. All voltages are referenced to the lower
pulleys that are electrically connected together. Because these

I

i = - 1Ci
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Figure 3-39 (a) A
generate their own
coupled circuits.

pair of coupled self-excited electrostatic induction machines
inducing voltage. (b) The system is described by two simple

are linear constant coefficient differential equations, the solu-
tions must be exponentials:

vl = e71 e st, v2 = V2̂ e'

Substituting these assumed solutions into (2) yields the
following characteristic roots:

s = :s= :+
C C

so that the general solution is

vi = A, e(Mci/c)t +A e,-( "CiC)9

v2 = -A, e (nc/c)t + A 2 e-(nc.ic)

where A and A 2 are determined from initial conditions.
The negative root of (4) represents the uninteresting

decaying solutions while the positive root has solutions that
grow unbounded with time. This is why the machine is self-
excited. Any initial voltage perturbation, no matter how
small, increases without bound until electrical breakdown is
reached. Using representative values of n = 10, Ci = 2 pf, and
C= 10 pf, we have that s = -2 so that the time constant for
voltage build-up is about one-half second.
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Collector - Conducting Cdllecting
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Side view

Figure 3-40 Other versions of self-excited electrostatic induction machines use (a)
rotating conducting strips (Wimshurst machine) or (b) falling water droplets (Lord
Kelvin's water dynamo). These devices are also described by the coupled equivalent
circuits in Figure 3-39b.

The early electrical scientists did not use a segmented belt
but rather conducting disks embedded in an insulating wheel
that could be turned by hand, as shown for the Wimshurst
machine in Figure 3-40a. They used the exponentially grow-
ing voltage to charge up a capacitor called a Leyden jar
(credited to scientists from Leyden, Holland), which was a
glass bottle silvered on the inside and outside to form two
electrodes with the glass as the dielectric.

An analogous water drop dynamo was invented by Lord
Kelvin (then Sir W. Thomson) in 1861, which replaced the
rotating disks by falling water drops, as in Figure 3-40b. All
these devices are described by the coupled equivalent circuits
in Figure 3-39b.

3-10-3 Self-Excited Three-Phase Alternating Voltages

In 1967, Euerle* modified Kelvin's original dynamo by
adding a third stream of water droplets so that three-phase

* W. C. Euerle,"A Novel Method of GeneratingPolyphasePower," M.S. Thesis, Massachusetts
Institute of Technology, 1967. See also J. R. Melcher, Electric Fields and Moving Media,
IEEE Trans. Education E-17 (1974), pp. 100-110, and thefilm by the same title produced
for the NationalCommittee on ElectricalEngineeringFilmsby the EducationalDevelopment
Center, 39 ChapelSt., Newton, Mass. 02160.
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alternating voltages were generated. The analogous three-
phase Wimshurst machine is drawn in Figure 3-41a with
equivalent circuits in Figure 3-41 b. Proceeding as we did in (2)
and (3),

-nC iv = C dV2dvT

- nv2sy = C--,
dr

dv,
- nCiv3 = C-,

dr'

vi= V s e

V2 = V2 s e

equation (6) can be rewritten as

nCi

Cs nC, JVsJ

Figure 3-41 (a) Self-excited three-phase ac Wimshurst machine. (b) The coupled
equivalent circuit is valid for any of the analogous machines discussed.

228
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which reguires that the determinant of the coefficients of V 1,
V2, and Vs be zero:

(nC) 3 +(C+(s) 3 =0 = (nC1 1i 1)1s

(nCQ\, e i
(7Tm(

Xr-l
, r= 1,2, 3 (8)

CnCiC

S2,3=!C'[I+-il
2C

where we realized that (- 1)1/s has three roots in the complex
plane. The first root is an exponentially decaying solution, but
the other two are complex conjugates where the positive real
part means exponential growth with time while the imaginary
part gives the frequency of oscillation. We have a self-excited
three-phase generator as each voltage for the unstable modes
is 120" apart in phase from the others:

V2 V3 1V nC _(+-j)=ei(/) (9)

V 1 V2 V3 Cs2,•

Using our earlier typical values following (5), we see that the
oscillation frequencies are very low, f=(1/2r)Im(s) =

0.28 Hz.

3-10-4 Self-Excited Multi-frequency Generators

If we have N such generators, as in Figure 3-42, with the
last one connected to the first one, the kth equivalent circuit
yields

-nCi•V, = CsVk+l (10)

This is a linear constant coefficient difference equation.
Analogously to the exponential time solutions in (3) valid for
linear constant coefficient differential equations, solutions to
(10) are of the form

V1 =AAk (11)

where the characteristic root A is found by substitution back
into (10) to yield

- nCiAA k= CsAA '+•A= - nCilCs



Polarizationand Conduction

Figure 3-42 Multi-frequency, polyphase self-excited
equivalent circuit.

-Wmh= dvc 1t
WnCin wCidt

Wimshurst machine with

Since the last generator is coupled to the first one, we must
have that

VN+I = Vi * N+' =A

>AN= 1

AA=: lIIN j2i•/N r=1,2,3,... ,N

where we realize that unity has N complex roots.
The system natural frequencies are then obtained from

(12) and (13) as

nCA nCi -i2AwN
CA CT

(14)

We see that for N= 2 and N= 3 we recover the results of (4)
and (8). All the roots with a positive real part of s are unstable
and the voltages spontaneously build up in time with oscil-
lation frequencies wo given by the imaginary part of s.

nCi
o0= IIm (s)l =- Isin 2wr/NI (15)

C
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PROBLEMS

Section 3-1
1. A two-dimensional dipole is formed by two infinitely long
parallel line charges of opposite polarity ±X a small distance di,
apart.

(a) What is the potential at any coordinate (r, 46, z)?
(b) What are the potential and electric field far from the

dipole (r >> d)? What is the dipole moment per unit length?
(c) What is the equation of the field lines?

2. Find the dipole moment for each of the following charge
distributions:

2 I

II t
jL + X

L + o L Xo d

L - o L

(a) (c) (d) (e)

(a) Two uniform colinear opposite polarity line charges
*Ao each a small distance L along the z axis.

(b) Same as (a) with the line charge distribution as

AAo(1-z/L), O<z<L

A-Ao(l+z/L), -L<z<O

(c) Two uniform opposite polarity line charges *Ao each
of length L but at right angles.

(d) Two parallel uniform opposite polarity line charges
* Ao each of length L a distance di, apart.
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(e) A spherical shell with total uniformly distributed sur-
face charge Q on the upper half and - Q on the lower
half. (Hint: i, = sin 0 cos i,. +sin 0 sin 4$i, +cos Oi,.)

(f) A spherical volume with total uniformly distributed
volume charge of Q in the upper half and - Q on the
lower half. (Hint: Integrate the results of (e).)

3. The linear quadrapole consists of two superposed
dipoles along the z axis. Find the potential and electric field
for distances far away from the charges (r >d).

' 1 1 + A) . -0 - -s' 0)rl r 2 rT

1 _1 1 _ + cos 0 _ ()2 (1 -3 cos2 0)
r2 r ( r 2 r

Linear quadrapole

4. Model an atom as a fixed positive nucleus of charge Q
with a surrounding spherical negative electron cloud of
nonuniform charge density:

P= -po(1 -r/Ro), r<Ro

(a) If the atom is neutral, what is po?
(b) An electric field is applied with local field ELo. causing a

slight shift d between the center of the spherical cloud and
the positive nucleus. What is the equilibrium dipole spacing?

(c) What is the approximate polarizability a if
9eoELoE(poRo)<< 1?

5. Two colinear dipoles with polarizability a are a distance a
apart along the z axis. A uniform field Eoi, is applied.

p = aEL• a

(a) What is the total local field seen by each dipole?
(b) Repeat (a) if we have an infinite array of dipoles with

constant spacing a. (Hint: :1 11/n s • 1.2.)
(c) If we assume that we have one such dipole within each

volume of as , what is the permittivity of the medium?

6. A dipole is modeled as a point charge Q surrounded by a
spherical cloud of electrons with radius Ro. Then the local

__

di
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field EL, differs from the applied field E by the field due to
the dipole itself. Since Edip varies within the spherical cloud,
we use the average field within the sphere.

QP4 
3~-rR 0

(a sin th etro h lu a h rgn hwta

(a) Using the center of the cloud as the origin, show that
the dipole electric field within the cloud is

Qri, Q(ri, - di)
Edp= -4ireoRo + 4vreo[d +r 2 -2rd cos ]S

(b) Show that the average x and y field components are
zero. (Hint: i, = sin 0 cos 0i, +sin 0 sin Oi, + cos Oi,.)

(c) What is the average z component of the field?
(Hint: Change variables to u=r + d - 2rdcos and
remember (r = Ir -dj.)

(d) If we have one dipole within every volume of 31rR3,

how is the polarization P related to the applied field E?

7. Assume that in the dipole model of Figure 3-5a the mass
of the positive charge is so large that only the election cloud
moves as a solid mass m.

(a) The local electric field is E0. What is the dipole spacing?
(b) At t = 0, the local field is turned off (Eo = 0). What is the

subsequent motion of the electron cloud?
(c) What is the oscillation frequency if Q has the charge

and mass of an electron with Ro= 10-' m?
(d) In a real system there is always some damping that we

take to be proportional to the velocity (fdampin,, = - nv). What
is the equation of motion of the electron cloud for a sinusoi-
dal electric field Re(Eoe")?

(e) Writing the driven displacement of the dipole as

d = Re(de-i).

what is the complex polarizability d, where Q= Q= Eo?
(f) What is the complex dielectric constant i = e,+je6 of

the system? (Hint: Define o = Q2 N/(meo).)
(g) Such a dielectric is placed between parallel plate elec-

trodes. Show that the equivalent circuit is a series R, L, C
shunted by a capacitor. What are C1, C2, L, and R?

(h) Consider the limit where the electron cloud has no
mass (m = 0). With the frequency w as a parameter show that



Re(fe j~i
Area A

C1

2 L R

a plot of er versus e, is a circle. Where is the center of the
circle and what is its radius? Such a diagram is called a
Cole-Cole plot.

(i) What is the maximum value of ei and at what frequency
does it occur?

8. Two point charges of opposite sign Q are a distance L
above and below the center of a grounded conducting sphere
of radius R.

_-Q

(a) What is the electric field everywhere along the z axis
and in the 0 = v/2 plane? (Hint: Use the method of images.)

(b) We would like this problem to model the case of a
conducting sphere in a uniform electric field by bringing the
point charges ± Q out to infinity (L -* o). What must the ratio
Q/L 2 be such that the field far from the sphere in the 0 = wr/2
plane is Eoi,?

(c) In this limit, what is the electric field everywhere?

9. A dipole with moment p is placed in a nonuniform electric
field.

(a) Show that the force on a dipole is

f = (p- V)E

234 Polarizationand Conduction
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Sn

2 P tP

v I
TV *P1

(b), (c)

(b) Find the force on dipole 1 due to dipole 2 when the two
dipoles are colinear, or are adjacent a distance a apart.

(c) Find the force on dipole 1 if it is the last dipole in an
infinite array of identical colinear or adjacent dipoles with
spacing a. (Hint: E:-,I 1/n 4 = r4/90.)

10. A point dipole with moment pi, is a distance D from the
center of a grounded sphere of radius R.
(Hint: d<<D.)

(a) What is the induced dipole moment of the sphere?
(b) What is the electric field everywhere along the z axis?
(c) What is the force on the sphere? (Hint: See Problem

9a.)

Section 3-2
11. Find the potential, electric field, and charge density dis-
tributions for each of the following charges placed within a
medium of infinite extent, described by drift-diffusion
conduction in the limit when the electrical potential is much
less than the thermal voltage (qV/IkT<< 1):

(a) Sheet of surface charge o, placed at x = 0.
(b) Infinitely long line charge with uniform density A.

(Hint: Bessel's equation results.)
(c) Conducting sphere of radius R carrying a total surface

charge Q.

J

• 

(
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12. Two electrodes at potential ± Vo/2 located at x = +I
enclose a medium described by drift-diffusion conduction for
two oppositely charged carriers, where qVo/kT<< 1.

(a) Find the approximate solutions of the potential, electric
field, and charge density distributions. What is the charge
polarity near each electrode?

(b) What is the total charge per unit area within the volume
of the medium and on each electrode?

13. (a) Neglecting diffusion effects but including charge
inertia and collisions, what is the time dependence of the
velocity of charge carriers when an electric field Eoi, is
instantaneously turned on at t = 0?

(b) After the charge carriers have reached their steady-
state velocity, the electric field is suddenly turned off. What is
their resulting velocity?

(c) This material is now placed between parallel plate elec-
trodes of area A and spacing s. A sinusoidal voltage is applied
Re (Vo e •"). What is the equivalent circuit?

14. Parallel plate electrodes enclose a superconductor that
only has free electrons with plasma frequency wp,.

Re(ie i"t)

Re(vej~
t

)

(a) What is the terminal current when a sinusoidal voltage
is applied?

(b) What is the equivalent circuit?

15. A conducting ring of radius R is rotated at constant
angular speed. The ring has Ohmic conductivity cr and cross
sectional area A. A galvanometer is connected to the ends of
the ring to indicate the passage of any charge. The connec-
tion is made by slip rings so that the rotation of the ring is
unaffected by the galvanometer. The ring is instantly
stopped, but the electrons within the ring continue to move a
short time until their momentum is dissipated by collisions.
For a particular electron of charge q and mass m conservation
of momentum requires

A(mv)= F dt

where F = qE is the force on the electron.
(a) For the Ohmic conductor, relate the electric field to the

current in the wire.

_·I

·t-i
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Cross-sectional
Area A

Galvanometer

(b) When the ring is instantly stopped, what is the charge Q
through the galvanometer? (Hint: Q = I i dt. This experi-
ment is described by R. C. Tolman and T. D. Stewart, Phys. Rev.
8, No. 2 (1916), p. 9 7 .)

(c) If the ring is an electron superconductor with plasma
frequency we, what is the resulting current in the loop when it
stops?

Section 3.3
16. An electric field with magnitude E1 is incident upon the
interface between two materials at angle 01 from the normal.
For each of the following material properties find the magni-
tude and direction of the field E2 in region 2.

E2

62

(a) Lossless dielectrics with respective permittivities e1 and
E2. There is no interfacial surface charge.

(b) Ohmic materials with respective conductivities o-l and
o02 in the dc steady state. What is the free surface charge
density oaon the interface?

(c) Lossy dielectrics (el, o-) and (e2, 0-2) with a sinusoidally
varying electric field

El = Re (E1 e
'

6 L)

What is the free surface charge density of on the interface?

17. Find the electric, displacement, and polarization fields
and the polarization charge everywhere for each of the
following configurations:

E2, 02

t1, 01
E1

El
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Eo eo Eo

(b)

(a) An infinitely long line charge A placed at the center of a
dielectric cylinder of radius a and permittivity e.

(b) A sheet of surface charge o' placed at the center of a
dielectric slab with permittivity e and thickness d.

(c) A uniformly charged dielectric sphere with permittivity
e and radius R carrying a total free charge Q.

18. Lorentz calculated the local field acting on a dipole due to
a surrounding uniformly polarized medium stressed by a
macroscopic field Eoi, by encircling the dipole with a small
spherical free space cavity of radius R.

SEoi, Poiz

(a) If the medium outside the cavity has polarization Poi.,
what is the surface polarization charge on the spherical inter-
face? (Hint: i, = i, cos 0 -iq sin 0)

(b) Break this surface polarization charge distribution into
hoop line charge elements of thickness dO. What is the total
charge on a particular shell at angle 0?

(c) What is the electric field due to this shell at the center of
the sphere where the dipole is?

(d) By integrating over all shells, find the total electric field
acting on the dipole.. This is called the Lorentz field.
(Hint: Let u = cos 0).

19. A line charge A within a medium of permittivity el is
outside a dielectric cylinder of radius a and permittivity e2.

238
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The line charge is parallel to the cylinder axis and a distance d
from it.

C'

S

(a) Try using the method of images by placing a line
charge A' at the center and another image A" within the
cylinder at distance b = a2 /d from the axis along the line
joining the axis to the line charge. These image charges
together with the original line charge will determine the elec-
tric field outside the cylinder. Put another line charge A"' at
the position of the original line charge to determine the field
within the cylinder. What values of A', A", and A'" satisfy the
boundary conditions?

(b) Check your answers with that of Section 3-3-3 in the
limit as the radius of the cylinder becomes large so that it
looks like a plane.

(c) What is the force per unit length on the line charge A?
(d) Repeat (a)-(c) when the line charge A is within the

dielectric cylinder.

20. A point charge q is a distance d above a planar boundary
separating two Ohmic materials with respective conductivities
o(,and 02.

* q

(a) What steady-state boundary conditions must the elec-
tric field satisfy?

(b) What image charge configuration will satisfy these
boundary conditions? (Hint: See Section 3-3-3.)

(c) What is the force on q?

21. The polarization of an electret is measured by placing it
between parallel plate electrodes that are shorted together.

(a) What is the surface charge on the upper electrode?
(b) The switch is then opened and the upper electrode is

taken far away from the electret. What voltage is measured
across the capacitor?
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22. A cylinder of radius a and height L as in Figure 3-14,
has polarization

= Poz.
P= •,

L

(a) What is the polarization charge distribution?
(b) Find the electric and displacement fields everywhere

along the z axis. (Hint: Use the results of Sections 2-3-5b
and 2-3-5d.)

23. Find the electric field everywhere for the following
permanently polarized structures which do not support any
free charge:

CO. Eo
ob -f-OM -Vo

Pori r Eo t E0

L___

i
Depth

(b)

(a) Sphere of radius R with polarization P = (Por/R)i,.
(b) Permanently polarized slab Poi. of thickness b placed

between parallel plate electrodes in free space at poten-
tial difference Vo.

24. Parallel plate electrodes enclose the series combination of
an Ohmic conductor of thickness a with conductivity oa and a
superconductor that only has free electrons with plasma

: i -

. ::. • " V

d
···~····3~··sra;·····
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frequency mo. What is the time dependence of the terminal
current, the electric field in each region, and the surface
charge at the interface separating the two conductors for each
of the following terminal constraints:

(a) A step voltage Vo is applied at 1= 0. For what values of
w, are the fields critically damped?

(b) A sinusoidal voltage v(t)= Vo cos wt has been applied
for a long time.

Section 3-4
25. Find the series and parallel resistance between two
materials with conductivities 0o.and 02 for each of the follow-
ing electrode geometries:

S1-- ab-----

b

Depth d Depth d

(a)

(Depth I for (Depth I for
cy4inder) cylinder)

(b) and (c)

(a) Parallel plates.
(b) Coaxial cylinders.
(c) Concentric spheres.

26. A pair of parallel plate electrodes at voltage difference Vo
enclose an Ohmic material whose conductivity varies linearly
from al at the lower electrode to 0"2 at the upper electrode.
The permittivity e of the material is a constant.

xt 1 1Ea(x)= U1+ (01-OG+Vo

0 s
Depth d

(a) Find the fields and the resistance.
(b) What are the volume and surface charge distributions?
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(c) What is the total volume charge in the system and how
is it related to the surface charge on the electrodes?

27. A wire of Ohmic conductivity a- and cross sectional area
A is twisted into the various shapes shown. What is the resis-
tance R between the points A and B for each of the
configurations?

Section 3-5
28. Two conducting cylinders of length I and differing radii
R 1 and R2 within an Ohmic medium with conductivity o- have
their centers a distance d apart. What is the resistance
between cylinders when they are adjacent and when the
smaller one is inside the larger one? (Hint: See Section
2-6-4c.)

O0

29. Find the series and parallel capacitance for each of the
following geometries:

(a) Parallel plate.
(b) Coaxial cylinders.
(c) Concentric spheres.

p <- -- a , ý b - -

b
'V

Depth d Depth d
(a)

. I

idR
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(Depth I for cylinders)
(b), (c)

30. Two arbitrarily shaped electrodes are placed within a
medium of constant permittivity e and Ohmic conductivity o-.
When a dc voltage V is applied across the system, a current I
flows.

I

e,.a

(a) What is the current i(t) when a sinusoidal voltage
Re (Vo e"') is applied?

(b) What is the equivalent circuit of the system?

31. Concentric cylindrical electrodes of length I with respec-
tive radii a and b enclose an Ohmic material whose permit-
tivity varies linearly with radius from el at the inner cylinder
to e2 at the outer. What is the capacitance? There is no volume
charge in the dielectric.

-- (r--4,
-e = +e2 - el) (1 a

Depth I

Section 3.6
32. A lossy material with the permittivity eo of free space and
conductivity o- partially fills the region between parallel plate
electrodes at constant potential difference Vo and is initially

I - .

a soa =
x T

b
f +g

T+ 0

Depth d
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uniformly charged with density po at t= 0 with zero surface
charge at x = b. What is the time dependence of the following:

(a) the electric field in each region? (Hint: See Section
3-3-5.)

(b) the surface charge at x = b?
(c) the force on the conducting material?

33. An infinitely long cylinder of radius a,, permittivity e,
and conductivity or is nonuniformly charged at t= 0:

P(t = 0)= por/ao, 0<r<ao

o0, r>ao
p (t)

What is the time dependence of the electric field everywhere
and the surface charge at r = al?

34. Concentric cylindrical electrodes enclose two different
media in series. Find the electric field, current density, and
surface charges everywhere for each of the following condi-
tions:

Depth I

(a) at t = 0+ right after a step voltage Vo is applied to the
initially unexcited system;

(b) at t = 0o when the fields have reached their dc steady-
state values;

(c) during the in-between transient interval. (What is the
time constant 7?);

(d) a sinusoidal voltage Vo cos wt is applied and has been
on a long time;

(e) what is the equivalent circuit for this system?

35. A fluid flow emanates radially from a point outlet with
velocity distribution U, = A/r2 . The fluid has Ohmic conduc-
tivity or and permittivity e. An external source maintains the

D1 Dn

r=

charge density po at r = 0. What are the steady-state charge
and electric field distributions throughout space?

• l r•

U,=
v
2
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36. Charge maintained at constant density Po at x = 0 is car-
ried away by a conducting fluid travelling at constant velocity
Ui. and is collected at x = 1.

+ Vo -

.ross-sectional
area A

P =Po

1 r x
0 I

(a) What are the field and charge distributions within the
fluid if the electrodes are at potential difference V0 ?

(b) What is the force on the fluid?
(c) Repeat (a) and (b) if the voltage source is replaced by a

load resistor RL.

37. A dc voltage has been applied a long time to an open
circuited resistive-capacitive structure so that the voltage and
current have their steady-state distributions as given by (44).
Find the resulting discharging transients for voltage and
current if at t = 0 the terminals at z = 0 are suddenly:

(a) open circuited. Hint:

sinh a(z -1) sin (m) dz m +rsinh at
I I [a'+ (mir/l) ]

(b) Short circuited. Hint:

JIcosh a(z - ) sin ((2n 1)7 dz= (2n +s)d cosh al

S21 21[a2+ [(2n•21)r

38. At t = 0 a distributed resistive line as described in Section
3-6-4 has a step dc voltage Vo applied at z = 0.The other end
at z = I is short circuited.

(a) What are the steady-state voltage and current dis-
tributions?

(b) What is the time dependence of the voltage and current
during the transient interval? Hint:

o ·a i mwi· mw sinh al
sinh a(z -1) sin (-i-) dz = - m[ sinh at

I1{a2 + (Mr1)2]
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39. A distributed resistive line is excited at z = 0 with a
sinusoidal voltage source v(t) = Vo cos wt that has been on for
a long time. The other end at z = 1 is either open or short
circuited.

(a) Using complex phasor notation of the form

v(z, t) = Re (i^(z)eMd )

find the sinusoidal steady-state voltage and current dis-
tributions for each termination.

(b) What are the complex natural frequencies of the
system?

(c) How much time average power is delivered by the
source?

40. A lossy dielectric with permittivity e and Ohmic conduc-
tivity ar is placed between coaxial cylindrical electrodes with
large Ohmic conductivity oc and length 1.

What is the series resistance per unit length 2R of the
electrodes, and the capacitance C and conductance G per
unit length of the dielectric?

Section 3.7
41. Two parallel plate electrodes of spacing I enclosing a
dielectric with permittivity e are stressed by a step voltage at
t = 0. Positive charge is then injected at t = 0 from the lower
electrode with mobility At and travels towards the opposite
electrode.

X

0--
-I

sit)

0

I

-- t-------------

is(t)
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(a) Using the charge conservation equation of Section
3-2-1, show that the governing equation is

aE aE J(t)
-+pE -at ax e

where J(t) is the current per unit electrode area through the
terminal wires. This current does not depend on x.

(b) By integrating (a) between the electrodes, relate the
current J(t) solely to the voltage and the electric field at the
two electrodes.

(c) For space charge limited conditions (E(x = 0)= 0), find
the time dependence of the electric field at the other elec-
trode E(x = 1, t) before the charge front reaches it.
(Hint: With constant voltage, J(t) from (b) only depends on
E(x = 1, t). Using (a) at x = I with no charge, aE/8x = 0, we have
a single differential equation in E(x = 1,t).)

(d) What is the electric field acting on the charge front?
(Hint: There is no charge ahead of the front.)

(e) What is the position of the front s(t) as a function of
time?

(f) At what time does the front reach the other electrode?
(g) What are the steady-state distribution of potential,

electric field, and charge density? What is the steady-state
current density J(t -• )?

(h) Repeat (g) for nonspace charge limited conditions
when the emitter electric field E(x = 0) = Eo is nonzero.

42. In a coaxial cylindrical geometry of length L, the inner
electrode at r = Ri is a source of positive ions with mobility /t
in the dielectric medium. The inner cylinder is at a dc voltage
Vo with respect to the outer cylinder.

iE,(r = Ri) = E

vo

(a) The electric field at the emitter electrode is given as
Er(r= Ri) = Ei. If a current I flows, what are the steady-state
electric field and space charge distributions?

(b) What is the dc current I in terms of the voltage under
space charge limited conditions (Ei = 0)? Hint:

f [r2 -R ] 2 dr= [r 2 -R ], 2 -R, cos Ri
r \r
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(c) For what value of Ei is the electric field constant
between electrodes? What is the resulting current?

(d) Repeat (a)-(b) for concentric spherical electrodes.

Section 3.8
43. (a) How much work does it take to bring a point dipole
from infinity to a position where the electric field is E?

(a)

P P p

(d)

(b) (c)

(b) A crystal consists of an infinitely long string of dipoles a
constant distance s apart. What is the binding energy of the
crystal? (Hint: Y 1,,ll/n

3  1.2.)
(c) Repeat (b) if the dipole moments alternate in sign.

(Hint: _0-i(-1)"/n s = - 0.90.)
(d) Repeat (b) and (c) if the dipole moments are perpendic-

ular to the line of dipoles for identical or alternating polarity
dipoles.

44. What is the energy stored in the field of a point dipole
with moment p outside an encircling concentric sphere with
molecular radius R? Hint:

Jcos2 0 sin 0 dO = Cos
3

sin d = - cos 0 (sin • + 2)

45. A spherical droplet of radius R carrying a total charge Q
on its surface is broken up into N identical smaller droplets.

(a) What is the radius of each droplet and how much
charge does it carry?

(b) Assuming the droplets are very far apart and do not
interact, how much electrostatic energy is stored?

_·
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(c) Because of their surface tension the droplets also have a
constant surface energy per unit area ws. What is the total
energy (electrostatic plus surface) in the system?

(d) How much work was required to form the droplets and
to separate them to infinite spacing.

(e) What value of N minimizes this work? Evaluate for a
water droplet with original radius of 1mm and charge of 106

coul. (For water w, ý 0.072 joule/m2.)

46. Two coaxial cylinders of radii a and b carry uniformly
distributed charge either on their surfaces or throughout the
volume. Find the energy stored per unit length in the z
direction for each of the following charge distributions that
have a total charge of zero:

(a) Surface charge on each cylinder with oa 2 1ra - -ob2rrb.
(b) Inner cylinder with volume charge Pa and outer cylin-

der with surfacecharge ob where o'b2rb = -Palra.
(c) Inner cylinder with volume charge Pa with the region

between cylinders having volume charge Pb where
para = -pbO(b

2 -a 2 ).

47. Find the binding energy in the following atomic models:

(a) (b)

(a) A point charge Q surrounded by a uniformly dis-
tributed surface charge - Q of radius R.

(b) A uniformly distributed volume charge Q within a
sphere of radius RI surrounded on the outside by a
uniformly distributed surface charge - Q at radius R2 .

48. A capacitor C is charged to a voltage V0 . At t = 0 another
initially uncharged capacitor of equal capacitance C is

Switch closes at t = 0 Resistance of
R connecting wires

Iv C 
)

v1(t= 0)=V ,(t=0)=0



250 Polarization and Conduction

connected across the charged capacitor through some lossy
wires having an Ohmic conductivity a, cross-sectional area A,
and. total length 1.

(a) What is the initial energy stored in the system?
(b) What is the circuit current i and voltages vi and v2

across each capacitor as a function of time?
(c) What is the total energy stored in the system in the dc

steady state and how does it compare with (a)?
(d) How much energy has been dissipated in the wire

resistance and how does it compare with (a)?
(e) How do the answers of (b)-(d) change if the system is

lossless so that o = co? How is the power dissipated?
(f) If the wires are superconducting Section 3-2-5d

showed that the current density is related to the electric field
as

where the plasma frequency w, is a constant. What is the
equivalent circuit of the system?

(g) What is the time dependence of the current now?
(h) How much energy is stored in each element as a

function of time?
(i) At any time t what is the total circuit energy and how

does it compare with (a)?

Section 3.9
E 49. A permanently polarized dipole with moment p is at an

q +angle 6 to a uniform electric field E.
(a) What is the torque T on the dipole?
(b) How much incremental work dW is necessary to turn

the dipole by a small angle dO? What is the total work
-q

p=qd required to move the dipole from 0 =0 to any value of 0?
(Hint: dW= TdO.)

(c) In general, thermal agitation causes the dipoles to be
distributed over all angles of 0. Boltzmann statistics tell us that
the number density of dipoles having energy W are

n = no eWAT

where no is a constant. If the total number of dipoles within a
sphere of radius R is N, what is no? (Hint: Let u=
(pE/kT) cos 0.)

(d) Consider a shell of dipoles within the range of 0 to
O+dO. What is the magnitude and direction of the net
polarization due to this shell?

I
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(e) What is the total polarization integrated over 0? This is
known as the Langevin equation. (Hint: Jue" du = (u - 1)e".)

(f) Even with a large field of E 106 v/m with a dipole
composed of one proton and electron a distance of
10 A (10-9 m) apart, show that at room temperature the
quantity (pE/kT) is much less than unity and expand the
results of (e). (Hint: It will be necessary to expand (e) up to
third order in (pE/kT).

(g) In this limit what is the orientational polarizability?

50. A pair of parallel plate electrodes a distance s apart at a
voltage difference Vo is dipped into a dielectric fluid of
permittivity e. The fluid has a mass density pm and gravity
acts downward. How high does the liquid rise between the
plates?

v+0

Iiý-

Depth d

h

.. ...- ---:-•-- . . . ---. ...

51. Parallel plate electrodes at voltage difference Vo enclose
an elastic dielectric with permittivity e. The electric force of
attraction between the electrodes is balanced by the elastic
force of the dielectric.

(a) When the electrode spacing is d what is the free surface
charge density on the upper electrode?

<-- - !

*.·:::.::::::::. - V
7~+ V

.
0

Eo

DetP
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(b) What is the electric force per unit area that the elec-
trode exerts on the dielectric interface?

(c) The elastic restoring force per unit area is given by the
relation

d
FA= Yln-

do

where Y is the modulus of elasticity and do is the unstressed
(Vo=0) thickness of the dielectric. Write a transcendental
expression for the equilibrium thickness of the dielectric.

(d) What is the minimum equilibrium dielectric thickness
and at what voltage does it occur? If a larger voltage is applied
there is no equilibrium and the dielectric fractures as the
electric stress overcomes the elastic restoring force. This is
called the theory of electromechanical breakdown. [See
K. H. Stark and C. G. Garton, Electric Strength of Irradiated
Polythene, Nature 176 (1955) 1225-26.]

52. An electret with permanent polarization Poi, and thick-
ness d partially fills a free space capacitor. There is no surface
charge on the electret free space interface.

Area A
A

Lj eO l

V0

1'
(a) What are the electric fields in each region?
(b) What is the force on the upper electrode?

53. A uniform distribution of free charge with density po is
between parallel plate electrodes at potential difference Vo.

(a) What is the energy stored in the system?
(b) Compare the capacitance to that when Po = 0.
(c) What is the total force on each electrode and on the

volume charge distribution?
(d) What is the total force on the system?

54. Coaxial cylindrical electrodes at voltage difference Vo are
partially filled with a polarized material. Find the force on this

·-- C~--------------
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material if it is
(a) permanently polarized as Poir;
(b) linearly polarized with permittivity E.

-1-

Vo
-I

.- ~-----

00

55. The upper electrode of a pair at constant potential
difference Vo is free to slide in the x direction. What is the x
component of the force on the upper electrode?

IDS Vd

Depth d

56. A capacitor has a moveable part that can rotate through
the angle 0 so that the capacitance C(O) depends on 0.

(a) What is the torque on the moveable part?
(b) An electrostatic voltmeter consists of N+ 1 fixed pie-

shaped electrodes at the same potential interspersed with N
plates mounted on a shaft that is free to rotate for - 00 < 0 <
00. What is the capacitance as a function of 0?

(c) A voltage v is applied. What is the electric torque on the
shaft?

(d) A torsional spring exerts a restoring torque on the shaft

T,= -K(O- ,)

where K is the spring constant and 0s is the equilibrium
position of the shaft at zero voltage. What is the equilibrium
position of the shaft when the voltage v is applied? If a
sinusoidal voltage is applied, what is the time average angular
deflection <0>?

(e) The torsional spring is removed so that the shaft is
free to continuously rotate. Fringing field effects cause the
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Wm (

2EoNR
2

C() = (Oo - 0)
s

0 7 2r

capacitance to vary smoothly between minimum and maxi-
mum values of a dc value plus a single sinusoidal spatial term

C(0) = [Cmax+ Cmin] +[•[Cm.x -Cmin] cos 20

A sinusoidal voltage Vo cos wt is applied. What is the instan-
taneous torque on the shaft?

(f) If the shaft is rotating at constant angular speed w,. so
that

0 -at + 8

where 8 is the angle of the shaft at t = 0, under what condi-
tions is the torque in (e) a constant? Hint:

sin 20 cos wo = sin 20(1 +cos 2wt)

= sin'20 +1 [sin (2(wt + 0))- sin (2(wt - 0))]

(g) A time average torque To is required of the shaft. What
is the torque angle 8?

(h) What is the maximum torque that can be delivered?
This is called the pull-out torque. At what angle 8 does this
occur?

Section 3-10
57. The belt of a Van de Graaff generator has width w and
moves with speed U carrying a surface charge of up to the
spherical dome of radius R.

0

____~I_

WM

0 •" 2•
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(a) What is the time dependence of the dome voltage?
(b) Assuming that the electric potential varies linearly

between the charging point and the dome, how much power
as a function of time is required for the motor to rotate the
belt?

-+++

R,

58. A Van de Graaff generator has a lossy belt with Ohmic
conductivity cr traveling at constant speed U. The charging
point at z = 0 maintains a constant volume charge density Po
on the belt at z = 0. The dome is loaded by a resistor RL to
ground.

(a) Assuming only one-dimensional variations with z, what
are the steady-state volume charge, electric field, and current
density distributions on the belt?

(b) What is the steady-state dome voltage?

59. A pair of coupled electrostatic induction machines have
their inducer electrodes connected through a load resistor RL.
In addition, each electrode has a leakage resistance R to
ground.

(a) For what values of n, the number of conductors per
second passing the collector, will the machine self-excite?



(b) If n = 10, Ci = 2 pf, and C = 10 pf with RL = R, what is
the minimum value of R for self-excitation?

(c) If we have three such coupled machines, what is the
condition for self-excitation and what are the oscillation
frequencies if RL = oo?

(d) Repeat (c) for N such coupled machines with RL = Co.
The last machine is connected to the first.

256 Polarizationand Conduction
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The electric field distribution due to external sources is
disturbed by the addition of a conducting or dielectric body
because the resulting induced charges also contribute to the
field. The complete solution must now also satisfy boundary
conditions imposed by the materials.

4-1 THE UNIQUENESS THEOREM

Consider a linear dielectric material where the permittivity
may vary with position:

D = e(r)E = -e(r)VV (1)

The special case of different constant permittivity media
separated by an interface has e (r) as a step function. Using (1)
in Gauss's law yields

V -[(r)VV]=-pf (2)

which reduces to Poisson's equation in regions where E (r) is a
constant. Let us call V, a solution to (2).

The solution VL to the homogeneous equation

V - [e(r)V VI= 0 (3)

which reduces to Laplace's equation when e(r) is constant,
can be added to Vp and still satisfy (2) because (2) is linear in
the potential:

V - [e (r)V( Vp + VL)] = V [e (r)V VP] +V [e (r)V VL] = -Pf
0 (4)

Any linear physical problem must only have one solution
yet (3) and thus (2) have many solutions. We need to find
what boundary conditions are necessary to uniquely specify
this solution. Our method is to consider two different solu-
tions V1 and V2 for the same charge distribution

V (eV Vi)= -P, V (eV V2 ) = -Pf (5)

so that we can determine what boundary conditions force
these solutions to be identical, V, = V2.

___
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The difference of these two solutions VT = V, - V 2 obeys
the homogeneous equation

V* (eV Vr) = 0 (6)

We examine the vector expansion

V *(eVTVVT)= VTV (EVVT)+eVVT" VVT= eVVTI 2 (7)
0

noting that the first term in the expansion is zero from (6) and
that the second term is never negative.

We now integrate (7) over the volume of interest V, which
may be of infinite extent and thus include all space

V.V(eVTVVT)dV= eVTVVT-dS=I EIVVTI dV (8)

The volume integral is converted to a surface integral over
the surface bounding the region using the divergence
theorem. Since the integrand in the last volume integral of (8)
is never negative, the integral itself can only be zero if VT is
zero at every point in the volume making the solution unique
(VT = O0 V 1 = V2). To force the volume integral to be zero,
the surface integral term in (8) must be zero. This requires
that on the surface S the two solutions must have the same
value (VI = V2) or their normal derivatives must be equal
[V V 1 - n = V V2 n]. This last condition is equivalent to
requiring that the normal components of the electric fields be
equal (E = -V V).

Thus, a problem is uniquely posed when in addition to
giving the charge distribution, the potential or the normal
component of the electric field on the bounding surface sur-
rounding the volume is specified. The bounding surface can
be taken in sections with some sections having the potential
specified and other sections having the normal field
component specified.

If a particular solution satisfies (2) but it does not satisfy
the boundary conditions, additional homogeneous solutions
where pf = 0, must be added so that the boundary conditions
are met. No matter how a solution is obtained, even if
guessed, if it satisfies (2) and all the boundary conditions, it is
the only solution.

4-2 BOUNDARY VALUE PROBLEMS IN CARTESIAN GEOMETRIES

For most of the problems treated in Chapters 2 and 3 we
restricted ourselves to one-dimensional problems where the
electric field points in a single direction and only depends on
that coordinate. For many cases, the volume is free of charge
so that the system is described by Laplace's equation. Surface
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charge is present only on interfacial boundaries separating
dissimilar conducting materials. We now consider such
volume charge-free problems with two- and three dimen-
sional variations.

4-2-1 Separation of Variables

Let us assume that within a region of space of constant
permittivity with no volume charge, that solutions do not
depend on the z coordinate. Then Laplace's equation reduces
to

82V O2V
ax2 +y2 = 0 (1)

We try a solution that is a product of a function only of the x
coordinate and a function only of y:

V(x, y) = X(x) Y(y) (2)

This assumed solution is often convenient to use if the system
boundaries lay in constant x or constant y planes. Then along
a boundary, one of the functions in (2) is constant. When (2) is
substituted into (1) we have

_d'2X d2Y 1 d2X 1 d2,Y
Y- +X = 0 + (3)

dx dy X dx2 Y dy

where the partial derivatives become total derivatives because
each function only depends on a single coordinate. The
second relation is obtained by dividing through by XY so that
the first term is only a function of x while the second is only a
function of y.

The only way the sum of these two terms can be zero for all
values of x and y is if each term is separately equal to a
constant so that (3) separates into two equations,

1 d2X 2 1 d2 Y_k
X k d---- (4)

where k2 is called the separation constant and in general can
be a complex number. These equations can then be rewritten
as the ordinary differential equations:

d 2X d 2

Sk-2X= O, ++k'Y=O2
dx dy
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4-2-2 Zero Separation Constant Solutions

When the separation constant is zero (A2 = 0) the solutions
to (5) are

X = arx +bl, Y= cry+dl

where a,, b1 , cl, and dl are constants. The potential is given by
the product of these terms which is of the form

V = a 2 + b2x + C2y + d2xy

The linear and constant terms we have seen before, as the
potential distribution within a parallel plate capacitor with no
fringing, so that the electric field is uniform. The last term we
have not seen previously.

(a) Hyperbolic Electrodes
A hyperbolically shaped electrode whose surface shape

obeys the equation xy = ab is at potential Vo and is placed
above a grounded right-angle corner as in Figure 4-1. The

Vo

0
5
25
125

Equipotential lines - - -

Vo ab

Field lines -

y2 - X2 = const.

Figure 4-1 The equipotential and field lines for a hyperbolically shaped electrode at
potential Vo above a right-angle conducting corner are orthogonal hyperbolas.
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boundary conditions are

V(x = 0)= 0, V(y = 0)= 0, V(xy = ab)= Vo (8)

so that the solution can be obtained from (7) as

V(x, y)= Voxy/(ab) (9)

The electric field is then

Vo
E = -VVV = [yi, +xi,] (10)

ab

The field lines drawn in Figure 4-1 are the perpendicular
family of hyperbolas to the equipotential hyperbolas in (9):

dy E, xy 2 -x 2 =const (11)
dx E. y

(b) Resistor in an Open Box
A resistive medium is contained between two electrodes,

one of which extends above and is bent through a right-angle
corner as in Figure 4-2. We try zero separation constant

VsVr

N\

NN
.. .

---t- -- r

- -- - - --

-- ----E - ----~----- - - - ---

-- - - - - - - -----------
------------M R

&y E, I -x
dr E, s-y

= -y - )2 - (X - 1)2 = const.

V=O

Depth w

I I > x
0 I

Figure 4-2 A resistive medium partially fills an open conducting box.
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solutions given by (7) in each region enclosed by the elec-
trodes:

V= {ai+bix+ciy+dixy' oy-•-d (12)
a 2 + b2 x+c 2y+d 2 xy, d y s

With the potential constrained on the electrodes and being
continuous across the interface, the boundary conditions are

V(x=0)= Vo=aI+cIy a = V o, cl =0 (O y Sd)

170
a +bll+c ly+d ly=:bl=-Vo/1, di=0

V(x = 1)= 0= vo ( y d)

a2 + b21+c 2y+d 2y a 2 + b2 l = 0, C2 +d 21=0
(d y - s)

V(y=s)=O=a 2 +b 2x+c 2s+d 2xs =a 2 + C2 s=O, b 2 +d 2s=O

70 70
V(y=d+)= V(y=d-)=ai+bilx+c d+ di xd

=a 2 + b2x + C2d + d 2xd (13)

>al=Vo=a 2 +c 2d, b = -V/l=b 2 +d 2d

so that the constants in (12) are

a= Vo, b=- Vo/1l, cl=0, dl=0

Vo Vo
a2 , b2 - (14)

(I - d/s) b (1 - d/s)'

V0 V0
C2 = d 2 -

s(1 -d/s)' Is(1 -d/s)

The potential of (12) is then

Vo(1 - x/1), O- y! -d
V= o( + (15)

V- I-- -+-) , d:yssss-d l s Is'

with associated electric field

Vo.- ix, Oysd

E= -V V=| (16)
s )I + 1-- ) ] , d<y<s

Note that in the dc steady state, the conservation of charge
boundary condition of Section 3-3-5 requires that no current
cross the interfaces at y = 0 and y = d because of the surround-
ing zero conductivity regions. The current and, thus, the
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electric field within the resistive medium must be purely
tangential to the interfaces, E,(y = d)=E,(y =0+)=0. The
surface charge density on the interface at y = d is then due only
to the normal electric field above, as below, the field is purely
tangential:

of(y=d)=EoE,(y=d+)-CE, (y=d_)= _•  1 (17)

The interfacial shear force is then

S•EoVO
F= oEx(yd)wdx= -- w (18)

0 2(s - d)

If the resistive material is liquid, this shear force can be used
to pump the fluid.*

4-2-3 Nonzero Separation Constant Solutions

Further solutions to (5) with nonzero separation constant
(k 2 # 0) are

X = Al sinh kx +A 2 cosh kx = B1 ekx + B 2 e-kx

Y= C, sin ky + C2 cOs ky = Dl eik +D 2 e
- k

y (19)

When k is real, the solutions of X are hyperbolic or
equivalently exponential, as drawn in Figure 4-3, while those
of Y are trigonometric. If k is pure imaginary, then X
becomes trigonometric and Y is hyperbolic (or exponential).

The solution to the potential is then given by the product
of X and Y:

V = El sin ky sinh kx + E 2 sin ky cosh kx
(20)

+E 3 cos ky sinh kx + E 4 cos ky cosh kx

or equivalently

V = F1 sin ky e kx + F2 sin ky e -Ax + F 3 cos ky ek
x + F4 cos ky e-'x

(21)

We can always add the solutions of (7) or any other
Laplacian solutions to (20) and (21) to obtain a more general

* See J. R. Melcher and G. I. Taylor, Electrohydrodynamics: A Review of the Role of
Interfacial Shear Stresses, Annual Rev. Fluid Mech., Vol. 1, Annual Reviews, Inc., Palo
Alto, Calif., 1969, ed. by Sears and Van Dyke, pp. 111-146. See also J. R. Melcher, "Electric
Fields and Moving Media", film produced for the National Committee on Electrical
Engineering Films by the Educational Development Center, 39 Chapel St., Newton, Mass.
02160. This film is described in IEEE Trans. Education E-17, (1974) pp. 100-110.

I~ I __
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cos
2

1 2 3

Figure 4-3 The
arguments.

exponential and hyperbolic functions for positive and negative

solution because Laplace's equation is linear. The values of
the coefficients and of k are determined by boundary condi-
tions.

When regions of space are of infinite extent in the x direc-
tion, it is often convenient to use the exponential solutions in
(21) as it is obvious which solutions decay as x approaches ±+o.
For regions of finite extent, it is usually more convenient to
use the hyperbolic expressions of (20). A general property of
Laplace solutions are that they are oscillatory in one direction
and decay in the perpendicular direction.

4-2-4 Spatially Periodic Excitation

A sheet in the x = 0 plane has the imposed periodic poten-
tial, V = V0 sin ay shown in Figure 4-4. In order to meet this
boundary condition we use the solution of (21) with k = a.
The potential must remain finite far away from the source so

265

cosh x

I

3 -2
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V

E

cos ai

" "
- N.

y - sin ayi x

ield lines

cos aye
- a x = const

, / 7
, -

Figure 4-4 The potential and electric field decay away from an infinite sheet with
imposed spatially periodic voltage. The field lines emanate from positive surface
charge on the sheet and terminate on negative surface charge.

we write the solution separately for positive and negative x as

(22)V= Vosinaye a
, x-0

Vo sin ay e", x 0

where we picked the amplitude coefficients to be continuous
and match the excitation at x = 0. The electric field is then

E= = =-V - Voae "[cosayi -sinayix], x>0
- Voa e[cos ayi, +sin ayix], x<0 (

The surface charge density on the sheet is given by the dis-
continuity in normal component of D across the sheet:

or(x = 0) = e [E(x = O+)- Ex(x = 0 )]

266

I _

= 2e Voa sin ay (24)
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The field lines drawn in Figure 4-4 obey the equation

dy E, { (25)x>0dy == cot ay = cos ay e = const (25)
dx E. x<0

4-2-5 Rectangular Harmonics

When excitations are not sinusoidally periodic in space,
they can be made so by expressing them in terms of a trig-
onometric Fourier series. Any periodic function of y can be
expressed as an infinite sum of sinusoidal terms as

f(y)= bo+ . asin- +bcos- (26)

where A is the fundamental period of f(y).
The Fourier coefficients a, are obtained by multiplying

both sides of the equation by sin (2piry/A) and integrating over
a period. Since the parameter p is independent of the index n,
we may bring the term inside the summation on the right
hand side. Because the trigonometric functions are orthog-
onal to one another, they integrate to zero except when the
function multiplies itself:

. 2piy . 2n~ry 0, p n
fAsin snA-- dy =I A/2, p=n(

(27)
sin 2- cos -- dy = 0

A A

Every term in the series for n # p integrates to zero. Only the
term for n = p is nonzero so that

a, = - f(y) sin -p dy (28)

To obtain the coefficients b., we similarly multiply by
cos (2piry/A) and integrate over a period:

2 2py
b = f-f(y) cos p dy (29)

Consider the conducting rectangular box of infinite extent
in the x and z directions and of width d in the y direction
shown in Figure 4-5. The potential along the x = 0 edge is Vo
while all other surfaces are grounded at zero potential. Any
periodic function can be used for f(y) if over the interval
0O y5 d, f(y) has the properties

f(y) = Vo, 0 < y < d; f(y = 0) = f(y = d) = 0 (30)
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Figure 4-5 An open conducting box of infinite extent in the x and z directions and of
finite width d in the y direction, has zero potential on all surfaces except the closed end
at x = 0, where V= V0.

In particular, we choose the periodic square wave function
with A = 2d shown in Figure 4-6 so that performing the
integrations in (28) and (29) yields

2Vo
a, 2 V (cos pr - 1)

0, p even
4 Vo/lir, p odd

bo=0

Thus the constant potential at x = 0 can be written as the
Fourier sine series

4Vo 0  sin (nt•y/d)
V(x = 0) = Vo = 1 (32)

•" n-=1 n
n odd

In Figure 4-6 we plot various partial sums of the Fourier
series to show that as the number of terms taken becomes
large, the series approaches the constant value Vo except for
the Gibbs overshoot of about 18% at y = 0 and y = d where the
function is discontinuous.

The advantage in writing Vo in a Fourier sine series is that
each term in the series has a similar solution as found in (22)
where the separation constant for each term is k, = nir/d with
associated amplitude 4 Vo/(nir).

The solution is only nonzero for x > 0 so we immediately
write down the total potential solution as

4V0  1 flnTy e17x/d (33)
V(x, y)= 4 V sin n-e-" (33)

T n=lan d
n odd

I__ __~_ _

v=
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Gibbs overshoot

Af\~

U.00 0.25 0.50 0.75 1.0

y/d

Figure 4-6 Fourier series expansion of the imposed constant potential along the x = 0
edge in Figure 4-5 for various partial sums. As the number of terms increases, the
series approaches a constant except at the boundaries where the discontinuity in
potential gives rise to the Gibbs phenomenon of an 18% overshoot with narrow width.

The electric field is then

E=-VV= - (-sin i.+coso 1,)e_/d (34)

n odd

-- A--
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The field and equipotential lines are sketched in Figure 4-5.
Note that for x >>d, the solution is dominated by the first
harmonic. Far from a source, Laplacian solutions are insensi-
tive to the details of the source geometry.

4-2-6 Three-Dimensional Solutions

If the potential depends on the three coordinates (x, y, z),
we generalize our approach by trying a product solution of
the form

V(x, y, z) = X(x) Y(y) Z(z) (35)

which, when substituted into Laplace's equation, yields after
division through by XYZ

1 d2 X 1 d 2 Y 1 d 2Z

Xdx+Ydy O (36)

three terms each wholly a function of a single coordinate so
that each term again must separately equal a constant:

1 d2X 2, 1 d2Y • 2 1 d2Z 2
I =-k , -=k, =2=k=k +k (37)

X dx2  Ydy 2 = , Zdz2 z(37)

We change the sign of the separation constant for the z
dependence as the sum of separation constants must be zero.
The solutions for nonzero separation constants are

X=A sin kx+A 2 cos kx

Y = B1 sin ky + B 2 cos ky (38)

Z= C1 sinh kz + C2 cosh k,z = D 1 ekz +D 2 e -k' z

The solutions are written as if kx, k,, and k. are real so that
the x and y dependence is trigonometric while the z depen-
dence is hyperbolic or equivalently exponential. However, k.,
k,, or k, may be imaginary converting hyperbolic functions to
trigonometric and vice versa. Because the squares of the
separation constants must sum to zero at least one of the
solutions in (38) must be trigonometric and one must be
hyperbolic. The remaining solution may be either trigono-
metric or hyperbolic depending on the boundary conditions.
If the separation constants are all zero, in addition to the
solutions of (6) we have the similar addition

Z = elz +fl

_1~1_1~ __ _ ___

(39)
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4-3 SEPARATION OF VARIABLES IN CYLINDRICAL GEOMETRY

Product solutions to Laplace's equation in cylindrical
coordinates

1 a ( rV+ a'V a'V
r-r -+ z-- + - "= 0 (1)r r ar)r r 84) 8z

also separate into solvable ordinary differential equations.

4-3-1 Polar Solutions

If the system geometry does not vary with z, we try a
solution that is a product of functions which only depend on
the radius r and angle 4:

V(r, 4) = R(r)b(4O) (2)

which when substituted into (1) yields

4 d dR RdPQ
r+ 2 2= 0 (3)

This assumed solution is convenient when boundaries lay at a
constant angle of 46 or have a constant radius, as one of the
functions in (2) is then constant along the boundary.

For (3) to separate, each term must only be a function of a
single variable, so we multiply through by r2/R4 and set each
term equal to a constant, which we write as n :

r d dR 2 1 d2 - 2
r n=n - - = (4)

R dr dr = D do

The solution for 4 is easily solved as

(Al sin n4+Az cos n4, nO(5)
BI0+B2 , n=0

The solution for the radial dependence is not as obvious.
However, if we can find two independent solutions by any
means, including guessing, the total solution is uniquely given
as a linear combination of the two solutions. So, let us try a
power-law solution of the form

R = Ar (6)

which when substituted into (4) yields

p =n 2 p = :n
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For n # 0, (7) gives us two independent solutions. When n = 0
we refer back to (4) to solve

dR
r-= const* R = D1 In r+D 2  (8)

dr

so that the solutions are

SClr" + C2 r-n, nO0
Dllnr+D2, n=O (9)

We recognize the n = 0 solution for the radial dependence
as the potential due to a line charge. The n = 0 solution for
the 46 dependence shows that the potential increases linearly
with angle. Generally n can be any complex number,
although in usual situations where the domain is periodic and
extends over the whole range 0- -=4,2wr, the potential at
4 = 21r must equal that at 4 = 0 since they are the same point.
This requires that n be an integer.

EXAMPLE 4-1 SLANTED CONDUCTING PLANES

Two planes of infinite extent in the z direction at an angle a
to one another, as shown in Figure 4-7, are at a potential
difference v. The planes do not intersect but come sufficiently
close to one another that fringing fields at the electrode ends
may be neglected. The electrodes extend from r = a to r = b.
What is the approximate capacitance per unit length of the
Structure?

V

I 1 1 >- r
0 a b

Figure 4-7 Two conducting planes at angle a stressed by a voltage v have a
4-directed electric field.

·
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SOLUTION

We try the n = 0 solution of (5) with no radial dependence
as

V= BIb+B2

The boundary conditions impose the constraints

V(4 = 0)= 0, V(4 = a)= v > V = v4,/a

The electric field is

I dV v

r d= ra

The surface charge density on the upper electrode is then

ev
or(f a) = -eE4.(0 = a)=-

ra

with total charge per unit length

Eev b
A(,b=ea)= ofrT(4a=a)dr=-Eln

Ja a a

so that the capacitance per unit length is

A e In (b/a)

V a

4-3-2 Cylinder in a Uniform Electric Field

(a) Field Solutions
An infinitely long cylinder of radius a, permittivity e2, and

Ohmic conductivity 0o2 is placed within an infinite medium of
permittivity e1 and conductivity (o,. A uniform electric field at
infinity E = Eoi, is suddenly turned on at t = 0. This problem
is analogous to the series lossy capacitor treated in Section
3-6-3. As there, we will similarly find that:

(i) At t = 0 the solution is the same as for two lossless
dielectrics, independent of the conductivities, with no
interfacial surface charge, described by the boundary
condition

orf(r = a) = Dr(r= a+)- Dr(r= a-) = 0

Se EEr(r=a) = 2Er(r=a-) (10)

(ii) As t - o0, the steady-state solution depends only on
the conductivities, with continuity of normal current
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at the cylinder interface,

J,(r = a+) = J,(r = a-) = rlEr(r = a+) = 2gEr(r = a-)
(11)

(iii) The time constant describing the transition from the
initial to steady-state solutions will depend on some
weighted average of the ratio of permittivities to
conductivities.

To solve the general transient problem we must find the
potential both inside and outside the cylinder, joining the
solutions in each region via the boundary conditions at r = a.

Trying the nonzero n solutions of (5) and (9), n must be an
integer as the potential at 4 = 0 and 46 = 21r must be equal,
since they are the same point. For the most general case, an
infinite series of terms is necessary, superposing solutions
with n = 1, 2, 3, 4, - • . However, because of the form of the
uniform electric field applied at infinity, expressed in cylin-
drical coordinates as

E(r - co) = Eoi, = E0 [i, cos 4 - i sin 0] (12)

we can meet all the boundary conditions using only the n = 1
solution.

Keeping the solution finite at r = 0, we try solutions of the
form

iA(t)r cos 4, r a
V(r, 4)= AMrCOS, r(13)

V[B(t)r+C(t)/r] cos , ra

with associated electric field

-A (t)[cos 4i, - sin 4i#] = -A(t)i,, r <a

E= -VV= -[B(t)- C(t)/r2] cos Oir (14)

I +[B(t)+ C(t)/r 2] sin 4•id,, r> a

We do not consider the sin 4 solution of (5) in (13) because at
infinity the electric field would have to be y directed:

V = Dr sin 4, E= - V V= -D[i, sin 4 + i, cos 4,] = -Di,
(15)

The electric field within the cylinder is x directed. The
solution outside is in part due to the imposed x-directed
uniform field, so that as r-* co the field of (14) must approach
(12), requiring that B(t)= -Eo. The remaining contribution
to the external field is equivalent to a two-dimensional line
dipole (see Problem 3.1), with dipole moment per unit length:

p, = Ad = 2'-eC(t)

____
,=•=,

(16)
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The other time-dependent amplitudes A (t) and C(t) are
found from the following additional boundary conditions:

(i) the potential is continuous at r = a, which is the same
as requiring continuity of the tangential component of
E:

V(r= a.)= V(r = a-) E6(r= a-)=E#(r = a+)

Aa = Ba + Cia (17)

(ii) charge must be conserved on the interface:

Jr(r = a+) -,(r = a_)+ = 0
at

S>a,Er(r = a+) - 0-2E,(r = a-)

+-a [eIE,(r= a+)- e 2Er(r= a-)] = 0
(18)

In the steady state, (18) reduces to (11) for the continuity of
normal current, while for t= 0 the time derivative must be
noninfinite so of is continuous and thus zero as given by (10).

Using (17) in (18) we obtain a single equation in C(t):

d-+ + 2 C -a (Eo(-- 0"2 )+(eI- 2 )
dt 61+E2 dt

(19)
Since Eo is a step function in time, the last term on the
right-hand side is an impulse function, which imposes the
initial condition

2 (8 - E82)C(t = 0) = -a Eo (20)

so that the total solution to (19) is

2/0.1(-0 2(0.182-0.281) - 1A, 81 82
C(t)= aEo - + ,2(-0 7=

\l+0.2 (o0+0o2-) (1+E2) r0l +0"2
(21)

The interfacial surface charge is

o0f(r = a, t) = e IEr(r= a+) - E2E,(r = a-)

= -e,(B -)'+ 2A] cos 4

[(6-E2)Eo+(E, +E) -2] cos4

2(0281-0.82)2( - ) Eo[1-e - ] cos4 (22)
0.1 + 0.2
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The upper part of the cylinder (-r/2 047 r/2) is charged of
one sign while the lower half (7r/2:5 46 r) is charged with
the opposite sign, the net charge on the cylinder being zero.
The cylinder is uncharged at each point on its surface if the
relaxation times in each medium are the same, E1 /o' 1= e2/0r2

The solution for the electric field at t = 0 is

2Eo 2e 1Eo.[cos[Sir- sin 4i0] = i., r<a
61+62 E1+62

a 82 -81
t=0)= +E0 +a 2+ 2) COS ,ir (23)

[ a 82r81662
-1-- )- sin 4,i6 ], r>a

61r+E2

The field inside the cylinder is in the same direction as the
applied field, and is reduced in amplitude if 62>81 and
increased in amplitude if e2 < El, up to a limiting factor of two
as e1 becomes large compared to e2. If 2 = E1, the solution
reduces to the uniform applied field everywhere.

The dc steady-state solution is identical in form to (23) if we
replace the permittivities in each region by their conduc-
tivities;

2o.E o 20.Eo0[cosi,r- sin4i 21~ i., r<a
al1+ 2 71 + 02

2
Ft a 02-01 ,

E(t - co) = Eo0 •+ ---- 0 cos ir (24)
'r 1+or2)

-(1 aI '2-rln >in., r>a

(b) Field Line Plotting
Because the region outside the cylinder is charge free, we

know that V E =0. From the identity derived in Section
1-5-4b, that the divergence of the curl of a vector is zero, we
thus know that the polar electric field with no z component
can be expressed in the form

E(r, 4) = VX (r, 4,)i.

Ia. ax.i,--14 (25)
ra46 ar

where x is called the stream function. Note that the stream
function vector is in the direction perpendicular to the elec-
tric field so that its curl has components in the same direction
as the field.
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Along a field line, which is always perpendicular to the
equipotential lines,

dr E, 1 / (26)
r d4 Es r a8/8r

By cross multiplying and grouping terms on one side of the
equation, (26) reduces to

d. = dr+-d 4 = 0>Y = const (27)
ar a84

Field lines are thus lines of constant 1.
For the steady-state solution of (24), outside the cylinder

1 a1 / a2 o- o*tIIay E=rEoI 1+ ) cos
rrr o + o (28)

2

-ý=E.s= -Eo 1 2I- sinar r2 +0o2
we find by integration that

I = Eo(r+ a- tTi sin (29)
r or + C'2)

The steady-state'field and equipotential lines are drawn in
Figure 4-8 when the cylinder is perfectly conducting (o 2 ->ox)
or perfectly insulating (or2 = 0).

If the cylinder is highly conducting, the internal electric
field is zero with the external electric field incident radially, as
drawn in Figure 4-8a. In contrast, when the cylinder is per-
fectly insulating, the external field lines must be purely
tangential to the cylinder as the incident normal current is
zero, and the internal electric field has double the strength of
the applied field, as drawn in Figure 4-8b.

4-3-3 Three-Dimensional Solutions

If the electric potential depends on all three coordinates,
we try a product solution of the form

V(r, 4, z) = R(r)4(d)Z(z) (30)

which when substituted into Laplace's equation yields

ZD d d RZd2 4+ d 2Z (31)
•rr + 2 + R - - = 0 (31)

r -dr dr r d0 Z

We now have a difficulty, as we cannot divide through by a
factor to make each term a function only of a single variable.
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2
1 AL1 r a

V/(Eoa)

Eoi, = Eo(Jr coso- i¢, sing)

Figure 4-8 Steady-state field and equipotential lines about a (a) perfectly conducting
or (b) perfectly insulating cylinder in a uniform electric field.

However, by dividing through by V = RDZ,

Sd d d I d 24 1 d 2Z

Rr dr ýr r2 d• d Z = 0

-k k2

we see that the first two terms are functions of r and 4 while
the last term is only a function of z. This last term must
therefore equal a constant:

2.9 (Alsinhkz+A 2coshkz, kO0
I dZ Z =
Z dz Z+A,

A~zz+A4, k=0

-*C~--·--L--^-

r>a

r<a

2a

f_
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-2Eorcoso r<a

-Eoa(a + )cosO r>a

2Eo (cosi, - sin iO) = 2E o i,
E=-VV Eo a

2 
a

2

E(1 
2
)cosi,-(1+ r

2 
)sinoiJ

r r

279

r<a

r>a

Eoa

-4.25

3.33

-2.5

-2.0

1.0

-0.5
0.0
0.5

1.0

2.0

2.5

3.33

a
2

a
2 coto

(1+ )

( - a)sine = const
a r

Figure 4-8b

The first two terms in (32) must now sum to -k 2 so that after
multiplying through by r2 we have

rd dR 22 1d 2
D

R dr r+k r +- =0

Now again the first two terms are only a function of r, while
the last term is only a function of 0 so that (34) again
separates:

rd r +k2r 2 
2

Rdr drr
1 d 2 

2
d2-n

to•i• = Edl cos - Isln o)
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where n 2 is the second separation constant. The angular
dependence thus has the same solutions as for the two-
dimensional case

(B, sinn +hBRco' nd n 0
B, Ds n

,03(D D4, n ý

The resulting differential equation for the radial dependence

d dR\
r- r- + (k 2 -n2)R = 0
ar \ ar/

is Bessel's equation and for nonzero k has solutions in terms

(a)

Figure 4-9 The Bessel functions (a) J.(x) and I.(x), and (b) Y.(x) and K. (x).

&'It• tA

-- 1

x
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of tabulated functions:

C]J,(kr)+CY,,(kr), k •0
R= C 3 rn + C 4 r - , k= 0, n 0 (38)

C 5 In r+ C 6, k=0, n=0

where J.,is called a Bessel function of the first kind of order n
and Y. is called the nth-order Bessel function of the second
kind. When n = 0, the Bessel functions are of zero order while
if k = 0 the solutions reduce to the two-dimensional solutions
of (9).

Some of the properties and limiting values of the Bessel
functions are illustrated in Figure 4-9. Remember that k

2.0

1.5

1.0

0.5

0.5

1.0

Figure 4-9b
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can also be purely imaginary as well as real. When k is real so
that the z dependence is hyperbolic or equivalently exponen-
tial, the Bessel functions are oscillatory while if k is imaginary
so that the axial dependence on z is trigonometric, it is con-
venient to define the nonoscillatory modified Bessel functions
as

I.(kr)= j"J.(fkr)
(39)

K,(kr) = jij "+ U[(jkr) +jY(ikr)]

As in rectangular coordinates, if the solution to Laplace's
equation decays in one direction, it is oscillatory in the
perpendicular direction.

4-3-4 High Voltage Insulator Bushing

The high voltage insulator shown in Figure 4-10 consists
of a cylindrical disk with Ohmic conductivity or supported
by a perfectly conducting cylindrical post above a ground
plane.*

The plane at z = 0 and the post at r = a are at zero potential,
while a constant potential is imposed along the circumference
of the disk at r = b. The region below the disk is free space so
that no current can cross the surfaces at z = L and z = L - d.
Because the boundaries lie along surfaces at constant z or
constant r we try the simple zero separation constant solutions
in (33) and (38), which are independent of angle 4:

V(r,z) =Az+Blz lnr+Cllnr+D1 , L-d<z<L
A 2z+B 2zlnr+C21nr+D2, O-z<L-d (40)

Applying the boundary conditions we relate the coefficients
as

V(z = 0) = 0 C = D2 = 0

(A 2 +B 2 In a = 0
V(r=a)=0> A 1+Bllna=0

(C 1 In a +DI = 0

V(r=b,r>L-d)-Vo•( C1lnb+D1= V o

V(z = (L - d)-) = V(z = (L - d)+) (L - d) (A + B 2 In r)

=(L-d)(A,+B Iln r)+ C lnr+Dj

* M. N. Horenstein, "Particle Contamination of High Voltage DC Insulators," PhD thesis,
Massachusetts Institute of Technology, 1978.

I ___
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r=b

Field lines

2 = r2
[ln(r/a) -1] + const

2

---- Equipotential V Vosln(r/a)
V-lines (L -- d)In(b/a)

(b)

Figure 4-10 (a) A finitely conducting disk is mounted upon a perfectly conducting
cylindrical post and is placed on a perfectly conducting ground plane. (b) Field and
equipotential lines.

283
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Vo
In (bla)'

which yields the values

Al= B1 = 0,

(L -dVo In (/a)
(L -d) In (b/a)

The potential of (40) is then

Vo In (r/a)
In (b/a) '

V(r, z) = In (a)
Voz In (r/a)

w(L - d) In (b/a)

with associated electric field

Vo
r In (bla) r

E= -VV=

- d (In ri,+
(L -d) In (bla) a r

Vo In a
D= (42

In (b/a)
(42)

C2 = D2 = 0

L-dszsL

OzSL-d

L-d<z<L

(44)
O<z<L-d

The field lines in the free space region are

dr = Er z rn 1+const
dz E, rl In (rla) a 2J

(45)

and are plotted with the equipotential lines in Figure 4-10b.

4-4 PRODUCT SOLUTIONS IN SPHERICAL GEOMETRY

In spherical coordinates, Laplace's equation is

a1 2a V 1 a /sin 1 a2 v

rr\ r 2 2 sin 0 0 sin• 0,

4-4-1 One-Dimensional Solutions

If the solution only depends on a single spatial coordinate,
the governing equations and solutions for each of the three
coordinates are

d / dV(r)\ A,

dr dr / r

284

Vo
B 2 =

(L -d) In (b/a)'

_I~_ ~__··

(i) - r' r=0= V(r)=-+A2
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(ii) d sin 0 = 0 V(0)=B1 In tan +B 2

(3)

d2 V(O)
(iii) d = 0 V() = CIO + C2 (4)

We recognize the radially dependent solution as the poten-
tial due to a point charge. The new solutions are those which
only depend on 0 or 4.

EXAMPLE 4-2 TWO CONES

Two identical cones with surfaces at angles 0 = a and 0 =
ir-a and with vertices meeting at the origin, are at a poten-
tial difference v, as shown in Figure 4-11. Find the potential
and electric field.

1-- 0

In(tan )

2 In(tan )

2rsinO In(tan )

/2

Figure 4-11 Two cones with vertices meeting at the origin are at a potential
difference v.

i
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SOLUTION

Because the boundaries are at constant values of 0, we try
(3) as a solution:

V() = Bl In [tan (0/2)1+ B2

From the boundary conditions we have

v(o = a) =v
2

-v v
V(O = r -a)= - Bl= B2=0

2 2 In [tan (a/2)]' B

so that the potential is

v= In [tan (0/2)]
V(0) =

2 In [tan (a/2)]

with electric field

-v
E= -VV= is

2r sin 0 In [tan (a/2)]

4-4-2 Axisymmetric Solutions

If the solution has no dependence on the coordinate 4, we
try a product solution

V(r, 0) = R(r)O(0) (5)

which when substituted into (1), after multiplying through by
r 2/RO, yields

I d 2 dR' d dO
_r + .+sin 0 ( -s = 0 (6)

Rdr dr sin 0 dO

Because each term is again only a function of a single vari-
able, each term is equal to a constant. Anticipating the form
of the solution, we choose the separation constant as n(n + 1)
so that (6) separates to

r r' --n(n+1)R=0 (7)

di d\
-I sin -, +n(n + 1) sin 9=0
au adO

I-
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For the radial dependence we try a power-law solution

R = Arp (9)

which when substituted back into (7) requires

p(p + 1)= n(n + 1) (10)

which has the two solutions

p=n, p = -(n+1) (11)

When n = 0 we re-obtain the l/r dependence due to a point
charge.

To solve (8) for the 0 dependence it is convenient to intro-
duce the change of variable

i = cos 0 (12)

so that

de dedp deOded-sin = _-(1 /2Pd) (13)
dO d1 dO dp dp

Then (8) becomes

d 2 de
-± (p-2 )d- +n(n+1)O=0 (14)

which is known as Legendre's equation. When n is an integer,
the solutions are written in terms of new functions:

e = B.P,,()+ C.Q,(P) (15)

where the P.(i) are called Legendre polynomials of the first
kind and are tabulated in Table 4-1. The Q. solutions are
called the Legendre functions of the second kind for which
the first few are also tabulated in Table 4-1. Since all the Qn
are singular at 0 = 0 and 9 = ir, where P = * 1, for all problems
which include these values of angle, the coeffcients C. in (15)
must be zero, so that many problems only involve the Legen-
dre polynomials of first kind, P.(cos 0). Then using (9)-(11)
and (15) in (5), the general solution for the potential with no
* dependence can be written as

V(r, 0)= Y (A.r"+ Br-"+I))P.(cos0) (16)
n-O
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Table 4-1 Legendre polynomials of first and second kind

n P.(6 = cos 0)

0 1

1 i = cos 0

2 (30 2 - 1)

= (3 Cos2 0 - 1)

Q.(- = cos 0)
, (1+0

PIn -( /

(32 () +P 3

()~- 20

3 ((50S- S3)

= - (5 cos s 0 - 3 cos 0)

1 d"'
m d (p2- 1)m

2"m! dp"

4-4-3 Conducting Sphere in a Uniform Field

(a) Field Solution
A sphere of radius R, permittivity E2, and Ohmic conduc-

tivity a 2 is placed within a medium of permittivity el and
conductivity o-1. A uniform dc electric field Eoi. is applied at
infinity. Although the general solution of (16) requires an
infinite number of terms, the form of the uniform field at
infinity in spherical coordinates,

E(r -* co) = Eoi. = Eo(i, cos 0 - ie sin 0)

suggests that all the boundary conditions can be met with just
the n = 1 solution:

V(r, 0) =Ar cos 0, rsR

V(Br+C/r2 ) cos 0, r-R

We do not include the l/r2 solution within the sphere (r < R)
as the potential must remain finite at r = 0. The associated

288
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electric field is

E=-VV= -A(ir cos 0-ie sin 0)= -Ai,, r<R

-(B -2C/r 3) cos Oi+(B +C/r ) sin 0i., r>R

(19)

The electric field within the sphere is uniform and z direct-
ed while the solution outside is composed of the uniform
z-directed field, for as r oo the field must approach (17) so
that B = -Eo0 , plus the field due to a point dipole at the origin,
with dipole moment

Pý = 41re C (20)

Additional steady-state boundary conditions are the
continuity of the potential at r = R [equivalent to continuity of
tangential E(r =R)], and continuity of normal current at
r = R,

V(r = R)= V(r = R-)>Ee(r = R+)= Eo(r = R_)

>AR = BR + C/R 2

,(r = R+) =],(r = R-)zoriEr,(r=R+) = r2E,(r = R) (21)

>ral(B-2C/Rs)= or2 A

for which solutions are

3o' (2'a- l)RS
A = Eo, B = -Eo, C = Eo (22)

2orl + a-2 2ol + o

The electric field of (19) is then

3So-Eo 3Eo1E .(i,cos 0 - ie sin 0)= i,, r<R
2a01 + 2 2a,+ o,2

E= Eo 1+2 R a-2 ) cos Oi, (23)

( R3 (0-oin) 6si , r>R
rs(2cri + 0'2)) s r

The interfacial surface charge is

orf(r= R) = eiE,(r= R+)- E2E(r = R-)

3(o2E 1- oIE2)Eo c1 os 0 (24)
2crl + 02

which is of one sign on the upper part of the sphere and of
opposite sign on the lower half of the sphere. The total
charge on the entire sphere is zero. The charge is zero at
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every point on the sphere if the relaxation times in each
region are equal:

(25)
O"I '2

The solution if both regions were lossless dielectrics with
no interfacial surface charge, is similar in form to (23) if we
replace the conductivities by their respective permittivities.

(b) Field Line Plotting
As we saw in Section 4-3-2b for a cylindrical geometry, the

electric field in a volume charge-free region has no diver-
gence, so that it can be expressed as the curl of a vector. For
an axisymmetric field in spherical coordinates we write the
electric field as

-((r, 0).
E(r, 0)= VX rsin

1 al 1 a1.
= 2, is (26)

r sin 0 ao r sin 0 ar

Note again, that for a two-dimensional electric field, the
stream function vector points in the direction orthogonal to
both field components so that its curl has components in the
same direction as the field. The stream function I is divided
by r sin 0 so that the partial derivatives in (26) only operate on

The field lines are tangent to the electric field

dr E 1 ala (27)
(27)

r dO Es r allar

which after cross multiplication yields

d = -dr+ dO = 0 = const (28)
ar O0

so that again I is constant along a field line.
For the solution of (23) outside the sphere, we relate the

field components to the stream function using (26) as

1 a8 2R( "______l)_
E,= = Eo 1 - cos0

r' sin 80a r (2a 1i + 2 ) )
(29)

E 1 = -Eo 1 - sin 0
r sin 0 ar rs(20 + 2))
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so that by integration the stream function is

r RS'-2 'l)
I= Eo +) sin2 0 (30)

2 r(2ao +0r2)

The steady-state field and equipotential lines are drawn in
Figure 4-12 when the sphere is perfectly insulating (ar2 = 0) or
perfectly conducting (o-2 -0).

- EorcosO r<R

R 2r

E•[O-•i-]cos0 rcos2

• Eo i, cosO --io sin0l= Efoil r<R
E=-VV= 1 R3

EnEo[(1 - )cosir--(1 + ) sin~i. r>R

(1
dr Er
rdO - E.

rI

2rV

Eo R

-- - -4.0

---------- -3.1

--------- 2.1
-1.6

----- 1.3
------------------------------------1.1

------- 0.4

------ 0.0

---- --- 0.4

------ - 0.75

------- 1.1
------- 1.3

------ 2.1

-------- 3.1

------ 4.0

Eoi, = Eo(ircosO - i, sinO)

(a)

Figure 4-12 Steady-state field and equipotential lines about a (a) perfectly insulating
or (b) perfectly conducting sphere in a uniform electric field.

--

---
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V= r R

EoR( -R r
2 )cos60

t Rr2

-VV= 2R3 )C R
3

o0ir -(1 _- ) sin0i 0 ] r> R

(1 + 2

dr E, _ r
3 

cot
rdO E (1 - .)

P
3

[+ I5
( )

2
]sin

2

R

-2.75

-- - 1.0

..- -0.6

-- 0.25
0
0.25
0.6
1.0

S1.75

2.75

Eoi , = Eo(ircosO - i0sin0)

Figure 4-12b

If the conductivity of the sphere is less than that of the
surrounding medium (O'2<UO), the electric field within the
sphere is larger than the applied field. The opposite is true
for (U2 >oj). For the insulating sphere in Figure 4-12a, the
field lines go around the sphere as no current can pass
through.

For the conducting sphere in Figure 4-12b, the electric field
lines must be incident perpendicularly. This case is used as a
polarization model, for as we see from (23) with 2 -: oo, the
external field is the imposed field plus the field of a point

r<R

r>R

r ýi
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dipole with moment,

p, = 4E iR 3Eo (31)

If a dielectric is modeled as a dilute suspension of nonin-
teracting, perfectly conducting spheres in free space with
number density N, the dielectric constant is

eoEo + P eoEo + Np,
e = - = o(1 +4rR 3N) (32)

Eo Eo

4-4-4 Charged Particle Precipitation Onto a Sphere

The solution for a perfectly conducting sphere surrounded
by free space in a uniform electric field has been used as a
model for the charging of rain drops.* This same model has
also been applied to a new type of electrostatic precipitator
where small charged particulates are collected on larger
spheres.t

Then, in addition to the uniform field Eoi, applied at
infinity, a uniform flux of charged particulate with charge
density po, which we take to be positive, is also injected, which
travels along the field lines with mobility A. Those field lines
that start at infinity where the charge is injected and that
approach the sphere with negative radial electric field,
deposit charged particulate, as in Figure 4-13. The charge
then redistributes itself uniformly on the equipotential sur-
face so that the total charge on the sphere increases with time.
Those field lines that do not intersect the sphere or those that
start on the sphere do not deposit any charge.

We assume that the self-field due to the injected charge is
very much less than the applied field E 0 . Then the solution of
(23) with Ov2 = 00 iS correct here, with the addition of the radial
field of a uniformly charged sphere with total charge Q(t):

2R3 Q3
E= [Eo(1+ 3) cos + i2]i -Eo(1- )3sin io,

r 4 7r rr

r>R (33)

Charge only impacts the sphere where E,(r = R) is nega-
tive:

E,(r = R)= 3Eo cos + 2<0 (34)
47TER

* See: F. J. W. Whipple and J. A. Chalmers,On Wilson's Theory of the Collection of Charge
by FallingDrops, Quart. J. Roy. Met. Soc. 70, (1944), p. 103.
t See: H. J. White, Industrial Electrostatic Precipitation Addison-Wesley, Reading. Mass.

1963, pp. 126-137.
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which gives us a window for charge collection over the range
of angle, where

cos 0 2- reER 2 (35)
121eEoR

Since the magnitude of the cosine must be less than unity, the
maximum amount of charge that can be collected on the
sphere is

Q,= 127reEoR2 (36)

As soon as this saturation charge is reached, all field lines
emanate radially outward from the sphere so that no more
charge can be collected. We define the critical angle Oc as the
angle where the radial electric field is zero, defined when (35)
is an equality cos 0, = -Q/Q,. The current density charging
the sphere is

JI = popE,(r= R)

= 3potEo (cos 0 + Q/Q,), 0, < 0 < (37)

The total charging current is then

dQ
-- J2'R2 sin OdO

= -61rpoEoR 2J (cos' 0 + Q/Q,) sin 0 d

= -6,rpoEoR (-4 cos 20- (Q/Q,) cos 0)|1 =..

= -6irpoplEoR 2 (-(1 - cos 20,) + (Q/ Q) (1 + cos 0c))
(38)

As long as IQI < Q, B0is defined by the equality in (35). If Q
exceeds Q,, which can only occur if the sphere is intentionally
overcharged, then 08 = 7r and no further charging can occur
as dQ/ldt in (38) is zero. If Q is negative and exceeds Q, in
magnitude, Q < -Q, then the whole sphere collects charge as
0, = 0. Then for these conditions we have

- 1, Q >Q

cos= -Q/Q -Q, < Q < Q (39)

1, Q <-Q,

oB=2o 1, _ QI > Q,
(40)

2(Q/Q,)- , Q|a< Q
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so that (38)becomes

0, Q>Q.

Q PopL1 Q\2
"•"= "• -- , . - .< Q < Q, (41)

Pop,Q
6 Q<-

with integrated solutions

Q,
a,

0Qo
Q>QQ

Qo (t- to) (1 Qo

1+ 1
47 Q.

oe"', Q<-Q.
1Q.,

where Qo is the initial charge at t= 0 and the characteristic
charging time is

r = e(Pop) (43)

If the initial charge Qo is less than -Q, the charge magni-
tude decreases with the exponential law in (42) until the total
charge reaches -Q, at t = to. Then the charging law switches
to the next regime with Qo = -Q,, where the charge passes
through zero and asymptotically slowly approaches Q = Q,.
The charge can never exceed Q, unless externally charged. It
then remains constant at this value repelling any additional
charge. If the initial charge Qo has magnitude less than Q,
then to= 0. The time dependence of the charge is plotted in
Figure 4-14 for various initial charge values Qo. No matter
the initial value of Qo for Q < Q,, it takes many time constants
for the charge to closely approach the saturation value Q,.
The force of repulsion on the injected charge increases as the
charge on the sphere increases so that the charging current
decreases.

The field lines sketched in Figure 4-13 show how the fields
change as the sphere charges up. The window for charge
collection decreases with increasing charge. The field lines
are found by adding the stream function of a uniformly
charged sphere with total charge Q to the solution of (30)

296
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0 Qo

Q + t--toQ _ 
Qo

QS + ( t111 -:To)

Figure 4-14 There are three regimes describing the charge build-up on the sphere. It
takes many time constants [7r = E/(PoA.)] for the charge to approach the saturation value
Q,, because as the sphere charges up the Coulombic repulsive force increases so that
most of the charge goes around the sphere. If the sphere is externally charged to a
value in excess of the saturation charge, it remains constant as all additional charge is
completely repelled.

with a • -, oo:

S= ER 2 [!! 2 sin 2 0 C
rL 2 R47re

The streamline intersecting the sphere at r = R, O= 0,
separates those streamlines that deposit charge onto the
sphere from those that travel past.

4-5 A NUMERICAL METHOD-SUCCESSIVE RELAXATION

In many cases, the geometry and boundary conditions are
irregular so that closed form solutions are not possible. It
then becomes necessary to solve Poisson's equation by a
computational procedure. In this section we limit ourselves to
dependence on only two Cartesian coordinates.

4-5-1 Finite Difference Expansions

The Taylor series expansion to second order of the poten-
tial V, at points a distance Ax on either side of the coordinate
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(x, y), is

V(x +Ax, y)' V(x, y)+ a Ax +--I,, (Ax)2

ax 2 x 2v la2 *v (1)
aVV A. 8 2V

V(x - Ax, y) V(x, y) Ax +-_ (Ax)
ax 2 ax

If we add these two equations and solve for the second
derivative, we have

O2 V V(x +Ax, y)+ V(x-Ax, y) - 2 V(x, y)
iax (Ax) 2

Performing similar operations for small variations from y
yields

a2 V V(x,y+Ay)+ V(x,y-Ay)-2V(x,y)

y2  (Ay) 2  (3)

If we add (2) and (3) and furthermore let Ax = Ay, Poisson's
equation can be approximated as

a2 V 2 V 1
S+-P~ ~ 2 [ V(x + Ax, y) + V(x - Ax, y)

P,(x, Y)+ V(x, y + Ay)+ V(x, y - Ay)-4 V(x, y)] =

(4)

so that the potential at (x, y) is equal to the average potential
of its four nearest neighbors plus a contribution due to any
volume charge located at (x, y):

V(x, y) = ¼[ V(x + Ax, y) + V(x - Ax, y)

pj(x, y) (Ax) (
+ V(x, y +Ay)+ V(x, y - Ay)] + (5)

4e

The components of the electric field are obtained by taking
the difference of the two expressions in (1)

E(x,y) = - [ V(x + Ax, y)- V(x - Ax, y)]
ax 2Ax (6)
OV 1

E,(x, y) = -- a - -1 V(x, y + Ay)- V(x, y - Ay)

4-5-2 Potential Inside a Square Box

Consider the square conducting box whose sides are con-
strained to different potentials, as shown in Figure (4-15). We
discretize the system by drawing a square grid with four

-1 --- ·---- · I
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I d

41
3

2

1

V2 = 2

V(3, 2) V(3, 3)

V1 
V(2, 2) V(2, 3) V3 3

V4 = 4

1 2 3 4

Figure 4-15 The potentials at the four interior points of a square conducting box
with imposed potentials on its surfaces are found by successive numerical relaxation.
The potential at any charge free interior grid point is equal to the average potential of
the four adjacent points.

interior points. We must supply the potentials along the
boundaries as proved in Section 4-1:

4 4

V1 = Y V(I,J= 1)=1, V3 = Y V(I,J=4)=3
I=1 I=1

(7)

V,= Y V(I=4,J)=2, V4 = Z V(I=1,J)=4
J=I 1=1

Note the discontinuity in the potential at the corners.
We can write the charge-free discretized version of (5) as

V(I,J)=4[V(I+1,J)+V(I- 1,J)+ V(I,J+1)+ V(I,J- 1)]

(8)

We then guess any initial value of potential for all interior
grid points not on the boundary. The boundary potentials
must remain unchanged. Taking the interior points one at a
time, we then improve our initial guess by computing the
average potential of the four surrounding points.

We take our initial guess for all interior points to be zero
inside the box:

V(2, 2) = 0, V(3, 3) = 0
(9)

V(3, 2) = 0, V(2, 3) = 0

Then our first improved estimate for V(2, 2) is

V(2, 2)= [ V(2, 1)+ V(2, 3)+ V(1, 2)+ V(3, 2)]

=-[1+0+4+0]= 1.25



300 Electric Field Boundary Value Problems

Using this value of V(2, 2) we improve our estimate for
V(3, 2) as

V(3, 2) =[ V(2, 2)+ V(4, 2)+ V(3, 1)+ V(3, 3)]
=i[1.25+2+ 1+0] = 1.0625 (11)

Similarly for V(3, 3),

V(3, 3) = ¼[V(3, 2) + V(3, 4)+ V(2, 3) + V(4, 3)]

= ;[1.0625+3+0+2]= 1.5156 (12)
and V(2, 3)

V(2, 3) = 1[ V(2, 2) + V(2, 4) + V(1, 3) + V(3, 3)]

= l[1.25+3+4+1.5156]= 2.4414 (13)

We then continue and repeat the procedure for the four
interior points, always using the latest values of potential. As
the number of iterations increase, the interior potential
values approach the correct solutions. Table 4-2 shows the
first ten iterations and should be compared to the exact solu-
tion to four decimal places, obtained by superposition of the
rectangular harmonic solution in Section 4-2-5 (see problem
4-4):

G 4n . nrry nx
V(x,y)= I n sin -Vs sinh

. , nr sinh nsr d d
n odd

- V, sinh nr(x -d))

+smin - V2 sinh V4 sinh r(y -d) (14)
dd d I

where Vi, V2, Vs and V4 are the boundary potentials that for
this case are

V,= 1, V2= 2, Vs= 3, V4= 4 (15)

To four decimal places the numerical solutions remain
unchanged for further iterations past ten.

Table 4-2 Potential values for the four interior points in
Figure 4-15 obtained by successive relaxation for the first
ten iterations

0 1 2 3 4 5

V, 0 1.2500 2.1260 2.3777 2.4670 2.4911
V2 0 1.0625 1.6604 1.9133 1.9770 1.9935
Vs 0 1.5156 2.2755 2.4409 2.4829 2.4952
1V4 0 2.4414 2.8504 2.9546 2.9875 2.9966
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6 7 8 9 10 Exact

V 1 2.4975 2.4993 2.4998 2.4999 2.5000 2.5000
V2 1.9982 1.9995 1.9999 2.0000 2.0000 1.9771
V3 2.4987 2.4996 2.4999 2.5000 2.5000 2.5000
V 4 2.9991 2.9997 2.9999 3.0000 3.0000 3.0229

The results are surprisingly good considering the coarse
grid of only four interior points. This relaxation procedure
can be used for any values of boundary potentials, for any
number of interior grid points, and can be applied to other
boundary shapes. The more points used, the greater the
accuracy. The method is easily implemented as a computer
algorithm to do the repetitive operations.

PROBLEMS

Section 4.2
1. The hyperbolic electrode system of Section 4-2-2a only
extends over the range 0 x 5 xo, 0 - y - Yo and has a depth D.

(a) Neglecting fringing field effects what is the approxi-
mate capacitance?

(b) A small positive test charge q (image charge effects are
negligible) with mass m is released from rest from the surface
of the hyperbolic electrode at x = xo, y = ab/xo. What is the
velocity of the charge as a function of its position?

(c) What is the velocity of the charge when it hits the
opposite electrode?

2. A sheet of free surface charge at x = 0 has charge dis-
tribution

of = oO cos ay

f = oo cos ay

x

X

I
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(a) What are the potential and electric field distributions?
(b) What is the equation of the field lines?

3. Two sheets of opposite polarity with their potential dis-
tributions constrained are a distance d apart.

- Vo cos ayVo cos ay

Y

-* X

(a) What are the potential
everywhere?

(b) What are the surface
sheet?

and electric field distributions

charge distributions on each

4. A conducting rectangular box of width d and length I is of'
infinite extent in the z direction. The potential along the x = 0
edge is VI while all other surfaces are grounded (V2 = Vs3
V4= 0).

V2 I

(a) What are the potential and electric field distributions?
(b) The potential at y = 0 is now raised to Vs while the

surface at x = 0 remains at potential V1. The other two sur-
faces remain at zero potential (Vs = V4 = 0). What are the
potential and electric field distributions? (Hint: Use super-
position.)

(c) What is the potential distribution if each side is respec-
tively at nonzero potentials V1, V2, Vs, and V4?

. I
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5. A sheet with potential distribution

V = Vo sin ax cos bz

is placed parallel and between two parallel grounded
conductors a distance d apart. It is a distance s above the
lower plane.

V = Vo sin ax cos bz

(a) What are the potential and electric field distributions?
(Hint: You can write the potential distribution by inspection
using a spatially shifted hyperbolic function sinh c(y -d).)

(b) What is the surface charge distribution on each plane at
y=O,y=s,and y=d?

6. A uniformly distributed surface charge o-0 of width d and
of infinite extent in the z direction is placed at x = 0 perpen-
dicular to two parallel grounded planes of spacing d.

y

(a) What are the potential and electric field distributions?
(Hint: Write o0 as a Fourier series.)

(b) What is the induced surface charge distribution on each
plane?

(c) What is the total induced charge per unit length on
each plane? Hint:

n= n1 8
n odd

~I~I~

~0111~-~··n~

E

€isss-
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7. A slab of volume charge of thickness d with volume charge
density p = p0 sin ax is placed upon a conducting ground
plane.

(a) Find a particular solution to Poisson's equation. Are the
boundary conditions satisfied?

(b) If the solution to (a) does not satisfy all the boundary
conditions, add a Laplacian solution which does.

(c) What is the electric field distribution everywhere and
the surface charge distribution on the ground plane?

(d) What is the force per unit length on the volume charge
and on the ground plane for a section of width 2 r/a? Are
these forces equal?

(e) Repeat (a)-(c), if rather than free charge, the slab is a
permanently polarized medium with polarization

P= Po sin axi,

8. Consider the Cartesian coordinates (x, y) and define the
complex quantity

z = x +jy, =

where z is not to be confused with the Cartesian coordinate.
Any function of z also has real and imaginary parts

w(z) = u(x, y)+jv(x, y)

(a) Find u and v for the following functions:

(i) z
(ii) sin z

(iii) cos z
(iv) e'
(v) Inz

(b) Realizing that the partial derivatives of w are

aw dw az dw au .Ov
ax dz ax dz ax+ ax

aw dw az .dw au av

ay dz ay dz -y ay

show that u and v must be related as

au av au av

ax Oy' Oy ax
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These relations are known as the Cauchy-Riemann equations
and u and v are called conjugate functions.

(c) Show that both u and v obey Laplace's equation.
(d) Show that lines of constant u and v are perpendicular

to each other in the xy plane. (Hint: Are Vu and Vv perpen-
dicular vectors?)

Section 4.3
9. A half cylindrical shell of length I having inner radius a
and outer radius b is composed of two different lossy dielec-
tric materials (e 1,o-1) for 0 <4 <a and (e2, o02) for a < 6<,r.
A step voltage Vo is applied at t = 0. Neglect variations with z.

Depth I

b

+
Vo

(a) What are the potential and electric field distributions
within the shell at times t = 0, t = oo, and during the transient
interval? (Hint: Assume potentials of the form V(O)= A(t)o
+B(t) and neglect effects of the region outside the half
cylindrical shell.)

(b) What is the time dependence of the surface charge at

(c) What is the resistance and capacitance?

10. The potential on an infinitely long cylinder is constrained
to be

V(r = a) = Vo sin n6

-Vo/2

--Vo/2

(a) Find the potential and electric field everywhere.
(b) The potential is now changed so that it is constant on
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each half of the cylinder:

{Vo/2, O<d4 <r

-Vo/2, vr<0<27r
V(r = a. 6) =

Write this square wave of potential in a Fourier series.
(c) Use the results of (a) and (b) to find the potential and

electric field due to this square wave of potential.

11. A cylindrical dielectric shell of inner radius a and outer
radius b is placed in frte space within a uniform electric field
Eoi.. What are the potential and electric field distributions
everywhere?

t-"

t i= =Ea [i cos 0 - io sin 01

12. A permanently polarized cylinder P2ix of radius a is
placed within a polarized medium Pli, of infinite extent. A
uniform electric field Eoi. is applied at infinity. There is no
free charge on the cylinder. What are the potential and elec-
tric field distributions?

r
Pli,
p1'

306
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13. One type of electrostatic precipitator has a perfectly
conducting cylinder of radius a placed within a uniform
electric field Eoix. A uniform flux of positive ions with charge
q0 and number density no are injected at infinity and travel
along the field lines with mobility g. Those field lines that
approach the cylinder with E, < 0 deposit ions, which redis-
tribute themselves uniformly on the surface of the cylinder.
The self-field due to the injected charge is negligible
compared to E 0.

x

>-- y

t Uniform flux of ions with mobility
E ix M1,number density no , and charge qo

(a) If the uniformly distributed charge per unit length on
the cylinder is A(t), what is the field distribution? Where is
the electric field zero? This point is called a critical point
because ions flowing past one side of this point miss the
cylinder while those on the other side are collected. What
equation do the field lines obey? (Hint: To the field solution
of Section 4-3-2a, add the field due to a line charge A.)

(b) Over what range of angle 0, 0, < 0 <217r - -,,is there
a window (shaded region in figure) for charge collection as a
function of A(t)? (Hint: Er < 0 for charge collection.)

(c) What is the maximum amount of charge per unit
length that can be collected on the cylinder?

(d) What is the cylinder charging current per unit length?
(Hint: dI = -qonoEra doS)

(e) Over what range of y=y* at r=co,0,= r do the
injected ions impact on the cylinder as a function of A(t)?
What is this charging current per unit length? Compare to
(d).

14. The cylinder of Section 4-3,2 placed within a lossy
medium is allowed to reach the steady state.

(a) At t = 0 the imposed electric field at infinity is suddenly
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set to zero. What is the time dependence of the surface charge
distribution at r= a?

(b) Find the surface charge distribution if the field at
infinity is a sinusoidal function of time Eo cos wt.

15. A perfectly conducting cylindrical can of radius c open at
one end has its inside surface coated with a resistive layer.
The bottom at z = 0 and a perfectly conducting center post of
radius a are at zero potential, while a constant potential Vo is
imposed at the top of the can.

_V 0 +

rA-IIKIC

b ;
e o ""

0l Iiiii~i:i~~iii

0

0-.oo

(a) What are the potential and electric field distributions
within the structure (a<r<c,0< < 1)? (Hint: Try the zero
separation constant solutions n = 0, k = 0.)

(b) What is the surface charge distribution and the total
charge at r = a, r = b, and z = 0?

(c) What is the equation of the field lines in the free space
region?

16. An Ohmic conducting cylinder of radius a is surrounded
by a grounded perfectly conducting cylindrical can of radius b
open at one end. A voltage Vo is applied at the top of the
resistive cylinder. Neglect variations with o.

(a) What are the potential and electric field distributions
within the structure, 0<z< , 0<r<b? (Hint: Try the
zero separation constant solutions n = 0, k = 0 in each region.)

(b) What is the surface charge distribution and total charge
on the interface at r= a?

(c) What is the equation or the field lines in the free space
region?

I-

0-l

(Iroo

0-
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Vo

-1

-o

Section 4.4
17. A perfectly conducting hemisphere of radius R is placed
upon a ground plane of infinite extent. A uniform field Eoi, is
applied at infinity.

fEo i

(a) How much more charge is on the hemisphere than
would be on the plane over the area occupied by the hemi-
sphere.

(b) If the hemisphere has mass density p. and is in a
gravity field -gi,, how large must E 0 be to lift the hemi-
sphere? Hint:

sin 0 cos'"0 dO = C_ 0m+l
m+1

18. A sphere of radius R, permittivity e2, and Ohmic
conductivity ao is placed within a medium of permittivity e1
and conductivity or. A uniform electric field Eoi, is suddenly
turned on at t = 0.

(a) What are the necessary boundary and initial condi-
tions?

z

-0
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SEoiz

(b) What are the potential and electric field distributions as
a function of time?

(c) What is the surface charge at r = R?
(d) Repeat (b) and (c) if the applied field varies sinusoidally

with time as Eo cos wt and has been on a long time.

19. The surface charge distribution on a dielectric sphere
with permittivity e2 and radius R is

of = o-o( 3 Cos 2 0- 1)

The surrounding medium has permittivity eI. What are the
potential and electric field distributions? (Hint: Try the n =
2 solutions.)

20. A permanently polarized sphere P2iz of radius R is
placed within a polarized medium Pliz. A uniform electric
field Eoi0 is applied at infinity. There is no free charge at
r = R. What are the potential and electric field distributions?

S1E0 i,

21. A point dipole p=pi, is placed at the center of a dielec-
tric sphere that is surrounded by a different dielectric
medium. There is no free surface charge on the interface.

310
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What are the potential and electric field distributions? Hint:

p cos 0
STi -V 3 -0 ___

m111 , ,) - 4r 2-0 47TE2r

Section 4.5
22. The conducting box with sides of length d in Section
4-5-2 is filled with a uniform distribution of volume charge
with density

- 72e°
Po = [coul-m]- 3

What are the potentials at the four interior points when the
outside of the box is grounded?

23. Repeat the relaxation procedure of Section 4-5-2 if the
boundary potentials are:

V2 = -2 V2 = -2

V1 = 1

V=1 V3 =3 V3 -3

V4 = - 4 v=4

(a) (b)

(a) VI= 1, V 2 = -2, V3 = 3, V4 = -4

(b) V 1= 1, V2 = -2, Vs= -3, V4 = 4

(c) Compare to four decimal places with the exact solution.

(
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The ancient Chinese knew that the iron oxide magnetite
(Fe30 4 ) attracted small pieces of iron. The first application of
this effect was the navigation compass, which was not
developed until the thirteenth century. No major advances
were made again until the early nineteenth century when
precise experiments discovered the properties of the
magnetic field.

5-1 FORCES ON MOVING CHARGES

5-1-1 The Lorentz Force Law

It was well known that magnets exert forces on each other,
but in 1820 Oersted discovered that a magnet placed near a
current carrying wire will align itself perpendicular to the
wire. Each charge q in the wire, moving with velocity v in the
magnetic field B [teslas, (kg-s--A-')], felt the empirically
determined Lorentz force perpendicular to both v and B

f=q(vxB) (1)

as illustrated in Figure 5-1. A distribution of charge feels a
differential force df on each moving incremental charge
element dq:

df = dq(vx B) (2)

v

B

Figure 5-1 A charge moving through a magnetic field experiences the Lorentz force
perpendicular to both its motion and the magnetic field.
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Moving charges over a line, surface, or volume, respectively
constitute line, surface, and volume currents, as in Figure 5-2,
where (2) becomes

pfv x Bd V = J x B dV (J = Pfv, volume current density)

odfvxB dS=KxB dS

(K = ofv, surface current density) (3)

AfvxB dl =IxB dl (I=Afv, line current)

Idl= -ev

df=l dlx B
(a)

B

dS

KdS

di >

df = KdSx B
(b)

B

d V I

JdV

r

df =JdVx B
(c)

Figure 5-2 Moving line, surface, and volume charge distributions constitute currents.
(a) In metallic wires the net charge is zero since there are equal amounts of negative
and positive charges so that the Coulombic force is zero. Since the positive charge is
essentially stationary, only the moving electrons contribute to the line current in the
direction opposite to their motion. (b) Surface current. (c) Volume current.
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The total magnetic force on a current distribution is then
obtained by integrating (3) over the total volume, surface, or
contour containing the current. If there is a net charge with
its associated electric field E, the total force densities include
the Coulombic contribution:

f=q(E+vxB) Newton

FL=Af(E+vxB)=AfE+IXB N/m

Fs= ao(E+vx B)= oCE+Kx B N/m2

Fv=p(E+vxB)=pfE+JxB N/m S

In many cases the net charge in a system is very small so that
the Coulombic force is negligible. This is often true for
conduction in metal wires. A net current still flows because of
the difference in velocities of each charge carrier.

Unlike the electric field, the magnetic field cannot change
the kinetic energy of a moving charge as the force is perpen-
dicular to the velocity. It can alter the charge's trajectory but
not its velocity magnitude.

5-1-2 Charge Motions in a Uniform Magnetic Field

The three components of Newton's law for a charge q of
mass m moving through a uniform magnetic field Bi, are

dvx
m - = qv,B,

dv dv,m-=qvxB> m-= -qv.B. (5)
dt dt

dv,
m- = 0 v, = const

The velocity component along the magnetic field is
unaffected. Solving the first equation for v, and substituting
the result into the second equation gives us a single equation
in v.:

d v, 1 dv. qB,
, +oVo = 0, =--, 0o= (6)

where oo is called the Larmor angular velocity or the cyclo-
tron frequency (see Section 5-1-4). The solutions to (6) are

v. =A sin Oot +A 2 cos Oot
(7)1 dv.

v, A, cos alot-A 2 sin coot
oo dt
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where A and A 2 are found from initial conditions. If at t = 0,

v(t = 0) = voi,

then (7) and Figure 5-3a show that the particle travels in a
circle, with constant speed vo in the xy plane:

v = vo(cos woti, -sin woti,)

with radius

R = volwo

If the particle also has a velocity component along the
magnetic field in the z direction, the charge trajectory
becomes a helix, as shown in Figure 5-3b.

t = (2n + o

(2n + 1)

u00U UU
Ca0

Figure 5-3 (a) A positive charge q, initially moving perpendicular to a magnetic field,
feels an orthogonal force putting the charge into a circular motion about the magnetic
field where the Lorentz force is balanced by the centrifugal force. Note that the charge
travels in the direction (in this case clockwise) so that its self-field through the loop [see
Section 5-2-1] is opposite in direction to the applied field. (b) A velocity component in
the direction of the magnetic field is unaffected resulting in a helical trajectory.

2
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5-1-3 The Mass Spectrograph

The mass spectrograph uses the circular motion derived in
Section 5-1-2 to determine the masses of ions and to measure
the relative proportions of isotopes, as shown in Figure 5-4.
Charges enter between parallel plate electrodes with a y-
directed velocity distribution. To pick out those charges with
a particular magnitude of velocity, perpendicular electric and
magnetic fields are imposed so that the net force on a charge
is

f,= q(E + vB,) (11.)

For charges to pass through the narrow slit at the end of the
channel, they must not be deflected by the fields so that the
force in (11) is zero. For a selected velocity v, = vo this
requires a negatively x directed electric field

V
Ex.=-= -voBo (12)

S

which is adjusted by fixing the applied voltage V. Once the
charge passes through the slit, it no longer feels the electric
field and is only under the influence of the magnetic field. It
thus travels in a circle of radius

v 0 v o m
r= ... (13)
wo qBo

Photographic
plate

Figure 5-4 The mass spectrograph measures the mass of an ion by the radius of its
trajectory when moving perpendicular to a magnetic field. The crossed uniform
electric field selects the ion velocity that can pass through the slit.

I ·
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which is directly proportional to the mass of the ion. By
measuring the position of the charge when it hits the photo-
graphic plate, the mass of the ion can be calculated. Different
isotopes that have the same number of protons but different
amounts of neutrons will hit the plate at different positions.

For example, if the mass spectrograph has an applied
voltage of V= -100 V across a 1-cm gap (E. = -104 V/m) with
a magnetic field of 1 tesla, only ions with velocity

v,= -E/Bo = 104 m/sec (14)

will pass through. The three isotopes of magnesium, 12 Mg24
25 26

12Mg , 12Mg , each deficient of one electron, will hit the
photographic plate at respective positions:

2 x 10 4N(1.67 x 10- 2 7)
d=2r= 10' 2x 10-4 N

1.6x 10-'9(1)
0.48, 0.50, 0.52cm (15)

where N is the number of protons and neutrons (m = 1.67 x
10-27 kg) in the nucleus.

5-1-4 The Cyclotron

A cyclotron brings charged particles to very high speeds by
many small repeated accelerations. Basically it is composed of
a split hollow cylinder, as shown in Figure 5-5, where each
half is called a "dee" because their shape is similar to the

z

Figure 5-5 The cyclotron brings ions to high speed by many small repeated accelera-
tions by the electric field in the gap between dees. Within the dees the electric field is
negligible so that the ions move in increasingly larger circular orbits due to an applied
magnetic field perpendicular to their motion.
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fourth letter of the alphabet. The dees are put at a sinusoi-
dally varying potential difference. A uniform magnetic field
Boi, is applied along the axis of the cylinder. The electric field
is essentially zero within the cylindrical volume and assumed
uniform E,= v(t)/s in the small gap between dees. A charge
source at the center of D, emits a charge q of mass m with zero
velocity at the peak of the applied voltage at t = 0. The electric
field in the gap accelerates the charge towards D2 . Because the
gap is so small the voltage remains approximately constant at
Vo while the charge is traveling between dees so that its
displacement and velocity are

dv, q Vo qVo
dt s sm

(16)
dy qVot 2

v, = y -dt 2ms

The charge thus enters D 2 at time t = [2ms2/qVo]" /2 later with
velocity v, = -/2q Vo/m. Within D 2 the electric field is negligible
so that the charge travels in a circular orbit of radius r =
v,/oo = mv/IqBo due to the magnetic field alone. The
frequency of the voltage is adjusted to just equal the angular
velocity wo = qBo/m of the charge, so that when the charge
re-enters the gap between dees the polarity has reversed
accelerating- the charge towards D1 with increased
velocity. This process is continually repeated, since every time
the charge enters the gap the voltage polarity accelerates the
charge towards the opposite dee, resulting in a larger radius
of travel. Each time the charge crosses the gap its velocity is
increased by the same amount so that after n gap traversals its
velocity and orbit radius are

(2qnVo) ' ,  v, /2nmVo1 v2

v. = ,--n R. = -= (2m Vo) 1/2 (17)
m - wo qBo

If the outer radius of the dees is R, the maximum speed of
the charge

vmax = WoR = qBR (18)
m

is reached after 2n = qB R 2/mVo round trips when R, = R.
For a hydrogen ion (q = 1.6x 10-19 coul, m = 1.67 10- 27 kg),
within a magnetic field of 1 tesla (o 0 = 9.6 X 107 radian/sec)
and peak voltage of 100 volts with a cyclotron radius of one
meter, we reach vma,,, 9 .6 x 107 m/s (which is about 30% of
the speed of light) in about 2n - 9.6 x 105 round-trips, which
takes a time = 4nir/wo, 27r/100-0.06 sec. To reach this

I_· __
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speed with an electrostatic accelerator would require
2

mvy=qV•4 V=mvmaxm 4 8 x 106 Volts (19)
2q

The cyclotron works at much lower voltages because the
angular velocity of the ions remains constant for fixed qBo/m
and thus arrives at the gap in phase with the peak of the
applied voltage so that it is sequentially accelerated towards
the opposite dee. It is not used with electrons because their
small mass allows them to reach relativistic velocities close to
the speed of light, which then greatly increases their mass,
decreasing their angular velocity too, putting them out of
phase with the voltage.

5-1-5 Hall Effect

When charges flow perpendicular to a magnetic field, the
transverse displacement due to the Lorentz force can give rise
to an electric field. The geometry in Figure 5-6 has a uniform
magnetic field Boi, applied to a material carrying a current in
the y direction. For positive charges as for holes in a p-type
semiconductor, the charge velocity is also in the positive y
direction, while for negative charges as occur in metals or in
n-type semiconductors, the charge velocity is in the negative y
direction. In the steady state where the charge velocity does
not vary with time, the net force on the charges must be zero,

Boi,

= vyBod

Figure 5-6 A magnetic field perpendicular to a current flow deflects the charges
transversely giving rise to an electric field and the Hall voltage. The polarity of the
voltage is the same as the sign of the charge carriers.

týý
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which requires the presence of an x-directed electric field

E+vx B = 0=>Ex = -v,Bo (20)

A transverse potential difference then develops across the
material called the Hall voltage:

V=- Exdx = vBod (21)

The Hall voltage has its polarity given by the sign of v,;
positive voltage for positive charge carriers and negative
voltage for negative charges. This measurement provides an
easy way to determine the sign of the predominant charge
carrier for conduction.

5-2 MAGNETIC FIELD DUE TO CURRENTS

Once it was demonstrated that electric currents exert forces
on magnets, Ampere immediately showed that electric cur-
rents also exert forces on each other and that a magnet could
be replaced by an equivalent current with the same result.
Now magnetic fields could be turned on and off at will with
their strength easily controlled.

5-2-1 The Biot-Savart Law

Biot and Savart quantified Ampere's measurements by
showing that the magnetic field B at a distance r from a
moving charge is

B oqv x i,
B= -r 2 teslas (kg-s- 2-A - 1) (1)

as in Figure 5-7a, where go is a constant called the permeabil-
ity of free space and in SI units is defined as having the exact
numerical value

0-= 47 x 10 - 7 henry/m (kg-m-A -2-s - 2) (2)

The 47" is introduced in (1) for the same reason it was intro-
duced in Coulomb's law in Section 2-2-1. It will cancel out a
4,r contribution in frequently used laws that we will soon
derive from (1). As for Coulomb's law, the magnetic field
drops off inversely as the square of the distance, but its direc-
tion is now perpendicular both to the direction of charge flow
and to the line joining the charge to the field point.

In the experiments of Ampere and those of Biot and
Savart, the charge flow was constrained as a line current
within a wire. If the charge is distributed over a line with

____
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'QP
Idl

B

K dS

B

Figure 5-7 The magnetic field generated by a current is perpendicular to the current
and the unit vector joining the current element to the field point; (a)point charge; (b)
line current; (c) surface current; (d) volume current.

current I, or a surface with current per unit length K, or over
a volume with current per unit area J, we use the differential-
sized current elements, as in Figures 5-7b-5-7d:

I dl (line current)

dq v= K dS (surface current)

J dV (volume current)

The total magnetic field for a current distribution is then
obtained by integrating the contributions from all the incre-
mental elements:

_o I dl x iQp4o Jrdl X (line current)

Co K dS xiQP
42 prJs- p (surface current)
4o JdVxiQP
Ao Jv-dip (volume current)

.4·nv T2

-
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The direction of the magnetic field due to a current element
is found by the right-hand rule, where if the forefinger of the
right hand points in the direction of current and the middle
finger in the direction of the field point, then the thumb
points in the direction of the magnetic field. This magnetic
field B can then exert a force on other currents, as given in
Section 5-1-1.

5-2-2 Line Currents

A constant current I, flows in the z direction along a wire of
infinite extent, as in Figure 5-8a. Equivalently, the right-hand
rule allows us to put our thumb in the direction of current.
Then the fingers on the right hand curl in the direction of B,
as shown in Figure 5-8a. The unit vector in the direction of
the line joining an incremental current element I, dz at z to a
field point P is

r %
iQp = i,. cos 0 -i sin 0 = i,---i -

rQp rQp

[z
2

+ r2]
1 / 2

B •2ra

2o11ra
r 2ira

a -a -

Figure 5-8 (a) The magnetic field due to an infinitely long z-directed line current is
in the 0 direction. (b) Two parallel line currents attract each other if flowing in the
same direction and repel if oppositely directed.

^ I
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with distance
rQp = (6)
rgp=(Z+r2+r)

The magnetic field due to this current element is given by (4)
as

dB• I1dz(i X iQp) - oIlrdz
dB = (22 + r2"

4r rQp 4r(z + r) (7)

The total magnetic field from the line current is obtained by
integrating the contributions from all elements:

oIr f + dz
B,6- -z2 2 3/2B- 4=r .1-o (z +r2) s

4olr z +

- (Z2 2 1/2
47r r(z +r) 1+00

_ o'01 (8)
2irr

If a second line current 12 of finite length L is placed at a
distance a and parallel to I, as in Figure 5-8b, the force on 12
due to the magnetic field of I, is

+L/2

f= 12 dz i, x B

+L/2

= Is dz (i Xis)
-L/2 2ra

olI12L .

2ira ir 
(9)

If both currents flow in the same direction (1112>0), the
force is attractive, while if they flow in opposite directions
(I1112<0), the force is repulsive. This is opposite in sense to
the Coulombic force where opposite charges attract and like
charges repel.

5-2-3 CurrentSheets

(a) Single Sheet of Surface Current
A constant current Koi, flows in the y =0 plane, as in

Figure 5-9a. We break the sheet into incremental line cur-
rents Ko dx, each of which gives rise to a magnetic field as
given by (8). From Table 1-2, the unit vector i s is equivalent
to the Cartesian components

i s = -sin Oi, +cos 4i, (10)
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dB2

(a)

dBx =

doo dy'
2

- y ,MJo.

Figure 5-9 (a) A uniform surface current of infinite extent generates a uniform
magnetic field oppositely directed on each side of the sheet. The magnetic field is
perpendicular to the surface current but parallel to the plane of the sheet. (b) The
magnetic field due to a slab of volume current is found by superimposing the fields
due to incremental surface currents. (c) Two parallel but oppositely directed surface
current sheets have fields that add in the region between the sheets but cancel outside
the sheet. (d) The force on a current sheet is due to the average field on each side of
the sheet as found by modeling the sheet as a uniform volume current distributed over
an infinitesimal thickness A.

· _·____
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K1 = Koi ,

B1

'K 2 = -Kio

I.2

gB2 I. "BoK,
B=B 1 +B 2

327

lim oA = Ko
Jo '
A'0O

- d)

Figure 5-9

The symmetrically located line charge elements a distance x
on either side of a point P have y magnetic field components
that cancel but x components that add. The total magnetic
field is then

-x +0o0 oKo sin iod

- ,LoKoy +o dx
2w . (x +y )

- loKo -I x +O= tan

- poKo/2,. y > 0
=PoKo/2, y<0

The field is constant and oppositely directed
the sheet.

on each side of

(b) Slab of Volume Current
If the z-directed current Joi, is uniform over a thickness d,

as in Figure 5-9b, we break the slab into incremental current
sheets Jo dy'. The magnetic field from each current sheet is
given by (11). When adding the contributions of all the

(11)

f
k
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differential-sized sheets, those to the left of a field point give a
negatively x directed magnetic field while those to the right
contribute a positively x-directed field:

-+/2 _ tojody' - LoJod d

a/2 2 2 ' 2

+d/2 Loo dy' ptoJod d
Bx = I, y< -- (12)

' - A olo dy'y'f d2 A JO d p A d d

d-2  2 2 2 2

The total force per unit area on the slab is zero:
+d/2 +d/2

Fs, = JoBxdy = - J y dy
-d/2 d/2

2,+d/2

= - •f • =0 (13)
2 -d/2

A current distribution cannot exert a net force on itself.

(c) Two Parallel Current Sheets
If a second current sheet with current flowing in the

opposite direction - Koi. is placed at y = d parallel to a cur-
rent sheet Koi, at y = 0, as in Figure 5-9c, the magnetic field
due to each sheet alone is

-_oKo. /oKo
2 2

Bj = B2 = (14)

|oKo. -LoKo.1 i 2 , y< 0 2 , y<d
2 2

Thus in the region outside the sheets, the fields cancel while
they add in the region between:

B -B 0Koix, 0<y<d (15)

B=B B2 0, y<0,y>d

The force on a surface current element on the second sheet
is

df = -Koi dSxB (16)

However, since the magnetic field is discontinuous at the
current sheet, it is not clear which value of magnetic field to
use. Tp take the limit properly, we model the current sheet at
y = d as a thin volume current with density Jo and thickness A,
as in Figure 5-9d, where Ko = Jo&.

_I
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The results of (12) show that in a slab of uniform volume
current, the magnetic field changes linearly to its values at the
surfaces

B.(y = d -A) = -jsoKo
(17)

B.(y = d)= 0

so that the magnetic field within the slab is

B. = A (y-d) (18)

The force per unit area on the slab is then

Fs A K o(y - d)i, dy

- poKoo (y -d). d
A 2 Id-A

2 2jLoKoJoA. AoKo0.2 ., 2 . (19)
The force acts to separate the sheets because the currents are

in opposite directions and thus repel one another.
Just as we found for the electric field on either side of a

sheet of surface charge in Section 3-9-1, when the magnetic
field is discontinuous on either side of a current sheet K,
being B, on one side and B2 on the other, the average
magnetic field is used to compute the force on the sheet:

(B1 + B2 )df= K dS x (20)
2

In our case

B = --LoKoi., B2 = 0 (21)

5-2-4 Hoops of Line Current

(a) Single hoop
A circular hoop of radius a centered about the origin in the

xy plane carries a constant current I, as in Figure 5-10a. The
distance from any point on the hoop to a point at z along the z
axis is

rQp=( 2 + a)1/ (22)

in the direction

(-aiL+zi.)
(-i+z.

1(2P= 2 2 1/2
(z +a )

tzta)
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2B,a

Helmholtz coil
with d=a

-2 -1 0 1 \2 3

Highly uniform magnetic
field in central region
amrnnd 2 = d

d

2

(b) (C)

Figure 5-10 (a) The magnetic field due to a circular current loop is z directed along
the axis of the hoop. (b) A Helmholtz coil, formed by two such hoops at a distance
apart d equal to their radius, has an essentially uniform field near the center at z = d/2.
(c) The magnetic field on the axis of a cylinder with a 5-directed surface current is
found by integrating the fields due to incremental current loops.

so that the incremental magnetic field due to a current ele-
ment of differential size is

dB= - I- la dib xi Xi

Clola d4
4•z 2 a) (ai2 + zir) (24)
47r(z +a )

The radial unit vector changes direction as a function of 4,
being oppositely directed at -0, so that the total magnetic
field due to the whole hoop is purely z directed:

SAola
2  21

•

B=41r(z2+a2)3/i2 dd

Aola
2

2(z2 +a 2)S 7 (25)

The direction of the magnetic field can be checked using
the right-hand rule. Curling the fingers on the right hand in
the direction of.the current puts the thumb in the direction of

_·___

2

(b) 
(c)
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the magnetic field. Note that the magnetic field along the z axis
is positively z directed both above and below the hoop.

(b) Two Hoops (Helmholtz Coil)
Often it is desired to have an accessible region in space with

an essentially uniform magnetic field. This can be arnanged
by placing another coil at z = d, as in Figure 5-10b. Then the
total magnetic field along the z axis is found by superposing
the field of (25) for each hoop:

B 0 a2 (26)
= 2 (z +a2) s 2+ ((z - d)2 +a2)l2 (26)

We see then that the slope of B,,

aB, 3t1ola2 - z (z -d)
az 2 (z2+ a )5 2 ((z -d)+a 2)5 (27)

is zero at z = d/2. The second derivative,

a2B, 3olaa2 ( 5z 2 1
z2 2 (Z+22 2 7/ 2 +2)5/2

5(z - d) 1 (28)
((z - d) +a )7/2 ((z - d)2 +a2)5/28)

can also be set to zero at z = d/2, if d = a, giving a highly
uniform field around the center of the system, as plotted in
Figure 5-10b. Such a configuration is called a Helmholtz coil.

(c) Hollow Cylinder of Surface Current
A hollow cylinder of length L and radius a has a uniform

surface current K0io as in Figure 5-10c. Such a configuration
is arranged in practice by tightly winding N turns of a wire
around a cylinder and imposing a current I through the wire.
Then the current per unit length is

Ko = NIIL (29)

The magnetic field along the z axis at the position z due to
each incremental hoop at z' is found from (25) by replacing z
by (z -z') and I by Ko dz':

ann2 Kn dz'
dB. = 'f2 2 /n., r 2 /2.1

z[(z - z ) J
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The total axial magnetic field is then

B UL f oa2Ko dz'

B J2'=-.-u 2 [(z-z' )+a9] s/"

IMOa 2 Ko (z'-z) P+L2
2 2 a _[(z -z +aL 2II ,'--u2

itoKo -z + L/2 z + L/2

2 [(z - L/2)+ a2 ] 2 [(z +L/2)2 +a•2  (31)

As the cylinder becomes very long, the magnetic field far
from the ends becomes approximately constant

lim B, = ,&oKo (32)

5-3 DIVERGENCE AND CURL OF THE MAGNETIC FIELD

Because of our success in examining various vector opera-
tions on the electric field, it is worthwhile to perform similar
operations on the magnetic field. We will need to use the
following vector identities from Section 1-5-4, Problem 1-24
and Sections 2-4-1 and 2-4-2:

V.(VxA)=O (1)

Vx(Vf)=O (2)

V() 1= iQP
QP -Q (3)Q

V0-(r dV= f, rQP,= 0 (4)

V (AxB)=B. (VxA)-A. VxB (5)

Vx (Ax B) =(B .V)A - (A V)B + (V. B)A - (V - A)B (6)

V(A* B) = (A- V)B + (B *V)A + Ax (V x B)+ B x (V x A)
(7)

5-3-1 Gauss's Law for the Magnetic Field

Using (3) the magnetic field due to a volume distribution of
current J is rewritten as

B=Eo JiQp
4w t r Qp

4,r Jv- \rQp/

· ___~_I·_

IJxV -- dV
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If we take the divergence of the magnetic field with respect to
field coordinates, the del operator can be brought inside the
integral as the integral is only over the source coordinates:

4 v.Jxv( 1 dV (9)
v rQp/

The integrand can be expanded using (5)

V.r (Jx ) =v(-,) .(VXJ)-J.-Vx [V(- =0
0

0 (10)

The first term on the right-hand side in (10) is zero because J
is not a function of field coordinates, while the second term is
zero from (2), the curl of the gradient is always zero. Then (9)
reduces to

V*B=0 (11)

This contrasts with Gauss's law for the displacement field
where the right-hand side is equal to the electric charge
density. Since nobody has yet discovered any net magnetic
charge, there is no source term on the right-hand side of (11).

The divergence theorem gives us the equivalent integral
representation

tV-BdV=s BdS=0 (12)

which tells us that the net magnetic flux through a closed
surface is always zero. As much flux enters a surface as leaves
it. Since there are no magnetic charges to terminate the
magnetic field, the field lines are always closed.

5-3-2 Ampere's Circuital Law

We similarly take the curl of (8) to obtain

VxB=- F Vxr JxV( •dV (13)
4r f v L \trQ,

where again the del operator can be brought inside the
integral and only operates on rQp.

We expand the integrand using (6):

Vx JxV ) [ 1 -(JV)V
QQP rQP)

0

+V( 1 ]J-(V Vj)V( (14)L rQp/J • Xrp
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where two terms on the right-hand side are zero because J is
not a function of the field coordinates. Using the identity of
(7),

*v (I)] =V([v(-L) .] V)V(I)

+ i1 x o )+J [xVx i (15)
0 -

0

the second term on the right-hand side of (14) can be related
to a pure gradient of a quantity because the first and third
terms on the right of (15) are zero since J is not a function of
field coordinates. The last term in (15) is zero because the curl
of a gradient is always zero. Using (14) and (15), (13) can be
rewritten as

VxB =- IJV[V (- )-JV2 1- dV (16)
4 1rv rQp rQpI

Using the gradient theorem, a corollary to the divergence
theorem, (see Problem 1-15a), the first volume integral is
converted to a surface integral

4VxBro •fv IdS- JV r- dV] (17)4r s rq v rQ

This surface completely surrounds the current distribution so
that S is outside in a zero current region where J= 0 so that
the surface integral is zero. The remaining volume integral is
nonzero only when rQp = 0, so that using (4) we finally obtain

VxB = goJ (18)

which is known as Ampere's law.
Stokes' theorem applied to (18) results in Ampere's circuital

law:

Sx--. dS= --Bdl= J-dS (19)
sPo o s

Like Gauss's law, choosing the right contour based on sym-
metry arguments often allows easy solutions for B.

If we take the divergence of both sides of (18), the left-hand
side is zero because the divergence of the curl of a vector is
always zero. This requires that magnetic field systems have
divergence-free currents so that charge cannot accumulate.
Currents must always flow in closed loops.
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5-3-3 Currents With Cylindrical Symmetry

(a) Surface Current
A surface current Koi, flows on the surface of an infinitely

long hollow cylinder of radius a. Consider the two sym-
metrically located line charge elements dI = Ko ado and their
effective fields at a point P in Figure 5-1 la. The magnetic
field due to both current elements cancel in the radial direc-
tion but add in the 4 direction. The total magnetic field can
be found by doing a difficult integration over 4. However,

dB =dB1 + dB2

-2ar cos 011I2

'P A fraction of the current

K = Ko i,

2 B 0

f B rdO=
0 P0 27rKoa

r <a 2n B r r<a
f B rd= r

r>a o Po Jira r>a

(a) (b) (c)

Figure 5-11 (a) The magnetic field of an infinitely long cylinder carrying a surface
current parallel to its axis can be found using the Biot-Savart law for each incremental
line current element. Symmetrically located elements have radial field components
that cancel but 4 field components that add. (b) Now that we know that the field is
purely 4 directed, it is easier to use Ampere's circuital law for a circular contour
concentric with the cylinder. For r<a no current passes through the contour while for
r>a all the current passes through the contour. (c) If the current is uniformly
distributed over the cylinder the smaller contour now encloses a fraction of the
current.

O)i, +a sin 0i,
r^
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using Ampere's circuital law of (19) is much easier. Since we
know the magnetic field is 4 directed and by symmetry can
only depend on r and not 4 or z, we pick a circular contour of
constant radius r as in Figure 5-11 b. Since dl= r d4 i# is in the
same direction as B, the dot product between the magnetic
field and dl becomes a pure multiplication. For r <a no cur-
rent passes through the surface enclosed by the contour,
while for r> a all the current is purely perpendicular to the
normal to the surface of the contour:

B dlf"B, 2vrrB_ Ko21ra=I, r>a

o .o o = o O, r<a
(20)

where I is the total current on the cylinder.
The magnetic field is thus

I ,.oKoa/r = CoI/(2¢rr), r > a

0, ra (21)

Outside the cylinder, the magnetic field is the same as if all
the current was concentrated along the axis as a line current.

(b) Volume Current
If the cylinder has the current uniformly distributed over

the volume as Joiý, the contour surrounding the whole cylin-
der still has the total current 1 = Joira2 passing through it. If
the contour has a radius smaller than that of the cylinder,
only the fraction of current proportional to the enclosed area
passes through the surface as shown in Figure 5-1 1c:

B rd2rB_ fJowra= I, r>a
Sr , d = (22)

LMO gLo Jowr =1Ir/Ia, r<a

so that the magnetic field is

oJoa_2 'ol[ 1 - r  r>a
2r 2rr'

B = (23)
, oJor olr (23)

2 -2 r<a

5-4 THE VECTOR POTENTIAL

5-4-1 Uniqueness

Since the divergence of the magnetic field is zero, we may
write the magnetic field as the curl of a vector,

V-B =04B=VxA

· __ _~_··_
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where A is called the vector potential, as the divergence of the
curl of any vector is always zero. Often it is easier to calculate
A and then obtain the magnetic field from (1).

From Ampere's law, the vector potential is related to the
current density as

V x B = Vx (V x A) = V(V- A) - V2A =,o0J (2)

We see that (1) does not uniquely define A, as we can add
the gradient of any term to A and not change the value of the
magnetic field, since the curl of the gradient of any function is
always zero:

A-*A+Vf:->B = V x (A+Vf) = V x A (3)

Helmholtz's theorem states that to uniquely specify a
vector, both its curl and divergence must be specified and that
far from the sources, the fields must approach zero. To prove
this theorem, let's say that we are given, the curl and diver-
gence of A and we are to determine what A is. Is there any
other vector C, different from A that has the same curl and
divergence? We try C of the form

C=A+a (4)

and we will prove that a is zero.
By definition, the curl of C must equal the curl of A so that

the curl of a must be zero:

V x C = Vx(A+a)= VxA V x a= 0 (5)

This requires that a be derivable from the gradient of a scalar
function f:

Vxa= 0=a=Vf (6)

Similarly, the divergence condition requires that the diver-
gence of a be zero,

V *C=V -(A+a)=V. A:V-a=0 (7)

so that the Laplacian of f must be zero,

V-a=V 2f=0 (8)

In Chapter 2 we obtained a similar equation and solution for
the electric potential that goes to zero far from the charge
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distribution:

V2V = __ > V=I pdV (9)Jv 47rerQp

If we equate f to V, then p must be zero giving us that the
scalar function f is also zero. That is, the solution to Laplace's
equation of (8) for zero sources everywhere is zero, even
though Laplace's equation in a region does have nonzero
solutions if there are sources in other regions of space. With f
zero, from (6) we have that the vector a is also zero and then
C = A, thereby proving Helmholtz's theorem.

5-4-2 The Vector Potential of a Current Distribution

Since we are free to specify the divergence of the vector
potential, we take the simplest case and set it to zero:

V A= 0 (10)

Then (2) reduces to

V2A = - oJ (11)

Each vector component of (11) is just Poisson's equation so
that the solution is also analogous to (9)

A=- Jd (12)
4ir Jv rQp

The vector potential is often easier to use since it is in the
same direction as the current, and we can avoid the often
complicated cross product in the Biot-Savart law. For moving
point charges, as well as for surface and line currents, we use
(12) with the appropriate current elements:

JdV-+KdS-I dL-~qv (13)

5-4-3 The Vector Potential and Magnetic Flux

Using Stokes' theorem, the magnetic flux through a surface
can be expressed in terms of a line integral of the vector
potential:

C C C
SD= BdS= VxAdS=V Adl

Js ~s 4

_ 1--11_.1·---



The Vector Potential 339

(a) Finite Length Line Current
The problem of a line current I of length L, as in Figure

5-12a appears to be nonphysical as the current must be
continuous. However, we can imagine this line current to be
part of a closed loop and we calculate the vector potential and
magnetic field from this part of the loop.

The distance rQp from the current element Idz' to the field
point at coordinate (r, 0, z) is

rQP = [(Z -_ Z')2 + r
]

1/2

The vector potential is then

oL1IL1/2 dz'

4A7= -- L./2 [(z - z')
2 + r2]1/2

Lol -z + L/2 + [(z - L/2) 2 + r2 ]"1/2

4I -(z + L/2)+ [(z + L/2)
2 + r2 ] 1/ 2

I _(sinh- z + L/2 sin z + L/2

4ir r r

P(r, 0, z)

Figure 5-12 (a) The magnetic field due to a finite length line current is most easily
found using the vector potential, which is in the direction of the current. This problem
is physical only if the line current is considered to be part of a closed loop. (b) The
magnetic field from a length w of surface current is found by superposing the vector
potential of (a) with L c-o. The field lines are lines of constant A&. (c) The magnetic
flux through a square current loop is in the -x direction by the right-hand rule.
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x +
2

Magnetic field lines (lines of constant A,)

+x) In [(x +-) 2 
+Y2]

2 = Const
-If]I'

A dl

y

D

(c)

Figure 5-12
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with associated magnetic field

B=VxA

(1 aA, A aAA. 1I a aAr
" i,+ (=- +- (- (rA ,) 1

r 8 8z \z rrr ,r 4a

Az .
ar

-golr 1
4

,7T [(z - L/2)2 + r 2] 1/2 z + L/2 + [(z - L/2)2 + r2] /2

1 )\
[(z + L/2)2 + r 2 ]1/2{_ (z + L/2)+ [(z + L/2)2 + r2 ] 1/2)

oI -z + L/2 z+ L/2L/2 (17)
-z+ 2 (17)
47rr \[r2+( z - L/2) ]1/2 [r2+(z + L/2)2]1/2

For large L, (17) approaches the field of an infinitely long
line current as given in Section 5-2-2:

A, - Inr+ const
27T

lim (18)
L•[ aA, tAoI

ar 2rrr

Note that the vector potential constant in (18) is infinite, but
this is unimportant as this constant has no contribution to the
magnetic field.

(b) Finite Width Surface Current
If a surface current Koi,, of width w, is formed by laying

together many line current elements, as in Figure 5-12b, the
vector potential at (x, y) from the line current element Ko dx' at
position x' is given by (18):

dA, -oKo In [(x -X')
2 

+ y2 ] (19)-47r

The total vector potential is found by integrating over all
elements:
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0,oKo +w/2
Az -- oK •w/2 In [(x-x')2 + 2]dx'

- /oKo((x'- x) In [(x - x')•2 2(x'- x)
41T

+w/2

41r 2
4r 12)[ -

S +x Inx+ 2

-2w +2y tan' 2 + W(20)*

The magnetic field is then

. iA, .AA2
ay axB =I - - 2-

-OKO -y .xn (x + w/2) +y .

4- (2tan y+x-w2 /4 (x-w/2) + y'
(21)

The vector potential in two-dimensional geometries is also
useful in plotting field lines,

dy = B, -aAdx (22)
dx B. MAJay

for if we cross multiply (22),

A dx + dy=dA=O 0A=const (23)

ax ay

we see that it is constant on a field line. The field lines in
Figure 5-12b are just lines of constant A,. The vector poten-
tial thus plays the same role as the electric stream function in
Sections 4.3.2b and 4.4.3b.

(c) Flux Through a Square Loop
The vector potential for the square loop in Figure 5-12c with

very small radius a is found by superposing (16) for each side
with each component of A in the same direction as the current
in each leg. The resulting magnetic field is then given by four

2t a
*tan-`(a - b)+ tan

- '(a+ b)= tan - 10l
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terms like that in (17) so that the flux can be directly computed
by integrating the normal component of B over the loop area.
This method is straightforward but the algebra is cumber-
some.

An easier method is to use (14) since we already know the
vector potential along each leg. We pick a contour that runs
along the inside wire boundary at small radius a. Since each
leg is identical, we only have to integrate over one leg, then
multiply the result by 4:

a+D/2

4= 4 A,dz
za-D/2

,0ol -a+D/2 . -z+ D/2 z+ D/2
I (sinh- - + sinh - dz

•T a-D/2 a a

golI D - -z +D/2 D_
2 -211/2- +tI--z)sinh + -- +

V H 2 a [(2

D +z+D/2 D 2 1/2 -a+D/2

,(2a L[2 a-D/2

=2 t_ -a sinh 1+ao,+(D-a)sinh- 0-a

- [(D - a) 2 + a2] 1/2) (24)

As a becomes very small, (24) reduces to

lim = 2 D sinh- ) (25)
a-+0 7

We see that the flux through the loop is proportional to the
current. This proportionality constant is called the self-
inductance and is only a function of the geometry:

L = = 2 - sinh -1 (26)

Inductance is more fully developed in Chapter 6.

5-5 MAGNETIZATION

Our development thus far has been restricted to magnetic
fields in free space arising from imposed current dis-
tributions. Just as small charge displacements in dielectric
materials contributed to the electric field, atomic motions
constitute microscopic currents, which also contribute to the
magnetic field. There is a direct analogy between polarization
and magnetization, so our development will parallel that of
Section 3-1.
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5-5-1 The Magnetic Dipole

Classical atomic models describe an atom as orbiting elec-
trons about a positively charged nucleus, as in Figure 5-13.

Figure 5-13 Atomic currents arise from orbiting electrons in addition to the spin
contributions from the electron and nucleus.

The nucleus and electron can also be imagined to be spin-
ning. The simplest model for these atomic currents is analo-
gous to the electric dipole and consists of a small current loop
of area dS carrying a current I, as in Figure 5-14. Because
atomic dimensions are so small, we are only interested in the
magnetic field far from this magnetic dipole. Then the shape
of the loop is not important, thus for simplicity we take it to be
rectangular.

The vector potential for this loop is then

A = dx· [ idyI 1 (1)4er \rs r3 r4 r)

where we assume that the distance from any point on each
side of the loop to the field point P is approximately constant.

m = IdS

sx2

Figure 5-14 A magnetic dipole consists of a small circulating current loop. The
magnetic moment is in the direction normal to the loop by the right-hand rule.

·_ ___
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Using the law of cosines, these distances are related as

r2= r2+ 2- rdycosx,; r = rr dx cos 2

2 (2)

r3 =r + )+rdycosx1, r 4 =r+ +rdx cos X2

where the angles X, and X2 are related to the spherical coor-
dinates from Table 1-2 as

i, i, = cos X = sin 0 sin (3)

- i, ° i x = COS X2 = - sin 0 cos k

In the far field limit (1) becomes

lim A= I [dx
r>dx 4r r dy dy 1/2

1
I+ dy dy -2 , 1/2

,+ 
21co-2 c

1 
1 /2)

dyi 1

2r 2r

dx/dx 1/2
1 dx(dx--2cOSX2)]

2r 2r

41rr2 ddy [cos X li + cos X2 i,] (4)

Using (3), (4) further reduces to

MoldS
A 47,Tr sin0[ - sin ix + cos 0i,]

_ oldS
=4;r

2 sin 9Oi , (5)4-r

where we again used Table 1-2 to write the bracketed
Cartesian unit vector term as is. The magnetic dipole
moment m is defined as the vector in the direction perpen-
dicular to the loop (in this case i,) by the right-hand rule with
magnitude equal to the product of the current and loop area:

m= IdS i = IdS
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Then the vector potential can be more generally written as

A Iom sin = I xi, (7)4•r •  4rr2

with associated magnetic field

1 a 1a
B=VxA= (A6 sin 0)i, (rAs)ier sin 0 ae r ar

p.om
= s [2 cos Oi,+ sin 0io] (8)

This field is identical in form to the electric dipole field of
Section 3-1-1 if we replace PIeo by tom.

5-5-2 Magnetization Currents

Ampere modeled magnetic materials as having the volume
filled with such infinitesimal circulating current loops with
number density N, as illustrated in Figure 5-15. The
magnetization vector M is then defined as the magnetic dipole
density:

M = Nm= NI dS amp/m (9)

For the differential sized contour in the xy plane shown in
Figure 5-15, only those dipoles with moments in the x or y
directions (thus z components of currents) will give rise to
currents crossing perpendicularly through the surface
bounded by the contour. Those dipoles completely within the
contour give no net current as the current passes through the
contour twice, once in the positive z direction and on its
return in the negative z direction. Only those dipoles on
either side of the edges-so that the current only passes
through the contour once, with the return outside the
contour-give a net current through the loop.

Because the length of the contour sides Ax and Ay are of
differential size, we assume that the dipoles along each edge
do not change magnitude or direction. Then the net total
current linked by the contour near each side is equal to the
pioduct of the current per dipole I and the humber of
dipoles that just pass through the contour once. If the normal
vector to the dipole loop (in the direction of m) makes an
angle 0 with respect to the direction of the contour side at
position x, the net current linked along the line at x is

-INdS Ay cos 0I, = -M,(x) Ay (10)

The minus sign arises because the current within the contour
adjacent to the line at coordinate x flows in the -z direction.

~· _ 7I
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Figure 5-15 Many such magnetic dipoles within a material linking a closed contour
gives rise to an effective magnetization current that is also a source of the magnetic
field.

Similarly, near the edge at coordinate x +Ax, the net current
linked perpendicular to the contour is

INdSAy cos l.+a = M,(x +Ax) Ay

-- aY 30

J

(11)

i .1
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Along the edges at y and y + Ay, the current contributions are

INdS Ax cos 01,= M,(y) Ax

-INdS Ax cos 0•,,A, = -Mx(y +Ay) Ax (12)

The total current in the z direction linked by this contour is
thus the sum of contributions in (10)-(12):

IZot= Ax Ay (M,(x +x) M(x) Mx(y +Ay)- M(y)
Ax A•y

(13)

If the magnetization is uniform, the net total current is zero
as the current passing through the loop at one side is canceled
by the current flowing in the opposite direction at the other
side. Only if the magnetization changes with position can
there be a net current through the loop's surface. This can be
accomplished if either the current per dipole, area per dipole,
density of dipoles, of angle of orientation of the dipoles is a
function of position.

In the limit as Ax and Ay become small, terms on the
right-hand side in (13) define partial derivatives so that the
current per unit area in the z direction is

I.,, /M aMM)lim J = = (VM). (14)
ax-.0 Ax Ay ax y /
AdyO

which we recognize as the z component of the curl of the
magnetization. If we had orientated our loop in the xz or yz
planes, the current density components would similarly obey
the relations

], = ,- ~ = (V x M),Saz ax)
(15)

Jx = (aM amy) = (Vx M)x

so that in general

J,=VxM (16)

where we subscript the current density with an m to represent
the magnetization current density, often called the Amperian
current density.

These currents are also sources of the magnetic field and
can be used in Ampere's law as

Vx-= J, +Jf= J+VxM (17)
go

where Jf is the free current due to the motion of free charges
as contrasted to the magnetization current Jm, which is due to
the motion of bound charges in materials.
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As we can only impose free currents, it is convenient to
define the vector H as the magnetic field intensity to be
distinguished from B, which we will now call the magnetic
flux density:

H= -M=>B =p o(H+M) (18)
Lo

Then (17) can be recast as

Vx M) = Vx H = J, (19)

The divergence and flux relations of Section 5-3-1 are
unchanged and are in terms of the magnetic flux density B.
In free space, where M = 0, the relation of (19) between B and
H reduces to

B= joH (20)

This is analogous to the development of the polarization
with the relationships of D, E, and P. Note that in (18), the
constant parameter po multiplies both H and M, unlike the
permittivity eo which only multiplies E.

Equation (19) can be put into an equivalent integral form
using Stokes' theorem:

I(VxH)*dS= H-dl=J,*dS (21)

The free current density J1 is the source of the H field, the
magnetization current density J. is the source of the M field,
while the total current, Jf+J,, is the source of the B field.

5-5-3 Magnetic Materials

There are direct analogies between the polarization pro-
cesses found in dielectrics and magnetic effects. The consti-
tutive law relating the magnetization M to an applied
magnetic field H is found by applying the Lorentz force to
our atomic models.

(a) Diamagnetism
The orbiting electrons as atomic current loops is analogous

to electronic polarization, with the current in the direction
opposite to their velocity. If the electron (e = 1.6 x 10- 9 coul)
rotates at angular speed w at radius R, as in Figure 5-16, the
current and dipole moment are

o- m= IR = R (22)
2,f- 2
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4'
)R~i 2 - M-e

= wRi#

ew
2w

m = -IR 2i. =-wR- i22 12

Figure 5-16 The orbiting electron has its magnetic moment m in the direction
opposite to its angular momentum L because the current is opposite to the electron's
velocity.

Note that the angular momentum L and magnetic moment m
are oppositely directed and are related as

L = m.Ri, x v= moR2i.= 2m, (23)
e

where m, = 9.1 x 10- 3' kg is the electron mass.
Since quantum theory requires the angular momentum to

be quantized in units of h/21r, where Planck's constant is
h=6.62 x 10 joule-sec, the smallest unit of magnetic
moment, known as the Bohr magneton, is

eh 2
mB= A 9.3 x 10-24 amp-mi (24)

41rm,

Within a homogeneous material these dipoles are
randomly distributed so that for every electron orbiting in
one direction, another electron nearby is orbiting in the
opposite direction so that in the absence of an applied
magnetic field there is no net magnetization.

The Coulombic attractive force on the orbiting electron
towards the nucleus with atomic number Z is balanced by the
centrifugal force:

Ze2
m.j02R = 4Ze0R 2  (25)

41reoR

Since the left-hand side is just proportional to the square of
the quantized angular momentum, the orbit radius R is also
quantized for which the smallest value is

4w-e / h\2 x< 10
- 1

R= 2 5 m 0

_ _ ___

mZe 2 Z
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with resulting angular speed

o = Z2 S 1.3 x 10' 6Z2 (27)
(4.eo)2(h/2F)

When a magnetic field Hoi, is applied, as in Figure 5-17,
electron loops with magnetic moment opposite to the field
feel an additional radial force inwards, while loops with
colinear moment and field feel a radial force outwards. Since
the orbital radius R cannot change because it is quantized,
this magnetic force results in a change of orbital speed Am:

m.(w +Amw)92 R = e( 2+ (w + Awl)RIoHo)

m,(aW + A 2)2R = e( Ze , (m + A 2)R~HHo) (28)
47soR

where the first electron speeds up while the second one slows
down.

Because the change in speed Am is much less than the
natural speed w, we solve (28) approximately as

ewlmoHo
2maw - ejAoHo (29)

- eq•ioHo

2m.w + ejloHo

where we neglect quantities of order (AoW)2 . However, even
with very high magnetic field strengths of Ho= 106 amp/m we
see that usually

eIloHo<<2mwo

(1.6 x 10-19)(4r x 10-1)106<< 2(9.1 x 10-sl)(1.3 x 1016) (3 0 )

Hoiz Hoi,

it
VxB

A+ vxl

Figure 5-17 Diamagnetic effects, although usually small, arise in all materials because
dipoles with moments parallel to the magnetic field have an increase in the orbiting
electron speed while those dipoles with moments opposite to the field have a decrease
in speed. The loop radius remains constant because it is quantized.
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so that (29) further reduces to

Aw I -A 2 -ý edo H ° _ 1.1 x 105 Ho (31)
2m,

The net magnetic moment for this pair of loops,

eR 2 -e2poR 2

m = (w2 - wi) = -eR 2 Aw -e 2 Ho (32)
2 2m,

is opposite in direction to the applied magnetic field.
If we have N such loop pairs per unit volume, the

magnetization field is

Ne2ioR 2

M=Nm= - Hoi, (33)
2me

which is also oppositely directed to the applied magnetic field.
Since the magnetization is linearly related to the field, we

define the magnetic susceptibility X, as

Ne2L2oR
M = XmH, Xm = Ne (34)

2m,

where X, is negative. The magnetic flux density is then

B = Ao(H +M) = o(1 + Xm)H = AopH = pH (35)

where ,•= 1 +X is called the relative permeability and A. is
the permeability. In free space Xm = 0 so that j-, = 1 and
A = Lo. The last relation in (35) is usually convenient to use, as
all the results in free space are still correct within linear
permeable material if we replace /Lo by 1L. In diamagnetic
materials, where the susceptibility is negative, we have that
tL, < 1, j < Ao. However, substituting in our typical values

Ne2 oR 4.4x 10-3 5

Xm = - 2m- N (36)
2m - z2

we see that even with N 10soatoms/m 3 , X, is much less than
unity so that diamagnetic effects are very small.

(b) Paramagnetism
As for orientation polarization, an applied magnetic field

exerts a torque on each dipole tending to align its moment
with the field, as illustrated for the rectangular magnetic
dipole with moment at an angle 0 to a uniform magnetic field
B in Figure 5-18a. The force on each leg is

dfl = - df 2 = I Ax i. X B = I Ax[Bi, - Bri,]
(37)

dfs = -df 4 = I Ay i, x B = I Ay(- Bi + Bix)

In a uniform magnetic field, the forces on opposite legs are
equal in magnitude but opposite in direction so that the net
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df1 = ii xBAx

353

y(-Bx i, +B, i2 )

x=-IAx(Byi. -Bz iy)

Figure 5-18 (a) A torque is exerted on a magnetic dipole with moment at an angle 0
to an applied magnetic field. (b) From Boltzmann statistics, thermal agitation opposes
the alignment of magnetic dipoles. All the dipoles at an angle 0, together have a net
magnetization in the direction of the applied field.

force on the loop is zero. However, there is a torque:

4

T= rrxdf,

S(-i, x df +i, df2 )+ (iXx df 3 -i, x df 4)
2 2

= I Ax Ay(Bi,-B,i , )= mx B
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The incremental amount of work necessary to turn the
dipole by a small angle dO is

dW= TdO = mrloHo sin 0 dO (39)

so that the total amount of work necessa'ry to turn the dipole
from 0 = 0 to any value of 0 is

W=j TdO= -mMoHo cos 0 = moHo(l -cos 0)

(40)

This work is stored as potential energy, for if the dipole is
released it will try to orient itself with its moment parallel to
the field. Thermal agitation opposes this alignment where
Boltzmann statistics describes the number density of dipoles
having energy W as

n = nie-WIAT = n i -mLoHo(l-cos O)/AT noe moHo cos 0/AT

(41)

where we lump the constant energy contribution in (40)
within the amplitude no, which is found by specifying the
average number density of dipoles N within a sphere of
radius R:

1 r 2w R
N=ji- noeCOS r2 sinOdrdOd4o

nor -j o 1 =-o f-0

= no sin Oe'co " d (42)
2 Je0=0

where we let
a = mjloHo/kT (43)

With the change of variable

u =a cos 0, du = -a sin 0 dO (44)

the integration in (42) becomes

-no -a no
N=- eodu =-sinh a (45)

2a a

so that (41) becomes

n = a co e (46)
sinh a

From Figure 5-18b we see that all the dipoles in the shell
over the interval 0 to 0 + dO contribute to a net magnetization.
which is in the direction of the applied magnetic field:

dM = cos 0 r2 sin 0 dr dO d4

1 _·_ ·_ _

S3 rR



Magnetization 355

so that the total magnetization due to all the dipoles within
the sphere is

maN a
iaN I sina cos eosOec dO (48)

2 sinh a o.(8

Again using the change of variable in (44), (48) integrates
to

M=- mN -auedu
2a sinh aa

-mNN
Se"(u - 1) •,

2a sinh a

-mN
[e-"(-a - 1)- e"(a - 1)]

2a sinh a

-mN
- [-a cosh a+sinh a]
a sinh a

= mN[coth a - 1/a] (49)

which is known as the Langevin equation and is plotted as a
function of reciprocal temperature in Figure 5-19. At low
temperatures (high a) the magnetization saturates at M = mN
as all the dipoles have their moments aligned with the field.
At room temperature, a is typically very small. Using the
parameters in (26) and (27) in a strong magnetic field of
Ho= 106 amps/m, a is much less than unity:

a=moHo ekTR-- HR 8 x 10-4 (50)
kT 2 kT

M

5 10 15
mgO Ho

kT

Figure 5-19 The Langevin equation describes the net magnetization. At low
temperatures (high a) all the dipoles align with the field causing saturation. At high
temperatures (a << 1)the magnetization increases linearly with field.
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In this limit, Langevin's equation simplifies to

lim MM 1++a 2/2 1
(I La+as/6 a

MN( ((l+a/2 )( 1-a-/6) 1

mNa j•om2N
- - T Ho (51)3 3hT

In this limit the magnetic susceptibility X. is positive:

Pom2
M=XH, X= (52)3kT (

but even with N - 1030 atoms/m s , it is still very small:

X,- 7 x 10- 4 (53)

(c) Ferromagnetism
As for ferroelectrics (see Section 3-1-5), sufficiently high

coupling between adjacent magnetic dipoles in some iron
alloys causes them to spontaneously align even in the absence
of an applied magnetic field. Each of these microscopic
domains act like a permanent magnet, but they are randomly
distributed throughout the material so that the macroscopic
magnetization is zero. When a magnetic field is applied, the
dipoles tend to align with the field so that domains with a
magnetization along the field grow at the expense of non-
aligned domains.

The friction-like behavior of domain wall motion is a lossy
process so that the magnetization varies with the magnetic
field in a nonlinear way, as described by the hysteresis loop in
Figure 5-20. A strong field aligns all the domains to satura-
tion. Upon decreasing H, the magnetization lags behind so
that a remanent magnetization M, exists even with zero field.
In this condition we have a permanent magnet. To bring the
magnetization to zero requires a negative coercive field - H,.

Although nonlinear, the main engineering importance of
ferromagnetic materials is that the relative permeability ip, is
often in the thousands:

I = LrLo = B/H (54)

This value is often so high that in engineering applications we
idealize it to be infinity. In this limit

limB = pH~H = 0, B finite (55)

the H field becomes zero to keep the B field finite.
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Figure 5-20 Ferromagnetic materials exhibit hysteresis where the magnetization
saturates at high field strengths and retains a net remanent magnetization M, even
when H is zero. A coercive field -H, is required to bring the magnetization back to
zero.

EXAMPLE 5-1 INFINITE LINE CURRENT WITHIN A
MAGNETICALLY PERMEABLE CYLINDER

A line current I of infinite extent is within a cylinder of
radius a that has permeability .t, as in Figure 5-21. The
cylinder is surrounded by free space. What are the B, H, and
M fields everywhere? What is the magnetization current?

Surface current
Km = -( - 1)

Jo -1) 2-va

Figure 5-21 A free line current of infinite extent placed within a permeable cylinder
gives rise to a line magnetization current along the axis and an oppositely directed
surface magnetization current on the cylinder surface.

"" ^"'""'
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SOLUTION

Pick a circular contour of radius r around the current.
Using the integral form of Ampere's law, (21), the H field is
of the same form whether inside or outside the cylinder:

fH -dl= H,2irr= IIH=
L2rr

The magnetic flux density differs in each region because the
permeability differs:

1H4• -, 0<r<a

B oH 6= r>a
21rr

The magnetization is obtained from the relation

BM =  _ H
go

as

I)• H -, o g- I' O<r<a
M = (Ao lol 2r'

10, r>a

The volume magnetization current can be found using
(16):

aM, 1a
J =VxM= i,+ -(rMs)iz=0, O<r<a

8z r ar

There is no bulk magnetization current because there are no
bulk free currents. However, there is a line magnetization
current at r = 0 and a surface magnetization current at r = a.
They are easily found using the integral form of (16) from
Stokes' theorem:

JsV xMdS= LM-dl=s J.dS

Pick a conrtour around the center of the cylinder with r <a:

Ms2rr = (A-o = I

where I, is the magnetization line current. The result
remains unchanged for any radius r <a as no more current is
enclosed since J.=0 for 0<r<a.,As soon as r>a,M,
becomes zero so that the total magnetization current becomes

I~ ·_·__·
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zero. Therefore, at r =a a surface magnetization current
must flow whose total current is equal in magnitude but
opposite in sign to the line magnetization current:

- I. (/Z - zo)I
2wa 0o2era

5-6 BOUNDARY CONDITIONS

At interfacial boundaries separating materials of differing
properties, the magnetic fields on either side of the boundary
must obey certain conditions. The procedure is to use the
integral form of the field laws for differential sized contours,
surfaces, and volumes in the same way as was performed for
electric fields in Section 3-3.

To summarize our development thus far, the field laws
for magnetic fields in differential and integral form are

VxH=J,, H.di=sJ,.-dS (1)

VxM=J,, M *dl= J..*dS (2)

V B = 0, sB-dS=0 (3)

5-6-1 Tangential Component of H

We apply Ampere's circuital law of (1) to the contour of
differential size enclosing the interface, as shown in Figure
5-22a. Because the interface is assumed to be infinitely thin,
the short sides labelled c and d are of zero length and so offer

(a) (b)

Figure 5-22 (a) The tangential component of H can be discontinuous in a free
surface current across a boundary. (b) The normal component of B is always continu-
ous across an interface.

1



360 The Magnetic Field

no contribution to the line integral. The remaining two sides
yield

f H dl= (HI, - H 2t) dl= K, dl (4)

where Kf, is the component of free surface current perpen-
dicular to the contour by the right-hand rule in this case up out
of the page. Thus, the tangential component of magnetic field
can be discontinuous by a free surface current,

(Hi, - H 2,) = Kf. > n x (H 2 - HI) = Kf (5)

where the unit normal points from region 1 towards region 2.
If there is no surface current, the tangential component of H
is continuous.

5-6-2 Tangential Component of M

Equation (2) is of the same form as (6) so we may use the
results of (5) replacing H by M and Kf by K,, the surface
magnetization current:

(M, - M 2t)=Km,n nx(M2 -MI)=K,,m (6)

This boundary condition confirms the result for surface

magnetization current found in Example 5-1.

5-6-3 Normal Component of B

Figure 5-22b shows a small volume whose upper and lower
surfaces are parallel and are on either side of the interface.
The short cylindrical side, being of zero length, offers no
contribution to (3), which thus reduces to

fBdS = (B, - B1,) dS= 0 (7)

yielding the boundary condition that the component of B
normal to an interface of discontinuity is always continuous:

B 1. - B 2 . = 0 n (B1 - B 2) = 0 (8)

EXAMPLE 5-2 MAGNETIC SLAB WITHIN A UNIFORM MAGNETIC
FIELD

A slab of infinite extent in the x and y directions is placed
within a uniform magnetic field Hoi, as shown in Figure 5-23.

-·1 -I-- ---
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Hoi

aiz. H fo -Mob(H
................................

10

i, H o Hoi.z.......... .

f Hoi

Figure 5-23 A (a) permanently magnetized or (b) linear
placed within a uniform magnetic field.

magnetizable material is

Find the H field within the slab when it is
(a) permanently magnetized with magnetization Moi,,
(b) a linear permeable material with permeability z.

SOLUTION

For both cases, (8) requires that the B field across the
boundaries be continuous as it is normally incident.

(a) For the permanently magnetized slab, this requires that

g 0oHo = /o(H + Mo) H = Ho- Mo

Note that when there is no externally applied field (Ho = 0),
the resulting field within the slab is oppositely directed to the
magnetization so that B = 0.

(b) For a linear permeable medium (8) requires

ixoHo = IH > H = 0o Ho

For p. >t o the internal magnetic field is reduced. If Ho is set
to zero, the magnetic field within the slab is also zero.

5-7 MAGNETIC FIELD BOUNDARY VALUE PROBLEMS

5-7-1 The Method of Images

A line current I of infinite extent in the z direction is a
distance d above a plane that is either perfectly conducting or
infinitely permeable, as shown in Figure 5-24. For both cases

361

t Ho
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(y +d
2

] = Const

I

Figure 5-24 (a) A line current above a perfect conductor induces an oppositely
directed surface current that is equivalent to a symmetrically located image line
current. (b) The field due to a line current above an infinitely permeable medium is the
same as if the medium were replaced by an image current now in the same direction as
the original line current.

the H field within the material must be zero but the boundary
conditions at the interface are different. In the perfect
conductor both B and H must be zero, so that at the interface
the normal component of B and thus H must be continuous
and thus zero. The tangential component of H is dis-
continuous in a surface current.

In the infinitely permeable material H is zero but B is finite.
No surface current can flow because the material is not a
conductor, so the tangential component of H is continuous
and thus zero. The B field must be normally incident.

Both sets of boundary conditions can be met by placing an
image current I at y = -d flowing in the opposite direction
for the conductor and in the same direction for the perme-
able material.

(•)I Y@I
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Using the upper sign for the conductor and the lower sign
for the infinitely permeable material, the vector potential due
to both currents is found by superposing the vector potential
found in Section 5-4-3a, Eq. (18), for each infinitely long line
current:

A -= {In [X2 + (y - d)2]112 In x2 + (y+d )2

21r

-LI{ln [x2 + (y - d)2] F In [X2 + (y+ d)2]1 (1)
4w

with resultant magnetic field

= VxA= I aA i aA,
SAo plo\ •y 8x

-I (y - d)ix -xi, (y + d)i. - xi,
21r [x2+(y-d)2 ] [x'+(y+d)2]

The surface current distribution for the conducting case is
given by the discontinuity in tangential H,

Id
K = -H(y = 0)= [d2 (3)

which has total current

+O Id +to dx
ITr= K, dx =--J 2 2t. r L (x +d )

Idl tan - = - (4)
ddI-O

just equal to the image current.
The force per unit length on the current for each case is

just due to the magnetic field from its image:

02

f = i, (5)
47rd

being repulsive for the conductor and attractive for the
permeable material.

The magnetic field lines plotted in Figure 5-24 are just lines
of constant A, as derived in Section 5-4-3b. Right next to the
line current the self-field term dominates and the field lines
are circles. The far field in Figure 5-24b, when the line and
image current are in the same direction, is the same as if we
had a single line current of 21.
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5-7-2 Sphere in a Uniform Magnetic Field

A sphere of radius R is placed within a uniform magnetic
field H 0 i.. The sphere and surrounding medium may have
any of the following properties illustrated in Figure 5-25:

(i) Sphere has permeability /L2 and surrounding medium
has permeability Ap.

(ii) Perfectly conducting sphere in free space.
(iii) Uniformly magnetized sphere M 2i, in a uniformly

magnetized medium Mli..

For each of these three cases, there are no free currents in
either region so that the governing equations in each region
are

V.B=O
(5)

VxH=O

- +_1 (_L)
2 ]sin

2o = Const
r 2 R

(a) Hoi z = Ho(i, cosO - io sinO)

Figure 5-25 Magnetic field lines about an (a) infinitely permeable and (b) perfectly
conducting sphere in a uniform magnetic field.

I· I I_~_



MagneticField Boundary Value Problems 365

[- + (')21] in
2

0 = Constr R

Figure 5-25

Because the curl of H is zero, we can define a scalar magnetic
potential

H=Vx

where we avoid the use of a negative sign as is used with the
electric field since the potential X is only introduced as a
mathematical convenience and has no physical significance.
With B proportional to H or for uniform magnetization, the
divergence of H is also zero so that the scalar magnetic
potential obeys Laplace's equation in each region:

V'x = 0 (7)

We can then use the same techniques developed for the
electric field in Section 4-4 by trying a scalar potential in each
region as

FAr cos 0, r < R
X=l i • f

(Dr+C/r)COs0 

r>R
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The associated magnetic field is then

H=VX=Ii,+ xi.• 1 aX 4
or r 8e r sin 0 a8

SA(i,cos 0-io sin 0) =Aiý, 
r<R

(D - 2C/r ) cos i, - (D+ C/r ) sin Oi, r > R (9)

For the three cases, the magnetic field far from the sphere
must approach the uniform applied field:

H(r =co) = Hoi, = Ho(i, cos 0-io sin 0)~D = Ho (10)

The other constants, A and C, are found from the boundary
conditions at r = R. The field within the sphere is uniform, in
the same direction as the applied field. The solution outside
the sphere is the imposed field plus a contribution as if there
were a magnetic dipole at the center of the sphere with
moment m, = 4vrC.

(i) If the sphere has a different permeability from the sur-
rounding region, both the tangential components of H and
the normal components of B are continuous across the
spherical surface:

He(r=R+)=He(r= R_)=A = D + C/R3

B,(r = R+)=B,(r= R-):,IH,(r = R+)= A2H,(r = R_)

which yields solutions

A = S+Ho, C= 2 1 RSHo (12)
+2 1 ~ +2 M1

The magnetic field distribution is then

3p#lHo 3~&1 Hoi.
(i, cos 0-ie sin0)= , r<R

92+ 2 1L,J+2,'

H= +Ho[1+ 2 -( l cOS 0i, (13)
-H1 rm Oi29+21AIJ

-[1 oR3NJsin N.}, r>R

The magnetic field lines are plotted in Figure 5-25a when
IA2-*o. In this limit, H within the sphere is zero, so that the
field lines incident on the sphere are purely radial. The field
lines plotted are just lines of constant stream function 1,
found in the same way as for the analogous electric field
problem in Section 4-4-3b.
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.(ii) If the sphere is perfectly conducting, the internal
magnetic field is zero so that A = 0. The normal component
of B right outside the sphere is then also zero:

H,(r = R+) = 0=C = HR3/2

yielding the solution

H=Ho[(1-) cosOi,-(l +r3)sin0io] , r>R
R r )2r

The interfacial surface current at r = R is obtained from the
discontinuity in the tangential component of H:

K, = He(r = R)= -~ Hsin0

The current flows in the negative 0 direction around the
sphere. The right-hand rule, illustrated in Figure 5-25b,
shows that the resulting field from the induced current acts in
the direction opposite to the imposed field. This opposition
results in the zero magnetic field inside the sphere.

The field lines plotted in Figure 5-25b are purely tangential
to the perfectly conducting sphere as required by (14).

(iii) If both regions are uniformly magnetized, the bound-
ary conditions are

Ho(r = R+)=Ho(r = R_)= A = D + C/R3

B,(r = R+) = B,(r = R_) H,(r = R+)+ Mi cos 0

= H,(r=R_)+M 2 cosO (17)

with solutions

A = Ho + (MI- M 2)

R
3

C= (MI -M 2 )3

so that the magnetic field is

1
[Ho+ - (Mi - M2 )][cos Oi, - sin 0io]

3

1
=[Ho+-(M 1-M 2)]i, r<R

3
H=

,

(H 2R 3

HoT 3 (M- M 2) cos Oi

-H+3r3 (M - M2)) sin 9i ,, r>R

Because the magnetization is uniform in each region, the
curl of M is zero everywhere but at the surface of the sphere,
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so that the volume magnetization current is zero with a sur-
face magnetization current at r = R given by

Km = nx (Mi - M2)

= i, x (MI - M 2)i.

= i, x (MI - M 2 )(ir cos 0 - sin Bio)

= - (MI - M 2) sin 0ik (20)

5-8 MAGNETIC FIELDS AND FORCES

5-8-1 Magnetizable Media

A magnetizable medium carrying a free current J1 is placed
within a magnetic field B, which is a function of position. In
addition to the Lorentz force, the medium feels the forces on
all its magnetic dipoles. Focus attention on the rectangular
magnetic dipole shown in Figure 5-26. The force on each
current carrying leg is

f = i dl x (Bxix + Bi,+ Bjiý)

>f(x) = - i Ay[- Bxi + Bix]

f(x + Ax) = i Ay[ - Bxi + BzixlJ x+ax

f(y) = i Ax[B,i, - Bji,] ,

f(y + Ay) = - i Ax[B,i, - Bi,]l ,+a, (1)

so that the total force on the dipole is

f = f(x) + f(x + Ax) + f(y) + f(y + Ay)

=., B , (x + A x ) - B , (x ) Bx(x + Ax)- B(x).AxAY1 Ax Ax

B.(y +Ay)-Bz(y) . B,(y +Ay)-B(y) ] (2)
+ AY y A (2)

Ay Ay

B
Y

t

kx, yl m = iA x Ayi,

x

Figure 5-26 A magnetic dipole in a magnetic field B.

I•
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In the limit of infinitesimal Ax and Ay the bracketed terms
define partial derivatives while the coefficient is just the
magnetic dipole moment m = i Ax Ay iý:

lim f = m[LB -- +-aB, + B,, (3)
A-.O xLax x y iy

Ampere's and Gauss's law for the magnetic field relate the
field components as

V - B = 0 = \-x + (4)
az ax ay

VxB=l°o(Jf+VxM)= LOJ • B ' =L0JT
Oy 8z

aB. aB,
8z ax

aB, aB,
ax aB-= PlJT. (5)
Ox Oy

which puts (3) in the form
=(Bx, a +By -B (Jy ))

fm= M-'L ,+ I--, -oUTi.I=,)az az I z

=(m.V)B +AomxJrT (6)

where JT is the sum of free and magnetization currents.
If there are N such dipoles per unit volume, the force

density on the dipoles and on the free current is

F=Nf= (M- V)B+ILoMXJT+JfxB

= to(M *V)(H+M)+oM x (Jf+ V XM) +LoJI X(H+M)

= Ao(M - V)(H+M) + /oM x (V x M) +IoLJ1 x H (7)

Using the vector identity

M x (V x M)= -(M V)M+ V(M - M) (8)

(7) can be reduced to

F= tLo(M • V)H +lToJf x H+ V( M.M (9)

The total force on the body is just the volume integral of F:

f= Iv F dV (10)
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In particular, the last contribution in (9) can be converted
to a surface integral using the gradient theorem, a corollary
to the divergence theorem (see Problem 1-15a):

J M-(.M dV=~ -M.MdS (11)
\2

Since this surface S surrounds the magnetizable medium, it
is in a region where M= 0 so that the integrals in (11) are
zero. For this reason the force density of (9) is written as

F = lio(M * V)H + CoJf x H (12)

It is the first term on the right-hand side in (12) that accounts
for an iron object to be drawn towards a magnet. Magnetiz-
able materials are attracted towards regions of higher H.

5-8-2 Force on a Current Loop

(a) Lorentz Force Only
Two parallel wires are connected together by a wire that is

free to move, as shown in Figure 5-27a. A current I is
imposed and the whole loop is placed in a uniform magnetic
field Boi.. The Lorentz force on the moveable wire is

f, = IBol (13)

where we neglect the magnetic field generated by the current,
assuming it to be much smaller than the imposed field B0 .

(b) Magnetization Force Only
The sliding wire is now surrounded by an infinitely

permeable hollow cylinder of iliner radius a and outer radius
b, both being small compared to the wire's length 1, as in
Figure 5-27b. For distances near the cylinder, the solution is
approximately the same as if the wire were infinitely long. For
r>0 there is no current, thus the magnetic field is curl and
divergence free within each medium so that the magnetic
scalar potential obeys Laplace's equation as in Section 5-7-2.
In cylindrical geometry we use the results of Section 4-3 and
try a scalar potential of the form

x=(Ar+C)Cos (14)
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Boix =Bo(icoso

B

i I 4i J=rb2 l

- f =IBoliy

Figure 5-27 (a) The Lorentz-force on a current carrying wire in a magnetic field. (b)
If the current-carrying wire is surrounded by an infinitely permeable hollow cylinder,
there is no Lorentz force as the imposed magnetic field is zero where the current is.
However, the magnetization force on the cylinder is the same as in (a). (c) The total
force on a current-carrying magnetically permeable wire is also unchanged.

in each region, where B= VX because V x B= 0. The
constants are evaluated by requiring that the magnetic field
approach the imposed field Boix at r = o and be normally
incident onto the infinitely permeable cylinder at r =a and
r = b. In addition, we must add the magnetic field generated
by the line current. The magnetic field in each region is then
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(see Problem 32a):

AOI.
i2rO, O<r<a

2Bob2 / a2\ O i-(+ in i] 2r I
2 2 I Osin -0i,6 /.bi_--•- [ _ o 1 - L-) +

b -a [ rr n2rr
B=

a<r<b (15)

Bo [(1 cos ir- 1- sin qi6 +Er i',

r>b

Note the infinite flux density in the iron (IA -* o) due to the
line current that sets up the finite H field. However, we see
that none of the imposed magnetic field is incident upon the
current carrying wire because it is shielded by the infinitely
permeable cylindrical shell so that the Lorentz force contri-
bution on the wire is zero. There is, however, a magnetization
force on the cylindrical shell where the internal magnetic field
H is entirely due to the line current, H, = I/27rr because with
i- - oo, the contribution due to Bo is negligibly small:

F = o(M - V)H

( a Ma.
M,(H )+ (H (16)ar r aw

Within the infinitely permeable shell the magnetization and
H fields are

I
H 2wr

mo 2B0 b 2 (1 _a2
0oMr= Br-- lor' b2_ 2- ~ -) cOS (17)

2Bob2  a2 (G -0 o)IoMo = B - /oH = 2  + sn +
(b -a)\ r 21rr

Although Hs only depends on r, the unit vector io depends on

i, = (-sin 4i, +cos Oi,) (18)

so that the force density of (16) becomes

BI . (B. - oH#)I dF= ---- 14+ , (4

i2rr - 2rr d4

I
= i [-B,(-sin i. +cos~i,)

+ (B, - joH#)(- cos 4i. - sin Oi,)]

·_.____ · · · ·II__



Magnetic Fields and Forces 373

I 2Bob 2 2
-=b2 • 1- COS 0(-sin Oi. +cos Oi,)i2r r2 r

-(1 +~) sin O(cos i.+ sin fi,)]

+ (/ -•rO•)I(cos Oi,+sin Oil))

+ (- o) I(cos bi. +sin 4i,)] (19)

The total force on the cylinder is obtained by integrating
(19) over r and 4:

2w b

f= JorFlrdrd (20)

All the trigonometric terms in (19) integrate to zero over 0 so
that the total force is

2B b
2

i fb a
2

Bob2I a2 b

(b 2_a2)r

= IB1o (21)

The force on the cylinder is the same as that of an unshield-
ed current-carrying wire given by (13). If the iron core has a
finite permeability, the total force on the wire (Lorentz force)
and on the cylinder (magnetization force) is again equal to
(13). This fact is used in rotating machinery where current-
carrying wires are placed in slots surrounded by highly
permeable iron material. Most of the force on the whole
assembly is on the iron and not on the wire so that very little
restraining force is necessary to hold the wire in place. The
force on a current-carrying wire surrounded by iron is often
calculated using only the Lorentz force, neglecting the
presence of the iron. The correct answer is obtained but for
the wrong reasons. Actually there is very little B field near the
wire as it is almost surrounded by the high permeability iron
so that the Lorentz force on the wire is very small. The force
is actually on the iron core.
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(c) Lorentz and Magnetization Forces
If the wire itself is highly permeable with a uniformly

distributed current, as in Figure 5-27c, the magnetic field is
(see Problem 32a)

2Bo Ir2Bo(i, cos 4 - is sin ) + Ir
A, +•- A 2~rb

2Bo I
= 1,+-y (-yix+xi,), r<b

H= (22)
1ooLc + + os i,

-( b - - sin~+oI +- i, r>b
r2 A+ o +2'r '

It is convenient to write the fields within the cylinder in
Cartesian coordinates using (18) as then the force density
given by (12) is

F = Ao(M - V)H + ~oJf X H

CLoI
= (A - Ao)(H - V)H + 2L x H

rrb2

=( - o) H. + H, )(H.• +H,i,)+ (Hi,- Hi.)
(23)

Since within the cylinder (r<b) the partial derivatives of H
are

aH, 3 H,=0
ax ay

(24)
aH. aH, I

ay ax 2arb

(23) reduces to

F ( -tlo) H, x i, 4- H, •H., + (H,i, -Hi,)

I
= (• ( + Lo)(Hxi, -H,ix)2)rb

I(A +lIo) fr 2Bo l 2. Ix (25)
= 2RlbLz 2-- -- fr (2Tb 1t5)a

Realizing from Table 1-2 that

yi, +xi 2 = r[sin Oi, +cos 4i,] = ri,

_· · __I_
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the force density can be written as

IBo 12(3t + -0)

F 1-, (2b 2 )2 r (sin ki, +cos 0ix) (27)

The total force on the permeable wire is

2r b

f= F1r dr do (28)

We see that the trigonometric terms in (27) integrate to zero
so that only the first term contributes:

IB 0ol 2, b

f = 2 r dr do

= IBol (29)

The total force on the wire is independent of its magnetic
permeability.

PROBLEMS

Section 5-1
1. A charge q of mass m moves through a uniform magnetic
field Boi,. At t = 0 its velocity and displacement are

v(t = 0) = vxix + o0i•++ vUoiz

r(t = 0) = xoix + yoiy + zoi0

(a) What is the subsequent velocity and displacement?
(b) Show that its motion projected onto the xy plane is a

circle. What is the radius of this circle and where is its center?
(c) What is the time dependence of the kinetic energy of

the charge 2mlvl 2?

2. A magnetron is essentially a parallel plate capacitor
stressed by constant voltage Vo where electrons of charge -e
are emitted at x = 0, y = 0 with zero initial velocity. A trans-
verse magnetic field Boi, is applied. Neglect the electric and
magnetic fields due to the electrons in comparison to the
applied field.

(a) What is the velocity and displacement of an electron,
injected with zero initial velocity at t = 0?

(b) What value of magnetic field will just prevent the elec-
trons from reaching the other electrode? This is the cut-off
magnetic field.



-I

(a)

(c) A magnetron is built with coaxial electrodes where
electrons are injected from r = a, 4 = 0 with zero initial veloc-
ity. Using the relations from Table 1-2,

ir = cos 4i. + sin 4i,
i, = -sin 4i, +cos Oi,

show that

di, . d4 vs.
dt di r

di . do v6.--= '-r
-  

---- l

dt dt r

What is the acceleration of a charge with velocity

V = rir, + v$i, ?

(d) Find the velocity of the electrons as a function of radial
position.
Hint:

dv, dv, dr dv, d 2

dt dr dt Vr dr dr

dv, dv dr dvr

dt dr di ' dr

(e) What is the cutoff magnetic field? Check your answer
with (b) in the limit b = a + s where s << a.

3. A charge q of mass m within a gravity field -gi, has an
initial velocity voi.. A magnetic field Boi, is applied. What
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.
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q

Bvo --i•x

4 value of Bo will keep the particle moving at constant speed in
mg the x direction?

4. The charge to mass ratio of an electron e/m was first
measured by Sir J. J. Thomson in 1897 by the cathode-ray
tube device shown. Electrons emitted by the cathode pass
through a slit in the anode into a region with crossed electric
and magnetic fields, both being perpendicular to the elec-
trons velocity. The end of the tube is coated with a fluorescent
material that produces a bright spot where the electron beam
impacts.

Screen

(a) What is the velocity of the electrons when passing
through the slit if their initial cathode velocity is vo?

(b) The electric field E and magnetic field B are adjusted so
that the vertical deflection of the beam is zero. What is the
initial electron velocity? (Neglect gravity.)

(c) The voltage V2 is now set to zero. What is the radius R
of the electrons motion about the magnetic field?

(d) What is e/m in terms of E, B, and R?

5. A charge q of mass m at t= 0 crosses the origin with
velocity vo = v.oi +v,oi,. For each of the following applied
magnetic fields, where and when does the charge again cross
the y = 0 plane?

(a) B=Boi.
(b) B = Boi,
(c) B = Boi.

vo= vo[ix cose + i , sin6]

(a) B = Boix(b) B = Boi,
(c)B = Boi•

j 
vo

= vo[i x
cosO + iy sinO]
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6. In 1896 Zeeman observed that an atom in a magnetic field
had a fine splitting of its spectral lines. A classical theory of
the Zeeman effect, developed by Lorentz, modeled the elec-
tron with mass m as being bound to the nucleus by a spring-
like force with spring constant k so that in the absence of a
magnetic field its natural frequency was wo = r,-.

(a) A magnetic field Boi, is applied. Write Newton's law for
the x, y, and z displacements of the electron including the
spring and Lorentz forces.

(b) Because these equations are linear, guess exponential
solutions of the form e"s.What are the natural frequencies?

(c) Because oa is typically in the optical range (wh -
10 5radian/sec), show that the frequency splitting is small
compared to wk even for a strong field of B 0 = 1 tesla. In this
limit, find approximate expressions for the natural frequen-
cies of (b).

7. A charge q moves through a region where there is an
electric field E and magnetic field B. The medium is very
viscous so that inertial effects are negligible,

pv=q(E+vxB)

where 6 is the viscous drag coefficient. What is the velocity of
the charge? (Hint: (vxB)xB= -v(B-B)+B(v*B) and
v . B = (q/f)E - B.)

8. Charges of mass m, charge q, and number density n move
through a conducting material and collide with the host
medium with a collision frequency v in the presence of an
electric field E and magnetic field B.

(a) Write Newton's first law for the charge carriers, along
the same lines as developed in Section 3-2-2, with the addition
of the Lorentz force.

(b) Neglecting particle inertia and diffusion, solve for the
particle velocity v.

(c) What is the constitutive law relating the current density
J = qnv to E and B. This is the generalized Ohm's law in the
presence of a magnetic field.

(d) What is the Ohmic conductivity r? A current i is passed
through this material in the presence of a perpendicular
magnetic field. A resistor RL is connected across the
terminals. What is the Hall voltage? (See top of page 379).

(e) What value of RL maximizes the power dissipated in the
load?
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+

Section 5.2
9. A point charge q is traveling within the magnetic field of
an infinitely long line current I. At r = ro its velocity is

v(t = 0) = Vrir + Voi, + vzoiz

Its subsequent velocity is only a function of r.
(a) What is the velocity of the charge as a function of

position? Hint: See Problem 2c and 2d,

-ldx = (Inx)2

(b) What is the kinetic energy of the charge?
(c) What is the closest distance that the charge can

approach the line current if v, 0 = 0?

10. Find the magnetic field at the point P shown for the
following line currents:

0
ý-bji7

n-sided
regular

equilateral
polygon

(c)

I

P

Tf)

11. Two long parallel line currents of mass per unit length
m in a gravity field g each carry a current I in opposite

I

I
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directions. They are suspended by cords of length I. What is
the angle 0 between the cords?

12. A constant current Koi, flows on the surface of a sphere
of radius R.

(a) What is the magnetic field at the center of the sphere?
(HINT: i, x i, = ie = cos 0 cos i,. +cos 0 sin #i, -sin Oi,.)

(b) Use the results of (a) to find the magnetic field at the
center of a spherical shell of inner radius R1 and outer radius
R2 carrying a uniformly distributed volume current Jois.

13. A line current I of length 2L flows along the z axis.

t t
I I/

• K = Koi

I I
x

~" __

TE I
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(a) What is the magnetic field everywhere in the z =0
plane?

(b) Use the results of (a) to find the magnetic field in the
z = 0 plane due to an infinitely long current sheet of height 2L
and uniform current density Koi,. Hint: Let u = x + y

r du 1 . -I / bu+2a

u(u2+bu-a)1/2 Sa usn

14. Closely spaced wires are wound about an infinitely long
cylindrical core at pitch angle 80. A current flowing in the
wires then approximates a surface current

K = Ko(i, sin O0 +i6 cos 0 o)

K = Ko(i, sin Oo + iocosOo)

What is the magnetic field everywhere?

15. An infinite slab carries a uniform current Joi, except
within a cylindrical hole of radius a centered within the slab.

I

----- X
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(a) Find the magnetic field everywhere? (Hint: Use
superposition replacing the hole by two oppositely directed
currents.)

(b) An infinitely long cylinder of radius a carrying a uni-
form current Joi, has an off-axis hole of radius b with center a
distance d from the center of the cylinder. What is the
magnetic field within the hole? (Hint: Convert to Cartesian
coordinates rid = xi,- yix.)

Section 5.3
16. Which of the following vectors can be a magnetic field B?
If so, what is the current density J?

(a) B = ari,
(b) B= a(xi,-yi.)
(c) B= a(xi, -yi,)
(d) B = ario

17. Find the magnetic field everywhere for each of the
following current distributions:

- -y

(a) (c)

(a) Joi, -a<y<O
(a) J=Jol, O<y<a

(b) J=jyi,, -a<y<a
a

Joi,, O<r<a
(c) -Joi a<r<b

(d) J=aoriý r<a
0, r>a

___··
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Section 5.4
18. Two parallel semi-infinite current sheets a distance d
apart have their currents flowing in opposite directions and
extend over the interval -oo < x < 0.

K0 i,

S--- yo

2d x

- Koi
z

(a) What is the vector potential? (Hint: Use superposition
of the results in Section 5-3-4b.)

(b) What is the magnetic field everywhere?
(c) How much magnetic flux per unit length emanates

through the open face at x = 0? How much magnetic flux per
unit length passes through each current sheet?

(d) A magnetic field line emanates at the position yo(O <
yo < d) in the x = 0 plane. At what value of y is this field line at
x = -o0?

19. (a) Show that V • A • 0 for the finite length line current
in Section 5-4-3a. Why is this so?

y

(b) Find the vector potential for a square loop.
(c) What is V - A now?

20. Find the magnetic vector potential and ma netic field for
the following current distributions: (Hint: V A = V(V *A)-
Vx(VxA))

(i) Infinitely long cylinder of radius a carrying a
(a) surface current Koi,
(b) surface current Koi,
(c) volume current Joi,

I
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$

Ko i
-h x

(ii) Infinitely long slab of thickness d carrying a

(d) volume current Joi0
0ox

(e) volume current i,

Section 5.5
21. A general definition for the magnetic dipole moment for
any shaped current loop is

m=- IrxI dl
2

If the current is distributed over a surface or volume or is due
to a moving point charge we use

I dl- qv K dS-J dV

What is the magnetic dipole moment for the following cur-
rent distributions:

(a) a point charge q rotated at constant angular speed c at
radius a;

(b) a circular current loop of radius a carrying a current I;
(c) a disk of radius a with surface current Koi*;
(d) a uniformly distributed sphere of surface or volume

charge with total charge Q and radius R rotating in the 4
direction at constant angular speed c. (Hint: i, x i = -i0 =
-[cos 0 cos Oi, +cos 0 sin Oi,- sin Oi,])

22. Two identical point magnetic dipoles m with magnetic
polarizability a (m= a H) are a distance a apart along the z
axis. A macroscopic field Hoi, is applied.

(a) What is the local magnetic field acting on each dipole?
(b) What is the force on each dipole?

I ·_·
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a

I Hoi

(c) Repeat (a) and (b) if we have an infinite array of such
dipoles. Hint:

n=1 n

(d) If we assume that there is one such dipole within each
volume of a3 , what is the permeability of the medium?

23. An orbiting electron with magnetic moment mi, is in a
uniform magnetic field Boi, when at t = 0 it is slightly dis-
placed so that its angular momentum L = -( 2 me/e)m now also
has x and y components.

(a) Show that the torque equation can be put in terms of
the magnetic moment

dm
-= -ymxB

where y is called the gyromagnetic ratio. What is y?
(b) Write out the three components of (a) and solve for the

magnetic moment if at t = 0 the moment is initially

m(t = 0) = mxoi,+ m• 0i, + moi,

(c) Show that the magnetic moment precesses about the
applied magneticfield. What is the precessional frequency?

24. What are the B, H, and M fields and the resulting
magnetization currents for the following cases:

(a) A uniformly distributed volume current Joio through a
cylinder of radius a and permeability ALsurrounded by
free space.

(b) A current sheet Koi, centered within a permeable slab
of thickness d surrounded by free space.
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Joiz

T

Uo

-- y

"•--d

(a) (b)

Section 5.6
25. A magnetic field with magnitude H 1 is incident upon the
flat interface separating two different linearly permeable
materials at an angle 01 from the normal. There is no surface

H,

current on the interface. What is the magnitude and angle of
the magnetic field in region 2?

26. A cylinder of radius a and length L is permanently
magnetized as Moi,.

(a) What are the B and H fields everywhere along its axis?
(b) What are thý fields far from the magnet (r > a, r > L)?
(c) Use the results of (a) to find the B and H fields every-

where due to a permanently magnetized slab Moi, of infinite
xy extent and thickness L.

(d) Repeat (a) and (b) if the. cylinder has magnetization
Mo(1 - r/a)i,. Hint:

dr (a i/2 = In (r + V7)

_~_I · _~· · __

I
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Section 5.7
27. A z-directed line current I is a distance d above the
interface separating two different magnetic materials with
permeabilities 1L and 122.

(a) Find the image currents I' at position x = -d and I" at
x = d that satisfy all the boundary conditions. The field in
region 1 is due to I and I' while the field in region 2 is due to
I". (Hint: See the analogous dielectric problem in Section
3-3-3.)

(b) What is the force per unit length on the line current I?

28. An infinitely long line current I is parallel to and a
distance D from the axis of a perfectly conducting cylinder of
radius a carrying a total surface current 1o.

(a) Find suitable image currents and verify that the bound-
ary conditions are satisfied. (Hint: xi,-vi,=ri#; i,=
sin gir +cos 46i; x = r cos 4.)
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to
KO = 2ira

*l

D )

(a)

(b) What is the surface current distribution on the cylin-
der? What total current flows on the cylinder? Hint:

f dO 2 tan ([a2 - b2 "2 tan (t)

Ja+bcost [a 2 -b] ta n (a+b) )

(c) What is the force per unit length on the cylinder?
(d) A perfectly conducting cylinder of radius a carrying a

total current I has its center a distance d above a perfectly
conducting plane. What image currents satisfy the boundary
conditions?

(e) What is the force per unit length on the cylinder?

29. A current sheet K0 cos ayi, is placed at x = 0. Because
there are no volume currents for x # 0, a scalar magnetic
potential can be defined H = Vx.

~l~g~g~f~i~B~O ~ oo~

r

~I
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Ko cosayi
z

d J )d' sKW'

(a) What is the general form of solution for X? (Hint: See
Section 4-2-3.)

(b) What boundary conditions must be satisfied?
(c) What is the magnetic field and vector potential every-

where?
(d) What is the equation of the magnetic field lines?

30. A slab of thickness d carries a volume current distribution
Jo sin axiz and is placed upon a perfectly conducting ground
plane.

(a) Find a particular solution for the vector potential. Are
all the boundary conditions satisfied?

(b) Show that additional solutions to Laplace's equations
can be added to the vector potential to satisfy the boundary
conditions. What is the magnetic field everywhere?

(c) What is the surface current distribution on the ground
plane?

(d) What is the force per unit length on a section of ground
plane of width 21r/a? What is the body force per unit length
on a section of the current carrying slab of width 2ir/a?

(e) What is the magnetic field if the slab carries no current
but is permanently magnetized as Mo sin axiy Repeat (c) and
(d).

31. A line current of length L stands perpendicularly upon a
perfectly conducting ground plane.

0 -~ 00

·j:):C:i·:·~~·:_::i·j·::i·/·X·:j··l·/~/~

I

i·l:·;i::;::il·(··C··~::i·:·;:i:·.:;:···

7,::
jot

5

C

I
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(a)H

(a) Cylinder has permeability 2&2and surrounding medium
has permeability j1.

(b) Perfectly conducting cylinder in free space.
(c) Uniformly magnetized cylinder M2 i, in a uniformly

magnetized medium Mli..

33. A current sheet Kois is placed along the y axis. at x = 0
between two parallel perfectly conducting planes a distance d
apart.

d

a-.oo

(a) Write the constant current at x = 0 as an infinite Fourier
series of fundamental period 2d. (Hint: See Section 4-2-5.)

(b) What general form of a scalar potential X, where H =
VX, will satisfy the boundary conditions?

(c) What is the magnetic field everywhere?

The Magnetic Field

(a) Find a suitable image current that is equivalent to the
induced current on the z = 0 plane. Does the direction of the
image current surprise you?

(b) What is the magnetic field everywhere? (Hint: See
Section 5-4-3a.)

(c) What is the surface current distribution on the
conducting plane?

32. A cylinder of radius a is placed within a uniform
magnetic field Hoi,. Find the magnetic field for each of the
following cases:
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(d) What is the surface current distribution and the total
current on the conducting planes? Hint:

n=l n 8
(nodd)

Section 5.8
34. An infinitely long cylinder of radius a is permanently mag-
netized as M,,i,.

(a) Find the magnetic field everywhere.
(b) An infinitely long line current I is placed either at

y = -b or at x = b (b > a). For each of these cases, what is
the force per unit length on the line current? (Hint: See
problem 32c.)

35. Parallel plate electrodes are separated by a rectangular
conducting slab that has a permeability A. The system is
driven by a dc current source.

L3•JtlJ 13

(a) Neglecting fringing field effects assume the magnetic
field is H,(x)iz. If the current is uniformly distributed
throughout the slab, find the magnetic field everywhere.

(b) What is the total force on the slab? Does the force
change with different slab permeability? Why not?

ePL-'ll

I
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36. A permeable slab is partially inserted into the air gap
of a magnetic circuit with uniform field Ho. There is a
nonuniform fringing field right outside the magnetic circuit
near the edges.

Hlx-r oo)O Ho o

t x
(a) What is the total force on the slab in the x direction?
(b) Repeat (a) if the slab is permanently magnetized M=

M oi,. (Hint: What is Hx(x = -oo)? See Example 5-2a.)
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In our development thus far, we have found the electric
and magnetic fields to be uncoupled. A net charge generates
an electric field while a current is the source of a magnetic
field. In 1831 Michael Faraday experimentally discovered
that a time varying magnetic flux through a conducting loop
also generated a voltage and thus an electric field, proving
that electric and magnetic fields are coupled.

6-1 FARADAY'S LAW OF INDUCTION

6-1-1 The Electromotive Force (EMF)

Faraday's original experiments consisted of a conducting
loop through which he could impose a dc current via a switch.
Another short circuited loop with no source attached was
nearby, as shown in Figure 6-1. When a dc current flowed in
loop 1, no current flowed in loop 2. However, when the
voltage was first applied to loop 1 by closing the switch, a
transient current flowed in the opposite direction in loop 2.

Positive current is induced
to try to keep magnetic flux
equal to a non-zero constant

Negative current is induced
to try to keep magnetic flux

equal to zero

Figure 6-1 Faraday's experiments showed that a time varying magnetic flux through
a closed conducting loop induced a current in the direction so as to keep the flux
through the loop constant.

-·r· -·-
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When the switch was later opened, another transient current
flowed in loop 2, this time in the same direction as the original
current in loop 1. Currents are induced in loop 2 whenever a
time varying magnetic flux due to loop 1 passes through it.

In general, a time varying magnetic flux can pass through a
circuit due to its own or nearby time varying current or by the
motion of the circuit through a magnetic field. For any loop,
as in Figure 6-2, Faraday's law is

dl d
EMF= Edl=- I BdS (1)

where EMF is the electromotive force defined as the line
integral of the electric field. The minus sign is introduced on
the right-hand side of (1) as we take the convention that
positive flux flows in the direction perpendicular to the direc-
tion of the contour by the right-hand rule.

6-1-2 Lenz's Law

The direction of induced currents is always such as to
oppose any changes in the magnetic flux already present.
Thus in Faraday's experiment, illustrated in Figure 6-1, when
the switch in loop 1 is first closed there is no magnetic flux in
loop 2 so that the induced current flows in the opposite
direction with its self-magnetic field opposite to the imposed
field. The induced current tries to keep a zero flux through

4 =fBBdS

ndS = dSf

#E dl d=--- fB*ds
L dt

Figure 6-2 Faraday's law states that the line integral of the electric field around a
closed loop equals the time rate of change of magnetic flux through the loop. The
positive convention for flux is determined by the right-hand rule of curling the fingers
on the right hand in the direction of traversal around the loop. The thumb then points
in the direction of positive magnetic flux.
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loop 2. If the loop is perfectly conducting, the induced cur-
rent flows as long as current flows in loop 1, with zero net flux
through the loop. However, in a real loop, resistive losses
cause the current to exponentially decay with an LIR time
constant, where L is the self-inductance of the loop and R is
its resistance. Thus, in the dc steady state the induced current
has decayed to zero so that a constant magnetic flux passes
through loop 2 due to the current in loop 1.

When the switch is later opened so that the current in loop
1 goes to zero, the second loop tries to maintain the constant
flux already present by inducing a current flow in the same
direction as the original current in loop 1. Ohmic losses again
make this induced current die off with time.

If a circuit or any part of a circuit is made to move through
a magnetic field, currents will be induced in the direction
such as to try to keep the magnetic flux through the loop
constant. The force on the moving current will always be
opposite to the direction of motion.

Lenz's law is clearly demonstrated by the experiments
shown in Figure 6-3. When a conducting ax is moved into a
magnetic field, eddy currents are induced in the direction
where their self-flux is opposite to the applied magnetic field.
The Lorentz force is then in the direction opposite to the
motion of the ax. This force decreases with time as the cur-
rents decay with time due to Ohmic dissipation. If the ax was
slotted, effectively creating a very high resistance to the eddy
currents, the reaction force becomes very small as the
induced current is small.

Af, = 2nR B

Figure 6-3 Lenz's law. (a) Currents induced in a conductor moving into a magnetic
field exert a force opposite to the motion. The induced currents can be made small by
slotting the ax. (b) A conducting ring on top of a cdil is flipped off when a current is
suddenly applied, as the induced currents try to keep a zero flux through the ring.

·___ I
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When the current is first turned on in the coil in Figure 6-3b,
the conducting ring that sits on top has zero flux through it.
Lenz's law requires that a current be induced opposite to that
in the coil. Instantaneously there is no z component of
magnetic field through the ring so the flux must return radi-
ally. This creates an upwards force:

f = 27RIx B= 2rRI#Bri, (2)

which flips the ring off the coil. If the ring is cut radially so
that no circulating current can flow, the force is zero and the
ring does not move.

(a) Short Circuited Loop
To be quantitative, consider the infinitely long time varying

line current I(t) in Figure 6-4, a distance r from a rectangular
loop of wire with Ohmic conductivity o', cross-sectional area
A, and total length I = 2(D+d). The magnetic flux through
the loop due to I(t) is

SD/2 r+d
D. = LoH,(r') dr' dz

=z--DI2 r

P olD •r+ddr' =tolD r+d
27- r r' 2r r

C i(t)

H. 1r'( 2r'

Cross sectional area A
:conductivity a

dr
V,= dt~

Pa

Figure 6-4 A rectangular loop near a time varying line current. When the terminals
are short circuited the electromotive force induces a current due to the time varying
mutual flux and/or because of the motion of the circuit through the imposed nonuni-
form magnetic field of the line current. If the loop terminals are open circuited there is
no induced current but a voltage develops.
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The mutual inductance M is defined as the flux to current
ratio where the flux through the loop is due to an external
current. Then (3) becomes

4,. = M(r)I, M(r) = ID n r+d (4)
21r r

When the loop is short circuited (v = 0), the induced Ohmic
current i gives rise to an electric field [E = J/o = i/(Ao)] so that
Faraday's law applied to a contour within the wire yields an
electromotive force just equal to the Ohmic voltage drop:

il de
E dl=-= iR = (5)

where R = L/(o'A) is the resistance of the loop. By convention,
the current is taken as positive in the direction of the line
integral.

The flux in (5) has contributions both from the imposed
current as given in (3) and from the induced current pro-
portional to the loop's self-inductance L, which for example is
given in Section 5-4-3c for a square loop (D = d):

S= M(r)I + Li (6)

If the loop is also moving radially outward with velocity
v, = dr/dt, the electromotively induced Ohmic voltage is

d,
-iR = -

dt

dl dM(r) di
= M(r)-+I +L-

dt di dt

dl dM dr di
= M(r)-+ I- r-+L- (7)

dt dr dt dt

where L is not a function of the loop's radial position.
If the loop is stationary, only the first and third terms on

the right-hand side contribute. They are nonzero only if the
currents change with time. The second term is due to the
motion and it has a contribution even for dc currents.
Turn-on Transient. If the loop is stationary (drldt = 0) at
r = ro, (7) reduces to

di dl
L- + iR = -M(ro) (8)

dt dt

If the applied current I is a dc step turned on at t = 0, the
solution to (8) is

Mi(r,- I

L

It I~ --

i(t)= L)) e , t>0
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where the impulse term on the right-hand side of (8) imposes
the initial condition i(t=O)=-M(ro)I/L. The current is
negative, as Lenz's law requires the self-flux to oppose the
applied flux.
Turn-off Transient. If after a long time T the current I is
instantaneously turned off, the solution is

i(t) = e-(IL)o-), t>T (10)
L

where now the step decrease in current I at t = T reverses the
direction of the initial current.
Motion with a dc Current. With a dc current, the first term
on the right-hand side in (7) is zero yielding

di olIDd dr
L +iR = (11)

dt 27rr(r+d)dt

To continue, we must specify the motion so that we know how
r changes with time. Let's consider the simplest case when the
loop has no resistance (R = 0). Then (11) can be directly
integrated as

Li A- In +d/(12)
21r l+d/ro

where we specify that the current is zero when r = ro. This
solution for a lossless loop only requires that the total flux of
(6) remain constant. The current is positive when r> ro as the
self-flux must aid the decreasing imposed flux. The current is
similarly negative when r < ro as the self-flux must cancel the
increasing imposed flux.

The force on the loop for all these cases is only due to the
force on the z-directed current legs at r and r+d:

fAoDiI 1I
fr 21r \r+d r)

1.oDidS- (13)
21rr(r+d)

being attractive if iI>0 and repulsive if ii <0.

(b) Open Circuited Loop
If the loop is open circuited, no induced current can flow

and thus the electric field within the wire is zero (J = rE = 0).
The electromotive force then only has a contribution from
the gap between terminals equal to the negative of the
voltage:

a deD dD

dt dt
E dl= E dl=-v=- --•v=-
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Note in Figure 6-4 that our convention is such that the cur-
rent i is always defined positive flowing out of the positive
voltage terminal into the loop. The flux ( in (14) is now only
due to the mutual flux given by (3), as with i = 0 there is no
self-flux. The voltage on the moving open circuited loop is
then

dl dM dr
v = M(r)-+dM dr (15)

dt dr dt

(c) Reaction Force
The magnetic force on a short circuited moving loop is

always in the direction opposite to its motion. Consider the
short circuited loop in Figure 6-5, where one side of the loop
moves with velocity v,. With a uniform magnetic field applied
normal to the loop pointing out of the page, an expansion of
the loop tends to, link more magnetic flux requiring the
induced current to flow clockwise so that its self-flux is in the
direction given by the right-hand rule, opposite to the applied
field. From (1) we have

Ed il dI dx
E dl= - iR = - BoD-_= BoDv. (16)

L oA dt dt

where I = 2(D +x) also changes with time. The current is then

BoDv,i=- (17)
R

B= Boi
s

---- Expanding loop

I B oF)l

- - Contracting loop

Figure 6-5 If a conductor moves perpendicular to a magnetic field a current is
induced in the direction to cause the Lorentz force to be opposite to the motion. The
total flux through the closed loop, due to both the imposed field and the self-field
generated by the induced current, tries to remain constant.

D

--------
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where we neglected the self-flux generated by i, assuming it to
be much smaller than the applied flux due to Bo. Note also
that the applied flux is negative, as the right-hand rule
applied to the direction of the current defines positive flux
into the page, while the applied flux points outwards.

The force on the moving side is then to the left,
2 2

f = -iDi, x Bo0i = -iDBoi = 0 R i (18)

opposite to the velocity.
However if the side moves to the left (v, < 0), decreasing

the loop's area thereby linking less flux, the current reverses
direction as does the force.

6-1-3 Laminations

The induced eddy currents in Ohmic conductors results in
Ohmic heating. This is useful in induction furnaces that
melt metals, but is undesired in many iron core devices. To
reduce this power loss, the cores are often sliced into many
thin sheets electrically insulated from each other by thin oxide
coatings. The current flow is then confined to lie within a thin
sheet and cannot cross over between sheets. The insulating
laminations serve the same purpose as the cuts in the slotted
ax in Figure 6-3a.

The rectangular conductor in Figure 6-6a has a time vary-
ing magnetic field B(t) passing through it. We approximate
the current path as following the rectangular shape so that

y W

I
L

N D

B(Z) (a) t (b,)

Figure 6-6 (a) A time varying magnetic field through a conductor induces eddy
currents that cause Ohmic heating. (b) If the conductor is laminated so that the
induced currents are confined to thin strips, the dissipated power decreases.
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the flux through the loop of incremental width dx and dy of
area 4xy is

S= -4xyB(t) (19)

where we neglect the reaction field of the induced current
assuming it to be much smaller than the imposed field. The
minus sign arises because, by the right-hand rule illustrated in
Figure 6-2, positive flux flows in the direction opposite to
B(t). The resistance of the loop is

4IY 4 L X w+ 1(E2
R- 1 +- (20)

The electromotive force around the loop then just results in
an Ohmic current:

. -d4 dB 4L 2dB
E dl= iRx =- = 4xy-=-x - (21)

dt dt w dt

with dissipated power

dp = i = 4Dx 3oL(dB/dt) 2 dx
w[1 +(w/L) (22)

The total power dissipated over the whole sheet is then
found by adding the powers dissipated in each incremental
loop:

P= dp

4D(dB/dt)2oL w/2 x 3 dx
w[1+(w/L)2] J

LDws3c(dBldt)2

16[1+(w/L) ]  (23)

If the sheet is laminated into N smaller ones, as in Figure
6-6b, each section has the same solution as (23) if we replace w
by wIN. The total power dissipated is then N times the power
dissipated in a single section:

LD(w/N)S0r(dB/dt)2N crLDwS(dBldt)2

16[1 + (w/NL)2 ] 16N 2 [1 + (wINL)9] (24)

As N becomes large so that w/NL << 1, the dissipated power
decreases as 1/N2 .

6-1-4 Betatron

The cyclotron, discussed in Section 5-1-4, is not used to
accelerate electrons because their small mass allows them to

__I
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reach relativistic speeds, thereby increasing their mass and
decreasing their angular speed. This puts them out of phase
with the applied voltage. The betatron in Figure 6-7 uses the
transformer principle where the electrons circulating about
the evacuated toroid act like a secondary winding. The
imposed time varying magnetic flux generates an electric field
that accelerates the electrons.

Faraday's law applied to a contour following the charge's
trajectory at radius R yields

E- dl= E2rR =d (25)
L di

which accelerates the electrons as

dv e d4 e
m- = -eE, = Jv,=v - e- (26)

dt 2 R dt 27rmR

The electrons move in the direction so that their self-
magnetic flux is opposite to the applied flux. The resulting
Lorentz force is radially inward. A stable orbit of constant
radius R is achieved if this force balances the centrifugal
force:

dv, mvy
m-= ev*B. (R) = 0 (27)

dt R

which from (26) requires the flux and magnetic field to be
related as

= 21rR2 B(R) (28)

This condition cannot be met by a uniform field (as then
S= 1rR 2B,) so in practice the imposed field is made to

approximately vary with radial position as

B,(r)=Bo(-)>=21rJ B,(r)rdr=2rR2Bo (29)

BWt

Figure 6-7 "ihebetatron accelerates electrons to high speeds using the electric field
generated by a time varying magnetic field.
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where R is the equilibrium orbit radius, so that (28) is
satisfied.

The magnetic field must remain curl free where there is no
current so that the spatial variation in (29) requires a radial
magnetic field component:

(aB, _BjB BoR
VxB= " =• = > B ,= - z  (30)

(az ar r

Then any z-directed perturbation displacements

d 2 z ev ! eBo\2

t m Im

eBo
> z = A1 sin wot + A 2 cos 00t, 0o (31)

m

have sinusoidal solutions at the cyclotron frequency wo=
eBo/m, known as betatron oscillations.

6-1-5 Faraday's Law and Stokes' Theorem

The integral form of Faraday's law in (1) shows that with
magnetic induction the electric field is no longer conservative
as its line integral around a closed path is non-zero. We may
convert (1) to its equivalent differential form by considering a
stationary contour whose shape does not vary with time.
Because the area for the surface integral does not change
with time, the time derivative on the right-hand side in (1)
may be brought inside the integral but becomes a partial
derivative because B is also a function of position:

aB
E•Edl=- B -*dS (32)

at

Using Stokes' theorem, the left-hand side of (32) can be
converted to a surface integral,

f E.dl= VxE. dS=- * dS (33)

which is equivalent to

(Vx E+ t dS= 0 (34)

Since this last relation is true for any surface, the integrand
itself must be zero, which yields Faraday's law of induction in
differential form as

BB
VxE= --

da

Ot
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6-2 MAGNETIC CIRCUITS

Various alloys of iron having very high values of relative
permeability are typically used in relays and machines to
constrain the magnetic flux to mostly lie within the permeable
material.

6-2-1 Self-Inductance

The simple magnetic circuit in Figure 6-8 has an N turn
coil wrapped around a core with very high relative
permeability idealized to be infinite. There is a small air gap
of length s in the core. In the core, the magnetic flux density
B is proportional to the magnetic field intensity H by an
infinite permeability g. The B field must remain finite to keep
the flux and coil voltage finite so that the H field in the core
must be zero:

H=0
lim B= AH> (1)

,B finite

Contour of integration of

S Closed surface S
has zero net flux

through it

raraoay S IdW eUValuareo lU1r Udorl.u curlluU IuIruwvIy iv

turn coil in the direction of the current

Figure 6-8 The magnetic field is zero within an infinitely permeable magnetic core
and is constant in the air gap if we neglect fringing. The flux through the air gap is
constant at every cross section of the magnetic circuit and links the N turn coil N times.
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The H field can then only be nonzero in the air gap. This
field emanates perpendicularly from the pole faces as no
surface currents are present so that the tangential component
of H is continuous and thus zero. If we neglect fringing field
effects, assuming the gap s to be much smaller than the width
d or depth D, the H field is uniform throughout the gap.
Using Ampere's circuital law with the contour shown, the
only nonzero contribution is in the air gap,

H dl= Hs = Io..enlosed = N (2)

where we realize that the coil current crosses perpendicularly
through our contour N times. The total flux in the air gap is
then

,oNDd .
D = izoHDd = uo (3)

Because the total flux through any closed surface is zero,

sB . dS= 0 (4)

all the flux leaving S in Figure 6-8 on the air gap side enters
the surface through the iron core, as we neglect leakage flux
in the fringing field. The flux at any cross section in the iron
core is thus constant, given by (3).

If the coil current i varies with time, the flux in (3) also
varies with time so that a voltage is induced across the coil. We
use the integral form of Faraday's law for a contour that lies
within the winding with Ohmic conductivity ao, cross sectional
area A, and total length I. Then the current density and
electric field within the wire is

J=-, E= - (5)
A' -roA

so that the electromotive force has an Ohmic part as well as a
contribution due to the voltage-across the terminals:

Ci " d f
E-d= -1-dt+ E.dI= ---• BdS (6)

-f b dtJ

iR across
in wire terminals

The surface S on the right-hand side is quite complicated
because of the spiral nature of the contour. If the coil only
had one turn, the right-hand side of (6) would just be the time
derivative of the flux of (3). For two turns, as in Figure 6-9,
the flux links the coil twice, while for N turns the total flux

· _11_1·_ · ______ ~ _~__
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t
d•

t
=fB dS -

surface S

Fluxinke

Flux linked
by a two turn
loopis 2

4b

4P

rte9±

Flux linked by a
Nturn coil is

N'Z'

Figure 6-9 The complicated spiral surface for computation of the linked flux by an N
turn coil can be considered as N single loops each linking the same flux 4.

linked by the coil is NM. Then (6) reduces to

v = iR +L (7)
dt

where the self-inductance is defined as

L N = N s B dS = 1 0N d henry [kg-m 2-A -s- 2 ] (8)
i fLH . dl s

For linearly permeable materials, the inductance is always
independent of the excitations and only depends on the
geometry. Because of the fixed geometry, the inductance is a
constant and thus was taken outside the time derivative in (7).
In geometries that change with time, the inductance will also
be a function of time and must remain under the derivative.
The inductance is always proportional to the square of the
number of coil turns. This is because the flux ( in the air gap
is itself proportional to N and it links the coil N times.

EXAMPLE 6-1 SELF-INDUCTANCES

Find the self-inductances for the coils shown in Figure
6-10.

(a) Solenoid
An N turn coil is tightly wound upon a cylindrical core of

radius a, length 1,and permeability At.

Flux 0 through
a single loop



408 Electromagnetic Induction

Contour of integration
of Ampere's law

(magnetic field negligible
nlltside coil)

utting
contour = Ni

Figure 6-10 Inductances. (a) Solenoidal coil; (b) toroidal coil.

SOLUTION

A current i flowing in the wire approximates a surface
current

K, = Ni/ll

If the length I is much larger than the radius a, we can neglect
fringing field effects at the ends and the internal magnetic
field is approximately uniform and equal to the surface cur-
rent,

Ni
H. = K0, =

as we assume the exterior magnetic field is negligible. The
same result is obtained using Ampere's circuital law for the
contour shown in Figure 6-10a. The flux links the coil N
times:

NID NAtH, ra2 N2l,2lra 2

L=
i i 1

(b) Toroid
AnN turn coil is tightly wound around a donut-shaped core

of permeability 1A with a rectangular cross section and inner
and outer radii R1 and R2 .

No net current cuts
contour (equal but opposite
contributions from upward

and downward currents)

No current
cuts contour

\P
I

/
I
/

o

outside....0

"I. .. . . A

Iv lu|rI
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SOLUTION

Applying Ampere's circuital law to the three contours
shown in Figure 6-10b, only the contour within the core has a
net current passing through it:

0, r<R,

SH. dl=H02rr= Ni, R,<r<R2

0, r>R2

The inner contour has no current through it while the outer
contour enclosing the whole toroid has equal but opposite
contributions from upward and downward currents.

The flux through any single loop is

1 = jD H, dr

_ DNi R2 dr

21r , r

pDNi In R 2

2,r R,

so that the self-inductance is

N'D gpDN 2 R 2L = - In-
i 2-7r R 1

6-2-2 Reluctance

Magnetic circuits are analogous to resistive electronic
circuits if we define the magnetomotive force (MMF) 9
analogous to the voltage (EMF) as

= Ni (9)

The flux then plays the same role as the current in electronic
circuits so that we define the magnetic analog to resistance as
the reluctance:

9 N 2 (length)
( L (permeability)(cross-sectional area)

which is proportional to the reciprocal of the inductance.
The advantage to this analogy is that the rules of adding

reluctances in series and parallel obey the same rules as resist-
ances.



(a) Reluctances in Series
For the iron core of infinite permeability in Figure 6-1 a,

with two finitely permeable gaps the reluctance of each gap is
found from (8) and (10) as

asothat theD

so that the flux is

A2a2D (11)

(12)
_ Ni NO N'

921+.2 i1+ 2 i I + R2

The iron core with infinite permeability has zero reluctance.
If the permeable gaps were also iron with infinite permeabil-
ity, the reluctances of (11) would also be zero so that the flux

••1 =
,os-

Contour for

2 2 = s2 evaluating Ampere's law .9=Ni=t +?2)

Depth D

$
S

Paths for evaluation
of Ampere's circuital

Depth D law which give us
that He = H 2 = Ni/s

Figure 6-11 Magnetic circuits are most easily analyzed from a circuit approach where
(a) reluctances in series add and (b) permeances in parallel add.
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in (12) becomes infinite. This is analogous to applying a
voltage across a short circuit resulting in an infinite current.
Then the small resistance in the wires determines the large
but finite current. Similarly, in magnetic circuits the small
reluctance of a closed iron core of high permeability with no
gaps limits the large but finite flux determined by the satura-
tion value of magnetization.

The H field is nonzero only in the permeable gaps so that
Ampere's law yields

Hs + H 2s2 = Ni (13)

Since the flux must be continuous at every cross section,

(= 1ALHl a 1D = s2 H2 a2 D (14)

we solve for the H fields as

e2a2Ni 1 1_aNi
H1 = a2 , H2 = (15)

1•a12 +2a2s 1a S22 +- 2a2 s 1

(b) Reluctances in Parallel
If a gap in the iron core is filled with two permeable materials,
as in Figure 6-1 lb, the reluctance of each material is still given
by (11). Since each material sees the same magnetomotive
force, as shown by applying Ampere's circuital law to
contours passing through each material,

Ni
His = H 2s = Ni =Hi= H 2 = (16)

the H fields in each material are equal. The flux is then

Ni( t + 2)
0 = (AHlal+A2H2a2)D = = Ni( + 2)

(17)

where the permeances 01 and -2 are just the reciprocal
reluctances analogous to conductance.

6-2-3 Transformer Action

(a) Voltages are not Unique
Consider two small resistors R1 and R2 forming a loop

enclosing one leg of a closed magnetic circuit with permeabil-
ity A, as in Figure 6-12. An N turn coil excited on one leg with
a time varying current generates a time varying flux that is
approximately

QD(t)=pNAi/ 1 (18)

where I is the average length around the core.
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Cross sectional R2  d4
area A v 2 = -iR 2- o

dQe
V1 - V2 - dt

Figure 6-12 Voltages are not unique in the presence of a time varying magnetic field.
A resistive loop encircling a magnetic circuit has different measured voltages across the
same node pair. The voltage difference is equal to the time rate of magnetic flux
through the loop.

Applying Faraday's law to the resistive loop we have

d•(t) 1 de

E. dl= i(R +R2)= t = (19)
dt Rj+R9 dt

where we neglect the self-flux produced by the induced cur-
rent i and reverse the sign on the magnetic flux term because
D penetrates the loop in Figure 6-12 in the direction opposite
to the positive convention given by the right-hand rule illus-
trated in Figure 6-2.

If we now measured the voltage across each resistor, we
would find different values and opposite polarities even
though our voltmeter was connected to the same nodes:

R 1  do
vl = iR = +

RI1+R9 dt
(20)

-RP dep
v2 = -iR 2 =

R1 +R 2 dt

This nonuniqueness of the voltage arises because the elec-
tric field is no longer curl free. The voltage difference
between two points depends on the path of the connecting
wires. If any time varying magnetic flux passes through the
contour defined by the measurement, an additional contri-
bution results.

· ___
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(b) Ideal Transformers
Two coils tightly wound on a highly permeable core, so that

all the flux of one coil links the other, forms an ideal trans-
former, as in Figure 6-13. Because the iron core has an
infinite permeability, all the flux is confined within the core.
The currents flowing in each coil, it and i2 , are defined so
that when they are positive the fluxes generated by each coil
are in the opposite direction. The total flux in the core is then

Nlil -N 2i2
Q IR--~ jAA

where 2 is the reluctance of the core and I
length of the core.

The flux linked by each coil is then

S= Ni= (Nii -NIN 2 i2 )

A2 = NP = -- (N1 N2 it - Ni 2)
N12

(21)

is the average

(22)

Cross sectional

arywinding

V1 N 1

v 2 N 2

ii N2 vil = V2i2
il N2

I2 NI

(a)

Figure 6-13 (a) An ideal transformer relates primary and secondary voltages by the
ratio of turns while the currents are in the inverse ratio so that the inputpower equals
the output power. The H field is zero within the infinitely permeable core. (b) In a real
transformer the nonlinear B-H hysteresis loop causes a nonlinear primary current it
with an open circuited secondary (i = 0) even though the imposed sinusoidal voltage
v, = V0 cos ot fixes the flux to be sinusoidal. (c) A more complete transformer equivalent
circuit.

~rn~yr ~ul~ IlllyLII
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B

0 B field time scale

L ----- J
Ideal transformer

(c)

Figure 6.13.

which can be written as

A, = Lli, -Mi2 (23)
A2 =MiI-L2 i2

where L, and L 2 are the self-inductances of each coil alone
and M is the mutual inductance between coils:

LI = N L o, L 2 = NLo0 , M= N1N Lo, Lo = gAll
(24)

In general, the mutual inductance obeys the equality:

OM- k<ks1 (25)

lim = o
H large dH

N i, (t)
H= !

· _ I_

M=k(LIL) ! /2 ,
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where k is called the coefficient of coupling. For a noninfinite
core permeability, k is less than unity because some of the flux
of each coil goes into the free space region and does not link
the other coil. In an ideal transformer, where the permeabil-
ity is infinite, there is no leakage flux so that k = 1.

From (23), the voltage across each coil is

dAl di di2
di dt dt

(26)
dA2 di, di2
di di dt

Because with no leakage, the mutual inductance is related
to the self-inductances as

N2 NI
M =-L=-L 2 (27)

N, N 2

the ratio of coil voltages is the same as the turns ratio:

vl dA,/dt NI
(28)

v 2 dA2/It N 2

In the ideal transformer of infinite core permeability, the
inductances of (24) are also infinite. To keep the voltages and
fluxes in (26) finite, the currents must be in the inverse turns
ratio

i N2
(29)

i 2 N,

The electrical power delivered by the source to coil 1, called
the primary winding, just equals the power delivered to the
load across coil 2, called the secondary winding:

vlii = v 2i 2 (30)

If N 2 >Nl, the voltage on winding 2 is greater than the
voltage on winding I but current i2 is less than iI keeping the
powers equal.

If primary winding 1 is excited by a time varying voltage
vI(t) with secondary winding 2 loaded by a resistor RL so that

v2 = i 2 RL (31)

the effective resistance seen by the primary winding is

R v= _ N_ v 2 N 1 L (32)
ii N 2 (N2/NI)i 2 N2
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A transformer is used in this way as an impedance trans-
former where the effective resistance seen at the primary
winding is increased by the square of the turns ratio.

(c) Real Transformers
When the secondary is open circuited (i 2 = 0), (29) shows

that the primary current of an ideal transformer is also zero.
In practice, applying a primary sinusoidal voltage Vo cos ot
will result in a small current due to the finite self-inductance
of the primary coil. Even though this self-inductance is large
if the core permeability t is large, we must consider its effect
because there is no opposing flux as a result of the open
circuited secondary coil. Furthermore, the nonlinear
hysteresis curve of the iron as discussed in Section 5-5-3c will
result in a nonsinusoidal current even though the voltage is
sinusoidal. In the magnetic circuit of Figure 6.13a with i2 = 0,
the magnetic field is

H = (33)

while the imposed sinusoidal voltage also fixes the magnetic
flux to be sinusoidal

de Vo0 .
v= = Vo cos wtt > = BA = -sin wt (34)

dt W

Thus the upper half of the nonlinear B-H magnetization
characteristic in Figure 6-13b has the same shape as the flux-
current characteristic with proportionality factors related to
the geometry. Note that in saturation the B-H curve
approaches a straight line with slope Lo0. For a half-cycle of
flux given by (34), the nonlinear open circuit magnetizing
current is found graphically as a function of time in Figure
6-13b. The current is symmetric over the negative half of the
flux cycle. Fourier analysis shows that this nonlinear current is
composed of all the odd harmonics of the driving frequency
dominated by the third and fifth harmonics. This causes
problems in power systems and requires extra transformer
windings to trap the higher harmonic currents, thus prevent-
ing their transmission.

A more realistic transformer equivalent circuit is shown in
Figure 6-13c where the leakage reactances X 1 and X 2
represent the fact that all the flux produced by one coil does
not link the other. Some small amount of flux is in the free
space region surrounding the windings. The nonlinear
inductive reactance Xc represents the nonlinear magnetiza-
tion characteristic illustrated in Figure 6-13b, while Rc
represents the power dissipated in traversing the hysteresis

~I
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loop over a cycle. This dissipated power per cycle equals the
area enclosed by the hysteresis loop. The winding resistances
are R, and R 2.

6-3 FARADAY'S LAW FOR MOVING MEDIA

6-3-1 The Electric Field Transformation

If a point charge q travels with a velocity v through a region
with electric field E and magnetic field B, it experiences the
combined Coulomb-Lorentz force

F=q(E+vxB) (1)

Now consider another observer who is travelling at the same
velocity v as the charge carrier so that their relative velocity is
zero. This moving observer will then say that there is no
Lorentz force, only a'Coulombic force

F' = qE' (2)

where we indicate quantities measured by the moving obser-
ver with a prime. A fundamental postulate of mechanics is
that all physical laws are the same in every inertial coordinate
system (systems that travel at constant relative velocity). This
requires that the force measured by two inertial observers be
the same so that F' = F:

E' =E+vxB (3)

The electric field measured by the two observers in relative
motion will be different. This result is correct for material
velocities much less than the speed of light and is called a
Galilean field transformation. The complete relativistically
correct transformation slightly modifies (3) and is called a
Lorentzian transformation but will not be considered here.

In using Faraday's law of Section 6-1-1, the question
remains as to which electric field should be used if the
contour L and surface S are moving. One uses the electric
field that is measured by an observer moving at the same
velocity as the convecting contour. The time derivative of the
flux term cannot be brought inside the integral if the surface
S is itself a function of time.

6-3-2 Ohm's Law for Moving Conductors

The electric field transformation of (3) is especially
important in modifying Ohm's law for moving conductors.
For nonrelativistic velocities, an observer moving along at the
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same velocity as an Ohmic conductor measures the usual
Ohm's law in his reference frame,

J E= TE' (4)

where we assume the conduction process is unaffected by the
motion. Then in Galilean relativity for systems with no free
charge, the current density in all inertial frames is the same so
that (3) in (4) gives us the generalized Ohm's law as

J'= Jr= o-(E+vx B) (5)

where v is the velocity of the conductor.
The effects of material motion are illustrated by the parallel

plate geometry shown in Figure 6-14. A current source is
applied at the left-hand side that distributes itself uniformly
as a surface current K, = *lID on the planes. The electrodes
are connected by a conducting slab that moves to the right with
constant velocity U. The voltage across the current source can
be computed using Faraday's law with the contour shown. Let
us have the contour continually expanding with the 2-3 leg
moving with the conductor. Applying Faraday's law we have

E' dl= Edl+ E' dl+ | *dl+ E dl
iR (6

=-d B*dS (6)
dt

Surface current

Figure 6-14 A moving, current-carrying Ohmic conductor generates a speed voltage
as well as the usual resistive voltage drop.

·_
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where the electric field used along each leg is that measured
by an observer in the frame of reference of the contour.
Along the 1-2 and 3-4 legs, the electric field is zero within the
stationary perfect conductors. The second integral within the
moving Ohmic conductor uses the electric field E', as
measured by a moving observer because the contour is also
expanding at the same velocity, and from (4) and (5) is related
to the terminal current as

J' I
E' i, (7)

uo o-Dd

In (6), the last line integral across the terminals defines the
voltage.

Is d= - d
d v = -- B ' dS=- ((MoHxs) (8)

o-Dd dt s dt

The first term is just the resistive voltage drop across the
conductor, present even if there is no motion. The term on
the right-hand side in (8) only has a contribution due to the
linearly increasing area (dx/ldt = U) in the free space region
with constant magnetic field,

H, =I/D (9)

The terminal voltage is then

U s
v= R+ R= D-(10)

D ooDd

We see that the speed voltage contribution arose from the
flux term in Faraday's law. We can obtain the same solution
using a contour that is stationary and does not expand with
the conductor. We pick the contour to just lie within the
conductor at the time of interest. Because the contour does
not expand with time so that both the magnetic field and the
contour area does not change with time, the right-hand side
of (6) is zero. The only difference now is that along the 2-3 leg
we use the electric field as measured by a stationary observer,

E=E'-vxB (11)

so that (6) becomes

tPoUls
IR +- v = 0 (12)

D

which agrees with (10) but with the speed voltage term now
arising from the electric field side of Faraday's law.

This speed voltage contribution is the principle of electric
generators converting mechanical work to electric power
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when moving a current-carrying conductor through a
magnetic field. The resistance term accounts for the electric
power dissipated. Note in (10) that the speed voltage contri-
bution just adds with the conductor's resistance so that the
effective terminal resistance is v/I = R +(potUs/D). If the slab
moves in the opposite direction such that U is negative, the
terminal resistance can also become negative for sufficiently
large U (U<-RDI/os).Such systems are unstable where the
natural modes grow rather than decay with time with any
small perturbation, as illustrated in Section 6-3-3b.

6-3-3 Faraday's Disk (Homopolar Generator)*

(a) Imposed Magnetic Field
A disk of conductivity o- rotating at angular velocity w

transverse to a uniform magnetic field Boiz, illustrates the
basic principles of electromechanical energy conversion. In
Figure 6-15a we assume that the magnetic field is generated
by an N turn coil wound on the surrounding magnetic circuit,

Bo=- ONif (13)

The disk and shaft have a permeability of free space lo, so
that the applied field is not disturbed by the assembly. The
shaft and outside surface at r = Ro are highly conducting and
make electrical connection to the terminals via sliding
contacts.

We evaluate Faraday's law using the contour shown in
Figure 6-15a where the 1-2 leg within the disk is stationary so
the appropriate electric field to be used is given by (11):

E, = J- orBo = wrBo (14)
a" 2~rodr

where the electric field and current density are radial and i, is
the total rotor terminal current. For the stationary contour
with a constant magnetic field, there is no time varying flux
through the contour:

2 4

E'dl=I Edr+ Edl=O0 (15)

* Some of the treatment in this section is similarto that developed in: H. H. Woodson andJ. R.
Melcher, Electromechanical Dynamics, Part I, Wiley, N. Y., 1968, Ch. 6.
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contour of
of Faraday's law

(a)

if L R

V/ R1

SRr L

+ 
-

(b)

Figure 6-15 (a) A conducting disk rotating in an axial magnetic field is called a
homopolar generator. (b) In addition to Ohmic and inductive voltages there is a speed
voltage contribution proportional to the speed of the disk and the magnetic field.

Using (14) in (15) yields the terminal voltage as

Vr= rf' (2wr d wrBo) dr

i, Ro wBo 2
In (Ro-R )

27ro-d Ri 2

= irRr - Goif

where R, is the internal rotor resistance of the disk and G is
called the speed coefficient:

In (Ro/Ri)
R,= rd

27ro'd
MoN 2 2

G= (Ro-R )
2s

We neglected the self-magnetic field due to the rotor current,
assuming it to be much smaller than the applied field Bo, but

421
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it is represented in the equivalent rotor circuit in Figure 6-15b
as the self-inductance L, in series with a resistor and a speed
voltage source linearly dependent on the field current. The
stationary field coil is represented by its self-inductance and
resistance.

For a copper disk (o = 6 x 10' siemen/m) of thickness I mm
rotating at 3600 rpm (w = 1207r radian/sec) with outer and
inner radii Ro = 10 cm and Ri = 1 cm in a magnetic field of
Bo = 1 tesla, the open circuit voltage is

vc wBo (R2-R)--1.9 V (18)
2

while the short circuit current is

i.= vo r 2•rd 3 x 105 amp (19)
In (Ro/Ri)

Homopolar generators are typically high current, low voltage
devices. The electromagnetic torque on the disk due to the
Lorentz force is

2vr d RD

T=f L ri, x (J x B)r dr d4 dz
B=0O 2 2Ri

Ri

i- -B (R -R?)i,
2

= -Giii,i2  (20)

The negative sign indicates that the Lorentz force acts on
the disk in the direction opposite to the motion. An external
torque equal in magnitude but opposite in direction to (20) is
necessary to turn the shaft.

This device can also be operated as a motor if a rotor
current into the disk (i, < 0) is imposed. Then the electrical
torque causes the disk to turn.

(b) Self-Excited Generator
For generator operation it is necessary to turn the shaft and

supply a field current to generate the magnetic field.
However, if the field coil is connected to the rotor terminals,
as in Figure 6-16a, the generator can supply its own field
current. The equivalent circuit for self-excited operation is
shown in Figure 6-16b where the series connection has i, = if.

_ I



Faraday'sLawfor Moving Media

LI

+

VI Rf
L=Lt+ L,

R = R + Rr
Rr Lr

+ wi

+

423

Figure 6-16 A homopolar generator can be self-excited where the generated rotor
current is fed back to the field winding to generate its own magnetic field.

Kirchoff's voltage law around the loop is

di
L + i(R - Go)= O,

dt
R = R, + Rf, L = L, +Lf

where R and L are the series resistance and inductance of the
coil and disk. The solution to (21) is

i = I 0 e -[(R--Cý)/L]t

where Io is the initial current at t = 0. If the exponential factor
is positive

Gv> R (23)

i, = il
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the current grows with time no matter how small Io is. In
practice, Io is generated by random fluctuations (noise) due to
residual magnetism in the iron core. The exponential growth
is limited by magnetic core saturation so that the current
reaches a steady-state value. If the disk is rotating in the
opposite direction (w <0), the condition of (23) cannot be
satisfied. It is then necessary for the field coil connection to be
reversed so that i, = -i t. Such a dynamo model has been used
as a model of the origin of the earth's magnetic field.

(c) Self-Excited ac Operation
Two such coupled generators can spontaneously generate

two phase ac power if two independent field windings are
connected, as in Figure 6-17. The field windings are con-
nected so that if the flux through the two windings on one
machine add, they subtract on the other machine. This
accounts for the sign difference in the speed voltages in the
equivalent circuits,

dir
L-+ (R - Go)ix + GWi 2 = 0

i (24)
dis

L-+ (R - Gw)i 2 - Gwi1 = 0
dt

where L and R are the total series inductance and resistance.
The disks are each turned at the same angular speed w.

Since (24) are linear with constant coefficients, solutions are
of the form

il = I e"s ,  i2 = 12 eS  (25)

which when substituted back into (24) yields

(Ls + R - Go)I1 + GwI 2 = 0
(26)-Goli + (Ls + R - Go)I2 = 0

For nontrivial solutions, the determinant of the coefficients of
I, and I2 must be zero,

(Ls +R - Gw)2 = -(GW)2 (27)

which when solved for s yields the complex conjugate natural
frequencies,

(R-Go) .Gw
L L

1 (28)

where the currents are 90' out of phase. If the real part of s is
positive, the system is self-excited so that any perturbation

~~·· __
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R1 Lj Ri L! Rr Lr

Li U -

Cl - il I

L=2LI+L,

R = 2Rf +R,

GwUi2 + il )

Figure 6-17 Cross-connecting two homopolar generators can result in self-excited
two-phase alternating currents. Two independent field windings are required where
on one machine the fluxes add while on the other they subtract.

grows at an exponential rate:

Gw>R

The imaginary part of s yields the oscillation frequency

jo = Im (s)=Gw/IL

(29)

(30)

Again, core saturation limits the exponential growth so that
two-phase power results. Such a model may help explain the
periodic reversals in the earth's magnetic field every few
hundred thousand years.
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(d) Periodic Motor Speed Reversals
If the field winding of a motor is excited by a dc current, as

in Figure 6-18, with the rotor terminals connected to a
generator whose field and rotor terminals are in series, the
circuit equation is

di (R - Ggwg) Gmwi
-dt+ L = ----
dt L L

where L and R are the total series inductances and resis-
tances. The angular speed of the generator o, is externally

Generator

SMotor

SGenerator

Generator

L = Lrm + Lrg + Lg

R = Rr +Rig +Rrg

Figure 6-18 Cross connecting a homopolar generator and motor can result in spon-
taneous periodic speed reversals of the motor's shaft.

426
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constrained to be a constant. The angular acceleration of the
motor's shaft is equal to the torque of (20),

dwm
J- = -GIfi (32)

dt

where J is the moment of inertia of the shaft and If = Vf/RfI is
the constant motor field current.

Solutions of these coupled, linear constant coefficient
differential equations are of the form

i =leS

o = We st (33)

which when substituted back into (31) and (32) yield

s+ R -GEi) - u =G O

S+ Ws =0 (34)

Again, for nontrivial solutions the determinant of coefficients
of I and W must be zero,

s(s+ R+ (G ) =0 (35)

which when solved for s yields

(R - Gg,) [(R- Ga)) 2 (Gmrn) 2
11/ (36)

2L 2L JL

For self-excitation the real part of s must be positive,

Gyw, > R (37)

while oscillations will occur if s has an imaginary part,

( GIj) 2 >R - GgW\ 2 (38)
JL 2L )

Now, both the current and shaft's angular velocity spon-
taneously oscillate with time.

6-3-4 Basic Motors and Generators

(a) ac Machines
Alternating voltages are generated from a dc magnetic field

by rotating a coil, as in Figure 6-19. An output voltage is
measured via slip rings through carbon brushes. If the loop
of area A is vertical at t = 0 linking zero flux, the imposed flux
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'P0 w COSwt

Figure 6-19 A coil rotated within a constant magnetic field generates a sinusoidal
voltage.

through the loop at any time, varies sinusoidally with time
due to the rotation as

(Di = (D sin at (39)

Faraday's law applied to a stationary contour instantaneously
passing through the wire then gives the terminal voltage as

de di
v = iR +-= iR +L-+d ocw cos ot

dt dt
(40)

where R and L are the resistance and inductance of the wire.
The total flux is equal to the imposed flux of (39) as well as
self-flux (accounted for by L) generated by the current i. The
equivalent circuit is then similar to that of the homopolar
generator, but the speed voltage term is now sinusoidal in
time.

(b) dc Machines
DC machines have a similar configuration except that the

slip ring is split into two sections, as in Figure 6-20a. Then
whenever the output voltage tends to change sign, the
terminals are also reversed yielding the waveform shown,
which is of one polarity with periodic variations from zero to a
peak value.

428
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Figure 6-20 (a) If the slip rings are split so that when the voltage tends to change sign
the terminals are also reversed, the resulting voltage is of one polarity. (b) The voltage
waveform can be smoothed out by placing a second coil at right angles to the first and
using a four-section commutator.

The voltage waveform can be smoothed out by using a
four-section commutator and placing a second coil perpen-
dicular to the first, as in Figure 6-20b. This second coil now
generates its peak voltage when the first coil generates zero
voltage. With more commutator sections and more coils, the
dc voltage can be made as smooth as desired.
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6-3-5 MHD Machines

Magnetohydrodynamic machines are based on the same
principles as rotating machines, replacing the rigid rotor by a
conducting fluid. For the linear machine in Figure 6-21, a
fluid with Ohmic conductivity o- flowing with velocity v,
moves perpendicularly to an applied magnetic field Boiz. The
terminal voltage V is related to the electric field and current
as

E=i, J=Vo(E+vxB)=B +v Bo ix =Di
S Dd

(41)

which can be rewritten as

V = iR - vBos (42)

which has a similar equivalent circuit as for the homopolar
generator.

The force on the channel is then

f=vJXBdV

= -iBosi, (43)

again opposite to the fluid motion.

6-3-6 Paradoxes

Faraday's law is prone to misuse, which has led to
numerous paradoxes. The confusion arises because the same

R o
oDd

v, Bos
+

2

y

x

Figure 6-21 An MHD (magnetohydrodynamic) machine replaces a rotating conduc-
tor by a moving fluid.
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contribution can arise from either the electromotive force
side of the law, as a speed voltage when a conductor moves
orthogonal to a magnetic field, or as a time rate of change of
flux through the contour. This flux term itself has two
contributions due to a time varying magnetic field or due to a
contour that changes its shape, size, or orientation. With all
these potential contributions it is often easy to miss a term or
to double count.

(a) A Commutatorless de Machine*
Many persons have tried to make a commutatorless dc

machine but to no avail. One novel unsuccessful attempt is
illustrated in Figure 6-22, where a highly conducting wire is
vibrated within the gap of a magnetic circuit with sinusoidal
velocity:

v. = osin oat

Faraday's law applied to a
onary contour (dashed)
ntaneously within
vibrating wire.

Fcc 6-22 It is impossible to design a commutatorless dc machine. Although the speed
voltage alone can have a dc average, it will be canceled by the transformer elec-
tromotive force due to the time rate of change of magnetic flux through the loop. The
total terminal voltage will always have a zero time average.

* H. Sohon, ElectricalEssays for Recreation.Electrical Engineering, May (1946), p. 294.
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The sinusoidal current imposes the air gap flux density at the
same frequency w:

B. = Bo sin wt, Bo = g.oNIo/s (45)

Applying Faraday's law to a stationary contour instan-
taneously within the open circuited wire yields

j 2  3  40 r
E*dl= ,• dl+ E - dl + Edl+ E-dl

E
=

-vxB -v

= B. dS (46)

where the electric field within the highly conducting wire as
measured by an observer moving with the wire is zero. The
electric field on the 2-3 leg within the air gap is given by (11),
where E' = 0, while the 4-1 leg defines the terminal voltage. If
we erroneously argue that the flux term on the right-hand side
is zero because the magnetic field B is perpendicular to dS, the
terminal voltage is

v = vBJ = voBol sin 92 ot (47)

which has a dc time-average value. Unfortunately, this result
is not complete because we forgot to include the flux that
turns the corner in the magnetic core and passes perpen-
dicularly through our contour. Only the flux to the right of
the wire passes through our contour, which is the fraction
(L - x)/L of the total flux. Then the correct evaluation of (46) is

-v + vB,Bl = + [(L - x)Bl] (48)

where x is treated as a constant because the contour is sta-
tionary. The change in sign on the right-hand side arises
because the flux passes through the contour in the direction
opposite to its normal defined by the right-hand rule. The
voltage is then

v = vBJ - (L - x) , (49)
dt

where the wire position is obtained by integrating (44),

x= v dt = - (cos wt - 1)+xo (50)
xl./ gO~

__··_
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and xo is the wire's position at t = 0. Then (49) becomes

d dB,
v = 1 (xB,)-L1

dt dt

=SBolvo [( + 1) cos wt - cos 2o] - LIBow cosat (51)

which has a zero time average.

(b) Changes in Magnetic Flux Due to Switching
Changing the configuration of a circuit using a switch does

not result in an electromotive force unless the magnetic flux
itself changes.

In Figure 6-23a, the magnetic field through the loop is
externally imposed and is independent of the switch position.
Moving the switch does not induce an EMF because the
magnetic flux through any surface remains unchanged.

In Figure 6-23b, a dc current source is connected to a
circuit through a switch S. If the switch is instantaneously
moved from contact 1 to contact 2, the magnetic field due to
the source current I changes. The flux through any fixed area
has thus changed resulting in an EMF.

(c) Time Varying Number of Turns on a Coil*
If the number of turns on a coil is changing with time, as in

Figure 6-24, the voltage is equal to the time rate of change of
flux through the coil. Is the voltage then

v 1 N- (52)

or

d d4 dN
v d-(N)= Nd + d N (53)

dt dt d(

No current isinduced
Dy swltcrnng.

1B

1 2

(a)

Figure 6-23 (a) Changes ifn a circuit through the use of a switch does not by itself
generate an EMF. (b) However, an EMF can be generated if the switch changes the
magnetic field.

* L. V. Bewley. Flux Linkages and Electromagnetic Induction. Macmillan, New York,
1952.
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(b) (c) 1o dt

Figure 6-24 (a) If the number of turns on a coil is changing with time, the induced
voltage is v = N(t) d4Dldt. A constant flux does not generate any voltage. (b) If the flux
itself is proportional to the number of turns, a dc current can generate a voltage. (c)
With the tap changing coil, the number of turns per unit length remains constant so
that a dc current generates no voltage because the flux does not change with time.

For the first case a dc flux generates no voltage while the
second does.

We use Faraday's law with a stationary contour instan-
taneously within the wire. Because the contour is stationary,
its area of NA is not changing with time and so can be taken
outside the time derivative in the flux term of Faraday's law so
that the voltage is given by (52) and (53) is wrong. Note that
there is no speed voltage contribution in the electromotive
force because the velocity of the wire is in the same direction
as the contour (vx B dl = 0).

·_._·
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If the flux (D itself depends on the number of turns, as in
Figure 6-24b, there may be a contribution to the voltage even
if the exciting current is dc. This is true for the turns being
wound onto the cylinder in Figure 6-24b. For the tap changing
configuration in Figure 6-24c, with uniformly wound turns,
the ratio of turns to effective length is constant so that a dc
current will still not generate a voltage.

6-4 MAGNETIC DIFFUSION INTO AN OHMIC CONDUCTOR*

If the current distribution is known, the magnetic field can
be directly found from the Biot-Savart or Ampere's laws.
However, when the magnetic field varies with time, the
generated electric field within an Ohmic conductor induces
further currents that also contribute to the magnetic field.

6-4-1 Resistor-Inductor Model

A thin conducting shell of radius Ri, thickness A, and depth
I is placed within a larger conducting cylinder, as shown in
Figure 6-25. A step current Io is applied at t = 0 to the larger
cylinder, generating a surface current K= (Io/l)i4. If the
length I is much greater than the outer radius R 0, the
magnetic field is zero outside the cylinder and uniform inside
for R, <r < R o. Then from the boundary condition on the
discontinuity of tangential H given in Section 5-6-1, we have

Ho= i., Ri<r<Ro (1)

The magnetic field is different inside the conducting shell
because of the induced current, which from Lenz's law, flows
in the opposite direction to the applied current. Because the
shell is assumed to be very thin (A<< Ri), this induced current
can be considered a surface current related to the volume
current and electric field in the conductor as

KI =JA = (o-A)E, (2)

The product (o-A) is called the surface conductivity. Then the
magnetic fields on either side of the thin shell are also related
by the boundary condition of Section 5-6-1:

Hi - Ho= K. = (oA)E4 (3)

* Much of the treatment of this section is similar to that of H. H. Woodson andJ. R. Melcher,
Electromechanical Dynamics, PartII, Wiley, N. Y., 1968, Ch. 7.
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I- 1(t)
K - i.

X

Depth I

Faraday's law
applied to contour

within cylindrical shell
of Ohmic conductivity a.

Figure 6-25 A step change in magnetic field causes the induced current within an
Ohmic conductor to flow in the direction where its self-flux opposes the externally
imposed flux. Ohmic dissipation causes the induced current to exponentially decay
with time with a LIR time constant.

Applying Faraday's law to a contour within the conducting
shell yields

d 2dHi
E'dl -= B dS: E,2wR, = -IMovrRif- (4)

dt dt

where only the magnetic flux due to H, passes through the
contour. Then using (1)-(3) in (4) yields a single equation in
Hi,:

dHi + i I(t) AoRcrA
dt 7 17 ' 2

where we recognize the time constant 7 as just being the ratio
of the shell's self-inductance to resistance:

S ioirR 2vrRi L A&oRr'A
L= R= - (6)

K4 1 ' R A R 2 (6)

The solution to (5) for a step current with zero initial
magnetic field is

Hi,= (1-e -') (7)

Initially, the magnetic field is excluded from inside the
conducting shell by the induced current. However, Ohmic

_I_
___ __
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dissipation causes the induced current to decay with time so
that the magnetic field may penetrate through the shell with
characteristic time constant 7.

6-4-2 The Magnetic Diffusion Equation

The transient solution for a thin conducting shell could be
solved using the integral laws because the geometry con-
strained the induced current to flow azimuthally with no
radial variations. If the current density is not directly known,
it becomes necessary to self-consistently solve for the current
density with the electric and magnetic fields:

8B
Vx E= -- (Faraday's law) (8)

at

V x H = Jf (Ampere's law) (9)

V B= 0 (Gauss's law) (10)

For linear magnetic materials with constant permeability /z
and constant Ohmic conductivity o moving with velocity U,
the constitutive laws are

B=jH, Jf =c(E+U x H) (11)

We can reduce (8)-(11) to a single equation in the magnetic
field by taking the curl of (9), using (8) and (11) as

V x (V x H)= V xJf

=o-[V x E+ Vx (Ux H)]

= •t+Vx(Ux H)) (12)

The double cross product of H can be simplified using the
vector identity

0

Vx (Vx H) = V(V/ H)-V 2 H

S--VH = HVx(UxH) (13)
pf at

where H has no divergence from (10). Remember that the
Laplacian operator on the left-hand side of (13) also
differentiates the directionally dependent unit vectors in
cylindrical (i, and i#) and spherical (i, i#, and i,) coordinates.
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6-4.3 Transient Solution with i Jo Motion (U = 0)

A step current is turned on at t = 0, in the parallel plate
geometry shown in Figure 6-26. By the right-hand rule and
with the neglect of fringing, the magnetic field is in the z
direction and only depends on the x coordinate, B,(x, t), so
that (13) reduces to

a2H, aH,
8x at

which is similar in form to the diffusion equation of a dis-
tributed resistive-capacitive cable developed in Section 3-6-4.

In the dc steady state, the second term is zero so that the
solution in each region is of the form

a H,
ax 2 =0=H,=ax+b
8x'

(15)

K. = I/D

1(t)

Kx = -- /D

--- x

IJ(Dx,t)
1/(Ddl

(b)

Figure 6-26 (a) A current source is instantaneously turned on at t = 0. The resulting
magnetic field within the Ohmic conductor remains continuous and is thus zero at t = 0
requiring a surface current at x = 0. (b) For later times the magnetic field and current
diffuse into the conductor with longest time constant 7 = oirgd 2 /ir2 towards a steady
state of uniform current with a linear magnetic field.

H, (x, t)
/1D

D^r- "Ilr
--

I0I > t
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where a and b are found from the boundary conditions. The
current on the electrodes immediately spreads out to a uni-
form surface distribution + (IID)ix traveling from the upper
to lower electrode uniformly through the Ohmic conductor.
Then, the magnetic field is uniform in the free space region,
decreasing linearly to zero within the Ohmic conductor being
continuous across the interface at x = 0:

I
I -IS x 0

D
lim H.(x) = (16)

It-0 I-(d-x), O-x -d
Dd

In the free space region where o = 0, the magnetic field
remains constant for all time. Within the conducting slab,
there is an initial charging transient as the magnetic field
builds up to the linear steady-state distribution in (16).
Because (14) is a linear equation, for the total solution of the
magnetic field as a function of time and space, we use super-
position and guess a solution that is the sum of the steady-
state solution in (16) and a transient solution which dies off
with time:

I
H.(x, t)= -(d-x)+ i(x) e "' (17)

Dd

We follow the same procedures as for the lossy cable in
Section 3-6-4. At this point we do not know the function H(x)
or the parameter a. Substituting the assumed solution of (17)
back into (14) yields the ordinary differential equation

d2 (x )
dx2 + caiH(x)=0 (18)

which has the trigonometric solutions

H(x) = A sin Vo x+ A2 cos Jl~o x (19)

Since the time-independent part in (17) already meets the
boundary conditions of

H, (x = 0) = IID
(20)

H,(x = d)=0

the transient part of the solution must be zero at the ends

H(x = 0)= 0=~A 2 = 0 (21)
H(x = d)= 0OAIsin 1V add = 0

which yields the allowed values of a as

1 /nr\2
-/oAaLnC> ,= " - , n 1,2,3,...

o\ ad
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Since there are an infinite number of allowed values of a, the
most general solution is the superposition of all allowed solu-
tions:

I nerx
H(x,t)= (d-x)+ A A,sin e -a (23)

Dd n=1 d

This relation satisfies the boundary conditions but not the
initial conditions at t = 0 when the current is first turned on.
Before the current takes its step at t = 0, the magnetic field is
zero in the slab. Right after the current is turned on, the
magnetic field must remain zero. Faraday's law would
otherwise make the electric field and thus the current density
infinite within the slab, which is nonphysical. Thus we impose
the initial condition

I fnlx
H,(x, t=O)=0= (d-x)+ * A, sin (24)

Dd -_1 d

which will allow us to solve for the amplitudes A, by multi-
plying (24) through by sin (mcwx/d) and then integrating over
x from 0 to d:

I mx rd nrx
d d n1 d d

(25)

The first term on the right-hand side is easily integrable*
while the product of sine terms integrates to zero unless
m = n, yielding

21
A,, - (26)

mrrD

The total solution is thus

I x sin (nwx/d) eniI_ (27)H (x, t)= 1 - 2 - e 2 (27)
d n=1 n*1

where we define the fundamental continuum magnetic
diffusion time constant 7 as

1 Ito'd2
" = = 2 -(28)

analogous to the lumped parameter time constant of (5) and
(6).

f (d - x) sin dx = d2

d MIT

_··· ___ ___
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The magnetic field approaches the steady state in times
long compared to r. For a perfect conductor (o- co), this time
is infinite and the magnetic field is forever excluded from the
slab. The current then flows only along the x = 0 surface.
However, even for copper (o-6X 107 siemens/m) 10-cm
thick, the time constant is 7 80 msec, which is fast for many
applications. The current then diffuses into the conductor
where the current density is easily obtained from Ampere's law
as

aHz.Jf = V H = -
ax

I 12 nirx
=-1+2 cos- e i (29)

Dd 1 d29)

The diffusion of the magnetic field and current density are
plotted in Figure 6-26b for various times

The force on the conducting slab is due to the Lorentz
force tending to expand the loop and a magnetization force
due to the difference of permeability of the slab and the
surrounding free space as derived in Section 5-8-1:

F =- o(M - V)H + P•oJf x H

= (A - Ao)(H - V)H + AoJf XH (30)

For our case with H = H,(x)i,, the magnetization force density
has no contribution so that (30) reduces to

F = /oJt x H

= 0o(V x H) x H

= go(H -V)H - V(2AoH • H)

dx (xoHý )ix (31)dx

Integrating (31) over the slab volume with the magnetic
field independent of y and z,

d d
S= -Io sD-(WoH ) dx

dx

= - oHsDI|

SICzoI 2s
2• (32)

D

gives us a constant force with time that is independent of the
permeability. Note that our approach of expressing the cur-
rent density in terms of the magnetic field in (31) was easier
than multiplying the infinite series of (27) and (29), as the
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result then only depended on the magnetic field at the
boundaries that are known from the boundary conditions of
(20). The resulting integration in (32) was easy because the
force density in (31) was expressed as a pure derivative of x.

6-4-4 The Sinusoidal Steady State (Skin Depth)

We now place an infinitely thick conducting slab a distance
d above a sinusoidally varying current sheet Ko cos ati,,which
lies on top of a perfect conductor, as in Figure 6-27a. The

o -*H3 = --Kocoswt

Ko coswtiy

H, (x, t)
Ko

(b)

Figure 6.27 (a) A stationary conductor lies above a sinusoidal surface current placed
upon a perfect conductor so that H = 0 for x < - d. (b) The magnetic field and current
density propagates and decays into the conductor with the same characteristic length
given by the skin depth 8 = 2,f-(wa ). The phase speed of the wave is oS.

442
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magnetic field within the conductor is then also sinusoidally
varying with time:

H.(x, t)=Re [A (x) eC' '] (33)

Substituting (33) into (14) yields

dx2 - jWAO = 0 (34)

with solution

IA-(x)= Al e( 'I+ix +A 2 e
-(l+i)xa (35)

where the skin depth 8 is defined as

8 = N/2/(1,j•) (36)

Since the magnetic field must remain finite far from the
current sheet, A must be zero.. The magnetic field is also
continuous across the x =0 boundary because there is no
surface current, so that the solution is

H,(x, t) = Re [-Ko e- ( +i)x' / ei we]

= -Ko cos (ot-x/8) e- '
`/, x 0 (37)

where the magnetic field in the gap is uniform, determined
by the discontinuity in tangential H at x = -d to be H, = -K,
for -d < x - 0 since within the perfect conductor (x < -d)H =
0. The magnetic field diffuses into the conductor as a strongly
damped propagating wave with characteristic penetration
depth 8. The skin depth 8 is also equal to the propagating
wavelength, as drawn in Figure 6-27b. The current density
within the conductor

-- 1~

Jf= Vx H = - ,ax

_=+ sK.[sin (w-t -cos Qo - i (38)

is also drawn in Figure 6-27b at various times in the cycle,
being confined near the interface to a depth on the order of 8.
For a perfect conductor, 8 -0, and the volume current
becomes a surface current.

Seawater has a conductivity of =4 siemens/m so that at a
frequency of f= 1 MHz (w = 2wrf) the skin depth is 8
0.25 m. This is why radio communications to submarines are
difficult. The conductivity of copper is r = 6 x 107 siemens/m
so that at 60 Hz the skin depth is8 = 8 mm. Power cables with
larger radii have most of the current confined near the sur-
face so that the center core carries very little current. This
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reduces the cross-sectional area through which the current
flows, raising the cable resistance leading to larger power
dissipation.

Again, the magnetization force density has no contribution
to the force density since H. only depends on x:

F = go(M • V)H + lioJf x H

= jCo(V x H) x H

= -V(L0oH • H) (39)

The total force per unit area on the slab obtained by
integrating (39) over x depends only on the magnetic field at
x = 0:

fL= • oH 2) dx

1 2 2

= UoKo0 COS2 Wt (40)

because again H is independent of y and z and the x
component of the force density of (39) was written as a pure
derivative with respect to x. Note that this approach was easier
than integrating the cross product of (38) with (37).

This force can be used to levitate the conductor. Note that
the region for x > 8 is dead weight, as it contributes very little
to the magnetic force.

6-4-5 Effects of Convection

A distributed dc surface current -Koi, at x = 0 flows along
parallel electrodes and returns via a conducting fluid moving
to the right with constant velocity voi., as shown in Figure
6-28a. The flow is not impeded by the current source at x = 0.
With the neglect of fringing, the magnetic field is purely z
directed and only depends on the x coordinate, so that (13) in
the dc steady state, with U = voi0 being a constant, becomes*

d2H, dH,
d;  vo - = 0 (41)

Solutions of the form

Hx(x)= A e" (42)

V x (U x H) = U - H(V -(I )U-(U-V)H=-vo

_· ___
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D

z

x

y

Ko
H, x) K (eRmx/I--eRm)

l-e R

Ko Rm eRmxIll
J(x) R,. I

1 -e

xlI x/I

Figure 6-28 (a) A conducting material moving through a magnetic field tends to pull
the magnetic field and current density with it. (b) The magnetic field and current
density are greatly disturbed by the flow when the magnetic Reynolds number is large,
R, = oI UI > 1.

when substituted back into (41) yield two allowed values of p,

P2-#_LooP= 0: P = 0, P = Auvo

Since (41) is linear, the most general solution is just the sum
of the two allowed solutions,

H,(x)= A I e R-•I +A2 (44)

445

H,(x)
Ko

i
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where the magnetic Reynold's number is defined as

R,. = o'vol = 2 (45)
1/vo

and represents the ratio of a representative magnetic
diffusion time given by (28) to a fluid transport time (1/vo).
The boundary conditions are

H,(x = 0)= Ko, H,(x = 1)= 0 (46)

so that the solution is

Ko R_.11
H (x) = l_- _(eex- eR )  (47)

The associated current distribution is then

Jt = Vx H = --. ,

1-e 48)

The field and current distributions plotted in Figure 6-28b
for various R, show that the magnetic field and current are
pulled along in the direction of flow. For small R, the
magnetic field is hardly disturbed from the zero flow solution
of a linear field and constant current distribution. For very
large R, >> 1, the magnetic field approaches a uniform dis-
tribution while the current density approaches a surface cur-
rent at x = 1.

The force on the moving fluid is independent of the flow
velocity:

f f= J x PoHsD dx

K o 2  R, e. e" x

K2oAosD e_ 1 ,,u -- i
S 2 . 2

= ý.oKosDix (49)

6-4-6 A Linear Induction Machine

The induced currents in a conductor due to a time varying
magnetic field give rise to a force that can cause the conductor
to move. This describes a motor. The inverse effect is when
we cause a conductor to move through a time varying

____
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magnetic field generating a current, which describes a
generator.

The linear induction machine shown in Figure 6-29a
assumes a conductor moves to the right at constant velocity
Ui,. Directly below the conductor with no gap is a surface
current placed on top of an infinitely permeable medium

K(t) = -K 0 cos (wt - kz)i, = Re [-K 0 ej('t-k)iy] (50)

which is a traveling wave moving to the right at speed w/k.
For x > 0, the magnetic field will then have x and z components
of the form

H.(x, z, t)= Re [Hz(x) ei '( - A)]

H.(x, z, t) = Re [.• (x) ei' ' - kA)]

KH,
iiiii===iii======:i':iiiiiiii====ii==========:.

k9'iiiiiii (-ii':YT)ii~iii *::~":':::::"::::;*"::::::<m * ):::·440800::::::::,::::::(*X*), (*R*LAN 449@ (*X**X*J W Of-:· t

-Ko cos(wt - kz)

(a)

S _-E (w - kU)
k2

(b)

Figure 6-29 (a) A traveling wave of surface current induces currents in a conductor
that is moving at a velocity U different from the wave speed wok. (b) The resulting
forces can levitate and propel the conductor as a function of the slip S, which measures
the difference in speeds of the conductor and traveling wave.

KO
2
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where (10) (V - B = 0) requires these components to be related
as

dHj- Ijk, = 0 (52)
dx

The z component of the magnetic diffusion equation of
(13) is

d2AT.
-d-f.- k 2'= ijAr(w - kU)A (53)

which can also be written as

d 2 4 2
-fr2H = 0 (54)

where

2 = k2(1 +jS), S ( -kU) (55)

and S is known as the slip. Solutions of (54) are again
exponential but complex because y is complex:

AI = Ai e" + A 2 e
- "  (56)

Because H. must remain finite far from the current sheet,
A1 = 0, so that using (52) the magnetic field is of the form

H= Ko e- (iL- , (57)

where we use the fact that the tangential component of H is discon-
tinuous in the surface current, with H = 0 for x<0.

The current density in the conductor is

J= Vx H = i,( I = - djk x

= Ko e- (Y -k 2 )

SKok • jSe- (58)

If the conductor and current wave travel at the same speed
(w/k = U), no current is induced as the slip is zero. Currents
are only induced if the conductor and wave travel at different
velocities. This is the principle of all induction machines.

-T ·- ~
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The force per unit area on the-conductor then has x and z
components:

f= I Jx oHdx

= c-oJ,(H.i,-H, i)dx (59)

These integrations are straightforward but lengthy because
first the instantaneous field and current density must be
found from (51) by taking the real parts. More important is
the time-average force per unit area over a period of excita-
tion:

<f> I="6 f dt (60)

Since the real part of a complex quantity is equal to half the
sum of the quantity and its complex conjugate,

A = Re [A e'•] = (A e +A* e-i ) (61)
(61)

B = Re[Bei']= (Bei'+B*e- )

the time-average product of two quantities is

-J0AAB d
+A*A* e-21 'v) dt

= (A *,B+ABA*)

= I Re (AB*) (62)

which is a formula often used for the time-average power in
circuits where A and B are the voltage and current.

Then using (62) in (59), the x component of the time-
average force per unit area is

<f.>= Re (Ip•of,• dx)

=-I2 k2S Re( e dx)

2 2=2oKk2S Re i

(y(y+ y*)/

I pMoKXS2 
1I- =;1 ,oK1 (63)

4 [1 +S2 + (1+S) 1/2] I

where the last equalities were evaluated in terms of the slip S
from (55).
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We similarly compute the time-average shear force per unit
area as

<f,> = -- Re ( ApoJH* dx)

2 IA y Re V*)x dx)

2 yy R· ( Y*)

2SoKS
=K (64)

4~+S Re (l6 +S)

When the wave speed exceeds the conductor's speed (w/k >
U), the force is positive as S >0 so that the wave pulls the
conductor along. When S < 0, the slow wave tends to pull the
conductor back as <f,> <0. The forces of (63) and (64),
plotted in Figure 6-29b, can be used to simultaneously lift and
propel a conducting material. There is no force when the
wave and conductor travel at the same speed (w/k = U) as the
slip is zero (S = 0). For large S, the levitating force <f.>
approaches the constant value i~loKo while the shear force
approaches zero. There is an optimum value of S that maxi-
mizes <f,>. For smaller S, less current is induced while for
larger S the phase difference between the imposed and
induced currents tend to decrease the time-average force.

6-4-7 Superconductors

In the limit of infinite Ohmic conductivity (o-- oo), the
diffusion time constant of (28) becomes infinite while the skin
depth of (36) becomes zero. The magnetic field cannot
penetrate a perfect conductor and currents are completely
confined to the surface.

However, in this limit the Ohmic conduction law is no
longer valid and we should use the superconducting consti-
tutive law developed in Section 3-2-2d for a single charge
carrier:

aj = E (65)at
Then for a stationary medium, following the same pro-

cedure as in (12) and (13) with the constitutive law of (65),
(8)-(11) reduce to

V2a H  aH
aV t -E - = V (H - H ) - e (H - H ) =

_·__·
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where Ho is the instantaneous magnetic field at t= 0.If the
superconducting material has no initial magnetic field when
an excitation is first turned on, then Ho= 0.

If the conducting slab in Figure 6-27a becomes super-
conducting, (66) becomes

d 2H, w, 1
d9 -- H, = 0, c = (67)

where c is the speed of light in the medium.
The solution to (67) is

H,= AI e"0 '"l +A 2 e
- *

= -Ko cos wt e-"',IC (68)

where we use the boundary condition of continuity of
tangential H at x = 0.

The current density is then

J, H,
ax

_ Kowp cos at e- (69)
c

For any frequency w, including dc (w = 0), the field and
current decay with characteristic length:

l,= c/w, (70)

Since the plasma frequency wp is typically on the order of
10 15 radian/sec, this characteristic length is very small, 1,
3x 10 8/101' 5 3x 10-7 m. Except for this thin sheath, the
magnetic field is excluded from the superconductor while the
volume current is confined to this region near the interface.

There is one experimental exception to the governing
equation in (66), known as the Meissner effect. If an ordinary
conductor is placed within a dc magnetic field Ho and then
cooled through the transition temperature for superconduc-
tivity, the magnetic flux is pushed out except for a thin sheath
of width given by (70). This is contrary to (66), which allows
the time-independent solution H = Ho, where the magnetic
field remains trapped within the superconductor. Although
the reason is not well understood, superconductors behave as
if Ho = 0 no matter what the initial value of magnetic field.

6-5 ENERGY STORED IN THE MAGNETIC FIELD

6-5-1 A Single Current Loop

The differential amount of work necessary to overcome
the electric and magnetic forces on a charge q moving an
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incremental distance ds at velocity v is

dW, = -q(E+vx B) ds (1)

(a) Electrical Work
If the charge moves solely under the action of the electrical

and magnetic forces with no other forces of mechanical ori-
gin, the incremental displacement in a small time dt is related
to its velocity as

ds = v dt (2)

Then the magnetic field cannot contribute to any work on the
charge because the magnetic force is perpendicular to the
charge's displacement:

dW, = -qv . E dt (3)

and the work required is entirely due to the electric field.
Within a charge neutral wire, the electric field is not due to
Coulombic forces but rather arises from Faraday's law. The
moving charge constitutes an incremental current element,

qv= idl dW, = -iE dl dt (4)

so that the total work necessary to move all the charges in the
closed wire is just the sum of the work done on each current
element,

dW= f dW,=-idt E dl

d
=idt- d B -dS

dt s

= i dt d
dt

= id( (5)

which through Faraday's law is proportional to the change of
flux through the current loop. This flux may be due to other
currents and magnets (mutual flux) as well as the self-flux due
to the current i. Note that the third relation in (5) is just
equivalent to the circuit definition of electrical power
delivered to the loop:

dW dep =dW=i = vi (6)
dt dt

All of this energy supplied to accelerate the charges in the
wire is stored as no energy is dissipated in the lossless loop
and no mechanical work is performed if the loop is held
stationary.

~I~_ __ _ I _
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(b) Mechanical Work
The magnetic field contributed no work in accelerating the

charges. This is not true when the current-carrying wire is
itself moved a small vector displacement ds requiring us to
perform mechanical work,

dW= - (idlx B) *ds = i(B x dl) -ds

= iB. (dlxds) (7)

where we were able to interchange the dot and the cross using
the scalar triple product identity proved in Problem 1-10a.
We define S, as the area originally bounding the loop and S 2
as the bounding area after the loop has moved the distance
ds, as shown in Figure 6-30. The incremental area dSs is then
the strip joining the two positions of the loop defined by the
bracketed quantity in (7):

dS3 = dl x ds (8)

The flux through each of the contours is

S1 =I BdS, 2 =I B.dS (9)

where their difference is just the flux that passes outward
through dSs:

d = 4 1 - 2 = B - dSs (10)

The incremental mechanical work of (7) necessary to move
the loop is then identical to (5):

dW= iB *dSs= id= (11)

Here there was no change of electrical energy input, with
the increase of stored energy due entirely to mechanical work
in moving the current loop.

= dl x ds

Figure 6-30 The mechanical work necessary to move a current-carrying loop is
stored as potential energy in the magnetic field.
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6-5-2 Energy and Inductance

If the loop is isolated and is within a linear permeable
material, the flux is due entirely to the current, related
through the self-inductance of the loop as

QD= Li (12)

so that (5) or (11) can be integrated to find the total energy in
a loop with final values of current I and flux (:

W= i d4

L de

1 2 1 1= LI- (13)
2L 2 2

6-5-3 CurrentDistributions

The results of (13) are only true for a single current loop.
For many interacting current loops or for current dis-
tributions, it is convenient to write the flux in terms of the
vector potential using Stokes' theorem:

p=IsB dS=Is(V XA) dS= A - dl (14)

Then each incremental-sized current element carrying a
current I with flux d(Q has stored energy given by (13):

dW=l dD=I A dl (15)

For N current elements, (15) generalizes to

W= ~(Il - Al dl + 2 A 2 dl2 +"' +IN AN dlN)

= E I,, .Adl, (16)
n=1

If the current is distributed over a line, surface, or volume,
the summation is replaced by integration:

SIf, A dl (line current)

W= sKf A dS (surface current) (17)

J, A dV (volume current)
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Remember that in (16) and (17) the currents and vector
potentials are all evaluated at their final values as opposed to
(11), where the current must be expressed as a function of
flux.

6-5-4 Magnetic Energy Density

This stored energy can be thought of as being stored in the
magnetic field. Assuming that we have a free volume dis-
tribution of current J,, we use (17) with Ampere's law to
express Jf in terms of H,

W=lf J f " AdV= (VxH)"AdV (18)

where the volume V is just the volume occupied by the
current. Larger volumes (including all space) can be used in
(18), for the region outside the current has Jf = 0 so that no
additional contributions arise.

Using the vector identity

V • (A x H)= H (V x A)-A • (V x H)

=H* B-A. (VxH) (19)

we rewrite (18) as

W= fv[H*B-V*(AxH)]dV (20)

The second term on the right-hand side can be converted
to a surface integral using the divergence theorem:

V (AxH)dV= (A H) dS (21)

It now becomes convenient to let the volume extend over all
space so that the surface is .at infinity. If the current dis-
tribution does not extend to infinity the vector potential dies
off at least as 1/r and the magnetic field as 1/r . Then, even
though the area increases as r2 , the surface integral in (21)
decreases at least as 1/r and thus is zero when S is at infinity.
Then (20) becomes simply

W=1 H.BdV= .LH2dV = B-dV (22)

where the volume V now extends over all space. The
magnetic energy density is thus

1 B
2

S=' - = H 2= -2 2AH -"br
4 A
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These results are only true for linear materials where 1A
does not depend on the magnetic field, although it can
depend on position.

For a single coil, the total energy in (22) must be identical to
(13), which gives us an alternate method to calculating the
self-inductance from the magnetic field.

6-5-5 The Coaxial Cable

(a) External Inductance
A typical cable geometry consists of two perfectly conduct-

ing cylindrical shells of radii a and b and length i, as shown in
Figure 6-31. An imposed current I flows axially as a surface
current in opposite directions on each cylinder. We neglect
fringing field effects near the ends so that the magnetic field is
the same as if the cylinder were infinitely long. Using
Ampere's law we find that

I
H = 2 r , a<r<b (24)

2irr

The total magnetic flux between the two conductors is

D = fLoH1 dr

SAollIn b (25)
2wr a

K, =

Figure 6-31 The magnetic field between two current-carrying cylindrical shells
forming a coaxial cable is confined to the region between cylinders.

_.....
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giving the self-inductance as

SM)ol b
L = = In-

I 2r- a

The same result can just as easily be found by computing
the energy stored in the magnetic field

W= LI- = o fiH21Trldr

iollb2 b 2W tol0 In (b/a)
- - In L- 2 - 2
4,r a I 27r

(b) Internal Inductance
If the inner cylinder is now solid, as in Figure 6-32, the

current at low enough frequencies where the skin depth is
much larger than the radius, is uniformly distributed with
density

I
J = -2

i"a

so that a linearly increasing magnetic field is present within
the inner cylinder while the outside magnetic field is

Figure 6-32 At low frequencies the current in a coaxial cable is uniformly distributed
over the solid center conductor so that the internal magnetic field increases linearly with
radius. The external magnetic field remains unchanged. The inner cylinder can be
thought of as many incremental cylindrical shells of thickness dr carrying a fraction of
the total current. Each shell links its own self-flux-as well as the mutual flux of the other
shells of smaller radius. The additional flux within the current-carrying conductor
results in the internal inductance of the cable.
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unchanged from (24):

Ir

|2ra
2 0O<r<a

H, = I (29)

-r, a<r<b

The self-inductance cannot be found using the flux per
unit current definition for a current loop since the current is
not restricted to a thin filament. The inner cylinder can be
thought of as many incremental cylindrical shells, as in Figure
6-32, each linking its own self-flux as well as the mutual flux
of the other shells of smaller radius. Note that each shell is at
a different voltage due to the differences in enclosed flux,
although the terminal wires that are in a region where the
magnetic field is negligible have a well-defined unique voltage
difference.

The easiest way to compute the self-inductance as seen by
the terminal wires is to use the energy definition of (22):

W= o Hi~21rlrdr

= o ( 2 2
2 r dr+ a r dr

=_ -+ln (30)
47r \4 aQ

which gives the self-inductance as

2W ol1 lb\
-L+2= 2 +lna) (31)

The additional contribution of jpol/8lr is called the internal
inductance and is due to the flux within the current-carrying
conductor.

6-5-6 Self-Inductance, Capacitance, and Resistance

We can often save ourselves further calculations for the
external self-inductance if we already know the capacitance or
resistance for the same two-dimensional geometry composed
of highly conducting electrodes with no internal inductance
contribution. For the arbitrary geometry shown in Figure
6-33 of depth d, the capacitance, resistance, and inductance
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are defined as the ratios of line and surface integrals:

ed is E n, ds
C=

L E •dl

R = d•s ds (32)
oTd fs E - n, ds

LAd IL H "nl dl

Ls H • ds

Because the homogeneous region between electrodes is
charge and current free, both the electric and magnetic fields
can be derived from a scalar potential that satisfies Laplace's
equation. However, the electric field must be incident
normally onto the electrodes while the magnetic field is
incident tangentially so that E and H are perpendicular
everywhere, each being along the potential lines of the other.
This is accounted for in (32) and Figure 6-33 by having n, ds
perpendicular to ds and ni dl perpendicular to dl. Then since
C, R, and L are independent of the field strengths, we can
take E and H to both have unit magnitude so that in the
products of LC and LIR the line and surface integrals cancel:

LC = eLd2 = d2/c 2, c = 1/(E3
(33)

LIR = i'd 2 , RC =e/o

These products are then independent of the electrode
geometry and depend only on the material parameters and
the depth of the electrodes.

We recognize the LIR ratio to be proportional to the
magnetic diffusion time of Section 6-4-3 while RC is just the
charge relaxation time of Section 3-6-1. In Chapter 8 we see
that the ULCproduct is just equal to the time it takes an
electromagnetic wave to propagate a distance d at the speed
of light c in the medium.

EJ
-( )I \'S

.L dl ) Q

T_-ds
Y ns Depth d

Figure G-33 The electric and magnetic fields in the two-dimensional homogeneous
charge and current-free region between hollow electrodes can be derived from a scalar
potential that obeys Laplace's equation. The electric field lines are along the magnetic
potential lines and vice versa so E and H are perpendicular. The inductance-capaci-
tance product is then a constant.
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6-6 THE ENERGY METHOD FOR FORCES

6-6-1 The Principle of Virtual Work

In Section 6-5-1 we calculated the energy stored in a
current-carrying loop by two methods. First we calculated the
electric energy input to a loop with no mechanical work done.
We then obtained the same answer by computing the
mechanical work necessary to move a current-carrying loop
in an external field with no further electrical inputs. In the
most general case, an input of electrical energy can result in
stored energy dW and mechanical work by the action of a
force f. causing a small displacement dx:

i d = dW+f.dx (1)

If we knew the total energy stored in the magnetic field as a
function of flux and position, the force is simply found as

8W
f.==a (2)

We can easily compute the stored energy by realizing that
no matter by what process or order the system is assembled, if
the final position x and flux 4 are the same, the energy is the
same. Since the energy stored is independent of the order
that we apply mechanical and electrical inputs, we choose to
mechanically assemble a system first to its final position x with
no electrical excitations so that 0c-= 0. This takes no work as
with zero flux there is no force of electrical origin. Once the
system is mechanically assembled so that its position remains
constant, we apply the electrical excitation to bring the system
to its final flux value. The electrical energy required is

W=J idO (3)

For linear materials, the flux and current are linearly
related through the inductance that can now be a function of
x because the inductance depends on the geometry:

i=O/L(x) (4)

Using (4) in (3) allows us to take the inductance outside the
integral because x is held constant so that the inductance is
also constant:

W= 0 d4
L(x)o
&b2 -

ALX)
_=L (x)i2
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The stored energy is the same as found in Section 6-5-2 even
when mechanical work is included and the inductance varies
with position.

To find the force on the moveable member, we use (2) with
the energy expression in (5), which depends only on flux and
position:

aW

8x .
,2 d[l/L(x)]

2 dx

1 D2 dL(x)

2L 2 (x) dx

1 . dL(x)
-2 (6)

dx

6-6-2 Circuit Viewpoint

This result can also be obtained using a circuit description
with the linear flux-current relation of (4):

di
dt

di dL(x)
= L(x) -+ ddt dt

di . dL(x) dx
dt dx dt

The last term, proportional to the speed of the moveable
member, just adds to the usual inductive voltage term. If the
geometry is fixed and does not change with time, there is no
electromechanical coupling term.

The power delivered to the system is

d
p = vi= i [L(x)i] (8)

which can be expanded as

d 2 dL(x)dx
dtL(x) )+i d dt (9)

This is in the form

dW dx W=2L(x)i 2 (10)
f= --dt, .2 dL(x)

dt dt [.=21
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which states that the power delivered to the inductor is equal
to the sum of the time rate of energy. stored and mechanical
power performed on the inductor. This agrees with the
energy method approach. If the inductance does not change
with time because the geometry is fixed, all the input power is
stored as potential energy W.

Example 6-2 MAGNETIC FIELDS AND FORCES

(a) Relay
Find the force on the moveable slug in the magnetic circuit

shown in Figure 6-34.

SOLUTION

It is necessary to find the inductance of the system as a
function of the slug's position so that we can use (6). Because
of the infinitely permeable core and slug, the H field is non-
zero only in the air gap of length x. We use Ampere's law to
obtain

H = NI/x

The flux through the gap

( = ioNIA/x

is equal to the flux through each turn of the coil yielding the
inductance as

NO /oN 2 A
L(x) = .

I

area A

Figure 6-34 The magnetic field exerts a force on the moveable member in the relay
pulling it into the magnetic circuit.

__·I__ __··_ _I__
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The force is then

f1 2 dL(x)
fx - 21

iLoN2AI2

2x 2

The minus sign means that the force is opposite to the direc-
tion of increasing x, so that the moveable piece is attracted to
the coil.

(b) One Turn Loop
Find the force on the moveable upper plate in the one turn

loop shown in Figure 6-35.

SOLUTION

The current distributes itself uniformly as a surface current
K = I/D on the moveable plate. If we neglect nonuniform
field effects near the corners, the H field being tangent to the
conductors just equals K:

H = I/ID

The total flux linked by the current source is then

p = goHzxl

SoxlI

D

which gives the inductance as

F poxl
L(x) = D

I D

Figure 6-35 The magnetic force on a current-carrying loop tends to expand the loop.
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The force is then constant

f=,1dL(x)
dx

1 'UolIJ

2D

6-6-3 Magnetization Force

A material with permeability A is partially inserted into the
magnetic circuit shown in Figure 6-36. With no free current
in the moveable material, the x-directed force density from
Section 5-8-1 is

F. = po(M - V)H.

= (;L - iMo)(H *V)H.

=( - o)(H. ý + H, y (11)
ax ay )

where we neglect variations with z. This force arises in the
fringing field because within the gap the magnetic field is
essentially uniform:

H, = NI/s (12)

Because the magnetic field in the permeable block is curl free,

aH, aH,VxH=O> aH H (13)
8y 8x

y

Depth D

(a)

Figure 6-36
field.

. A permeable material tends to be pulled into regions of higher magnetic

f.
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(11) can be rewritten as

F.= ( A -,) O(H +H ) (14)
2 ax

The total force is then

f =sD Fdx

= ( - l>o)sD( H2+H ) =o

(IL- Io) N2,2D= )(15)
2 s

where the fields at x = -0o are zero and the field at x = xo is
given by (12). High permeability material is attracted to
regions of stronger magnetic field. It is this force that causes
iron materials to be attracted towards a magnet. Diamagnetic
materials (A <p0o) will be repelled.

This same result can more easily be obtained using (6)
where the flux through the gap is

NID
Q = HD[jix +po(a -x)]= -NID[(L -po)x+alo] (16)

so that the inductance is

NQ N 2D
L = [(p - o)x + aizo] (17)

I s

Then the force obtained using (6) agrees with (15)

f 1 21 dL(x)
dx

- (- Ao) N 212D (18)
2s

PROBLEMS

Section 6-1
1. A circular loop of radius a with Ohmic conductivity oa and
cross-sectional area A has its center a small distance D away
from an infinitely long time varying current.



Cross-sectional area A

-- --
I,

(a) Find the mutual inductance M and resistance R of the
loop. Hint:

dx 2 tan-' [JL-' tan (x/ 2 )]
a+b cosx = ' a+b

J rdr _

(b) This loop is stationary. and has a self-inductance L.
What is the time dependence of the induced short circuit
current when the line current is instantaneously stepped on
to a dc level I at t = 0?

(c) Repeat (b) when the line current has been on a long
time and is suddenly turned off at t = T.

(d) If the loop has no resistance and is moving with radial
velocity v, = dr/dt, what is the short circuit current and open
circuit voltage for a dc line current?

(e) What is the force on the loop when it carries a current
i ? Hint:

+aCos d = -- sin [cos ;]D+a cos •b a

D . _,a +D cos \)

a/D/ a D+a cos /

2. A rectangular loop at the far left travels with constant
velocity Ui. towards and through a dc surface current sheet
Koi, at x = 0. The right-hand edge of the loop first reaches
the current sheet at t = 0.

(a) What is the loop's open circuit voltage as a function of
time?

(b) What is the short circuit current if the loop has self-
inductance L and resistance R?

(c) Find the open circuit voltage if the surface current is
replaced by a fluid with uniformly distributed volume cur-
rent. The current is undisturbed as the loop passes through.

466 Electromagnetic Induction

I(t)

I_·,-·



Problems 467

Koiy'1

Specifically consider the case when d > b and then sketch the
results when d = b and d < b. The right edge of the current
loop reaches the volume current at t = 0.

3. A short circuited rectangular loop of mass m and self-
inductance L is dropped with initial velocity voi. between the
pole faces of a magnet that has a concentrated uniform
magnetic field Boil. Neglect gravity.

x v0

(a) What is the imposed flux through the loop as a function
of the loop's position x (0 < x <s) within the magnet?

(b) If the wire has conductivity ao and cross-sectional area
A, what equation relates the induced current i in the loop and
the loop's velocity?

(c) What is the force on the loop in terms of i? Obtain a
single equation for the loop's velocity. (Hint: Let w0 =
Bob 2/mL, a = RIL.)

(d) How does the loop's velocity and induced current vary
with time?

(e) If r-+oo, what minimum initial velocity is necessary for
the loop to pass through the magnetic field?

4. Find the mutual inductance between the following cur-
rents:

(a) Toroidal coil of rectangular or circular cross section

I -•

Ut -b -- Ut :--....

(c)

I Lli



a-b

foroid
ross-section

- a--

D

(b)

coaxially centered about an infinitely long line current. Hint:

Sdx 2fa+bcosx =tan
a b cos x Ja-6

-1 I ?r tan(x/2 )}
a+b ,

J r dr

(b) A very long rectangular current loop, considered as two
infinitely long parallel line currents, a distance D apart, car-
rying the same current I in opposite directions near a small
rectangular loop of width a, which is a distance d away from
the left line current. Consider the cases d +a <D, d <D <
d +a, and d>D.

5. A circular loop of radius a is a distance D above a point
magnetic dipole of area dS carrying a current II.

2 D

I1 dS

468 Electromagnetic Induction
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(a) What is the vector potential due to the dipole at all
points on the circular loop? (Hint: See Section 5-5-1.)

(b) How much flux of the dipole passes through the circu-
lar loop?

(c) What is the mutual inductance between the dipole and
the loop?

(d) If the loop carries a current 12, what is the magnetic
field due to 12 at the position of the point dipole? (Hint: See
Section 5-2-4a.)

(e) How much flux due to 12 passes through the magnetic
dipole?

(f) What is the mutual inductance? Does your result agree
with (c)?

6. A small rectangular loop with self-inductance L, Ohmic
conductivity a, and cross-sectional area A straddles a current
sheet.

,ýK(
t)

II

tS

(a) The current sheet is instantaneously turned on to a dc
level Koi, at t = 0.What is the induced loop current?

(b) After a long time T the sheet current is instantaneously
set to zero. What is the induced loop current?

(c) What is the induced loop current if the current sheet
varies sinusoidally with time as Ko cos ot i,.

7. A point magnetic dipole with area dS lies a distance d
below a perfectly conducting plane of infinite extent. The
dipole current I is instantaneously turned on at t= 0.

(a) Using the method of images, find the magnetic field
everywhere along the conducting plane. (Hint: i, •i, = sin 0,

d

=dS= wa
2

I
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is ir = Cos 0.)
(b) What is the surface current distribution?
(c) What is the force on the plane? Hint:

Sr 3 dr (r2 + d'/4)

(r2 +d 2)5  6(r 2+ d 2)4

(d) If the plane has a mass M in the gravity field g, what
current I is necessary to just lift the conductor? Evaluate for
M= 10-s kg, d = 10- m, and a = 10- 3 m.

8. A thin block with Ohmic conductivity o and thickness 8
moves with constant velocity Vi, between short circuited
perfectly conducting parallel plates. An initial surface current
Ko is imposed at t = 0 when x = xo, but the source is then
removed.

. x

ix Depth D

(a) The surface current on the plates K(t) will vary with
time. What is the magnetic field in terms of K(t)? Neglect
fringing effects.

(b) Because the moving block is so thin, the current is
uniformly distributed over the thickness 8. Using Faraday's
law, find K(t) as a function of time.

(c) What value of velocity will just keep the magnetic field
constant with time until the moving block reaches the end?

(d) What happens to the magnetic field for larger and
smaller velocities?

9. A thin circular disk of radius a, thickness d, and conduc-
tivity o is placed in a uniform time varying magnetic field
B(t).

(a) Neglecting the magnetic field of the eddy currents,
what is the current induced in a thin circular filament at
radius r of thickness dr.

_ · ·___~____·_· __·
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d

(d)

(b) What power is dissipated in this incremental current
loop?

(c) How much power is dissipated in the whole disk?
(d) If the disk is instead cut up into N smaller circular disks

with negligible wastage, what is the approximate radius of
each smaller disk?

(e) If these N smaller disks are laminated together to form
a thin disk of closely packed cylindrical wires, what is the
power dissipated?

Section 6-2
10. Find the self-inductance of an N turn toroidal coil of
circular cross-sectional radius a and mean radius b. Hint:

dO 2 tan 2 2 tan (0/2)

b + r cos 0 b+r

f rdr -
.- d6`b-r =

11. A large solenoidal coil of long length 11, radius a,, and
number of turns NI coaxially surrounds a smaller coil of long
length 12, radius a2 , and turns N 2 .

-1.1
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1 turns

(a) Neglecting fringing field effects find the self-
inductances and mutual inductances of each coil.
(Hint: Assume the magnetic field is essentially uniform
within the cylinders.)

(b) What is the voltage across each coil in terms of iI and i2 ?
(c) If the coils are connected in series so that il = i 2 with the

fluxes of each coil in the same direction, what is the total
self-inductance?

(d) Repeat (c) if the series connection is reversed so that
ii=-i 2 and the fluxes due to each coil are in opposite direc-
tions.

(e) What is the total self-inductance if the coils are
connected in parallel so that v1 = v 2 or v 1 = -v2?

12. The iron core shown with infinite permeability has three
gaps filled with different permeable materials.

(a) What is the equivalent magnetic circuit?
(b) Find the magnetic flux everywhere in terms of the gap

reluctances.

_S1-_

V 1

Depth D
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(c) What is the total magnetic flux through each winding?
(d) What is the self-inductance and mutual inductance of

each winding?

13. A cylindrical shell of infinite permeability, length I and
inner radius b coaxially surrounds a solid cylinder also with
infinite permeability and length I but with smaller radius a so
that there is a small gap g = b - a. An N 1 turn coil carrying a
current I, is placed within two slots on the inner surface of
the outer cylinder.

(a) What is the magnetic field everywhere? Neglect all
radial variations in the narrow air gap. (Hint: Separately
consider 0 < 0 < 7r and ir < ( < 27-.)

(b) What is the self-inductance of the coil?
(c) A second coil with N 2 turns carrying a current 12 is

placed in slots on the inner cylinder that is free to rotate.
When the rotor is at angle 0, what is the total magnetic field
due to currents I, and 12? (Hint: Separately consider 0<
f <0,0<q < 7r, 7r < 4 << 1+ 0, and ir + 0 <qS <27r.)

(d) What is the self-inductance and mutual inductance of
coil 2 as a function of 0?

(e) What is the torque on the rotor coil?

14. (a) What is the ratio of terminal voltages and currents for
the odd twisted ideal transformer shown?

(b) A riesistor RL is placed across the secondary winding
(v 2 , i2 ). What is the impedance as seen by the primary
winding?
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15. An N turn coil is wound onto an infinitely permeable
magnetic core. An autotransformer is formed by connecting a
tap of N' turns.

(a) What are the terminal voltage (v2 /vl) and current (i2 /il)
ratios?

(b) A load resistor RL is connected across the terminals
of the tap. What is the impedance as seen by the input
terminals?

Section 6-3
16. A conducting material with current density J. i, has two
species of charge carriers with respective mobilities u+ and ;L-
and number densities n+ and n.. A magnetic field B0i, is
imposed perpendicular to the current flow.

474
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(a) What is the open circuit Hall voltage? (Hint:
transverse current of each carrier must be zero.)

(b) What is the short circuit Hall current?

The

17. A highly conducting hollow iron cylinder with
permeability A and inner and outer radii R, and R 2 is
concentric to an infinitely long dc line current (adapted from
L. V. Bewley, Flux Linkages and Electromagnetic Induction.
Macmillan, New York, 1952, pp. 71-77).

d- -_-/_

Po

(b) (d)

(a) What is the magnetic flux density everywhere? Find the
electromotive force (EMF) of the loop for each of the follow-
ing cases.
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(b) A highly conducting circuit abcd is moving downward
with constant velocity Vo making contact with the surfaces of
the cylinders via sliding brushes. The circuit is completed
from c to d via the iron cylinder.

(c) Now the circuit remains stationary and the iron cylin-
der moves upwards at velocity Vo.

(d) Now a thin axial slot is cut in the cylinder so that it can
slip by the complete circuit abcd,which remains stationary as
the cylinder moves upwards at speed Vo0 . The brushes are
removed and a highly conducting wire completes the c-d
path.

18. A very long permanently magnetized cylinder Moi• rotates on
a shaft at constant angular speed w. The inner and outer surfaces
at r = aand r = b are perfectly conducting, so that brushes can
make electrical contact.
4-V --

(a) If the cylinder is assumed very long compared to its
radius, what are the approximate values of B and H in the
magnet?

(b) What is the open circuit voltage?
(c) If the magnet has an Ohmic conductivity o, what is the

equivalent circuit of this generator?
(d) What torque is required to turn the magnet if the

terminals are short circuited?

19. A single spoke wheel has a perfectly conducting cut rim.
The spoke has Ohmic conductivity ar and cross-sectional area
A. The wheel rotates at constant angular speed wo in a
sinusoidally varying magnetic field B, = Bo cos at.

(a) What is the open circuit voltage and short circuit cur-
rent?

(b) What is the equivalent circuit?
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SB, =Bocoswt

eBt

20. An MHD machine is placed within a magnetic circuit.

(a) A constant dc current if = Io is applied to the N turn
coil. How much power is delivered to the load resistor RL?

(b) The MHD machine and load resistor RL are now
connected in series with the N turn coil that has a resistance
Rf. No current is applied. For what minimum flow speed can
the MHD machine be self-excited?

21. The field winding of a homopolar generator is connected
in series with the rotor terminals through a capacitor C. The
rotor is turned at constant speed w.

(a) For what minimum value of rotor speed is the system
self-excited?

(b) For the self-excited condition of (a) what range of
values of C will result in dc self-excitation or in ac self-
excitation?

(c) What is the frequency for ac self-excitation?
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C

Section 6-4
22. An Ohmic block separates two perfectly conducting
parallel plates. A dc current that has been applied for a long
time is instantaneously turned off at t = 0.

if) ' Depth D

I1o 1-4
Ii

D II  "
0 d

(a) What are the initial and final magnetic field dis-
tributions? What are the boundary conditions?

(b) What are the transient magnetic field and current dis-
tributions?

(c) What is the force on the block as a function of time?

23. A block of Ohmic material is placed within a magnetic
circuit. A step current Io is applied at t = 0.

(a) What is the dc steady-state solution for the magnetic
field distribution?

(b) What are the boundary and initial conditions for the
magnetic field in the conducting block?

*(c) What are the transient field and current distributions?
(d) What is the time dependence of the force on the

conductor?
(e) The current has been on a long time so that the system

is in the dc steady state found in (a) when at t = T the current

_II _ _
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is instantaneously turned off. What are the transient field and
current distributions in the conductor?

(f) If the applied coil current varies sinusoidally with time
as i(t)=Iocos ot, what are the sinusoidal steady-state field
and current distributions? (Hint: Leave your answer in
terms of complex amplitudes.)

(g) What is the force on the block?

24. A semi-infinite conducting block is placed between
parallel perfect conductors. A sinusoidal current source is
applied.

locoscwt

Depth D

Depth D

Y
y

(a) What are the magnetic field and current distributions
within the conducting block?

(b) What is the total force on the block?
(c) Repeat (a) and (b) if the block has length d.

25. A current sheet that is turned on at t = 0 lies a distance d
above a conductor of thickness D and conductivity or. The
conductor lies on top of a perfectly conducting plane.

(a) What are the initial and steady-state solutions? What
are the boundary conditions?

(b) What are the transient magnetic field and current dis-
tributions?

(c) After a long time T, so that the system has reached the
dc steady state, the surface current is set to zero. What are the
subsequent field and current distributions?

A(t)

I -T
oT7



K(t)

2--X

(d) What are the field and current distributions if the cur-
rent sheet varies as Ko cos cot?

26. Distributed dc currents at x = 0 and x = I flow through a
conducting fluid moving with constant velocity voix.

Depth D1 x

(a) What are the magnetic field and current distributions?
(b) What is the force on the fluid?

27. A sinusoidal surface current at x = 0 flows along parallel
electrodes and returns through a conducting fluid moving to
the right with constant velocity voi.. The flow is not impeded
by the current source. The system extends to x = co.

1ocos), -------- -------- --=----

K0 coswt Vol

Depth D

Sx

(a) What are the magnetic field and current density dis-
tributions?

(b) What is the time-average force on the fluid?

480 ElectromagneticInduction
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28. The surface current for the linear induction machine
treated in Section 6-4-6 is now put a distance s below the
conductor.

(a) What are the magnetic field and current distributions in
each region of space? (Hint: Check your answer with
Section 6-4-6 when s = 0.)

(b) Repeat (a) if s is set to zero but the conductor has a
finite thickness d.

29. A superconducting block with plasma frequency wp is
placed within a magnetic circuit with exciting current
Io cos ot.

Depth D

(a) What are the magnetic field and current distributions in
the superconductor?

(b) What is the force on the block?

Section 6.5
30. Find the magnetic energy stored and the self-inductance
for the geometry below where the current in each shell is
uniformly distributed.

31. Find the external self-inductance of the two wire lines
shown. (Hint: See Section 2-6-4c.)



Depth I

Depth I

32. A coaxial cable with solid inner conductor is excited by a
sinusoidally varying current Io cos to at high enough
frequency so that the skin depth is small compared to the
radius a. The current is now nonuniformly distributed over
the inner conductor.

Io Cos Wt

(a) Assuming that H= H,(r)i,, what is the governing
equation for H,(r) within the inner cylinder. (Hint: V2H =

0

V(V, H) -V x (V x H).)
(b) Solve (a) for solutions of the form

H,(r) = Re [fH(r) I"']

Hint: Bessel's equation is

2 d•y dy 2
x ~+x i +(x -p y=O

with solutions

y =A 1Jp(x)+A 2YO(x)

where Y, is singular at x = 0.
(c) What is the current distribution? Hint:

d 1
, 1U(x)] + -J:(x) = Jo(x)

Section 6-6
33. A reluctance motor is made by placing a high permeabil-
ity material, which is free to rotate, in the air gap of a
magnetic circuit excited by a sinusoidal current Io cos Oot.

482 Electromagnetic Induction
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The inductance of the circuit varies as

L(O)= Lo+ L 1 cos 20

where the maximum inductance Lo+L, occurs when 0 = 0 or
0 = 1r and the minimum inductance Lo-L 1 occurs when 0 =
+Er/2.

(a) What is the torque on the slab as a function of the angle
0?

(b) The rotor is rotating at constant speed w, where 0 =
wt + 8 and 8 is the angle of the rotor at t = 0. At what value of
w does the torque have a nonzero time average. The reluc-
tance motor is then a synchronous machine. Hint:

cos2 wot sin 20 = l[sin 20 +cos 2wot sin 20]

= f{sin 20 + ½[sin2(wot + 0) + sin 2(0 - wot)]}

(c) What is the maximum torque that can be delivered by
the shaft and at what angle 5 does it occur?

34. A system of two coupled coils have the following flux-
current relations:
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d1 = Li()i, + M(O)i 2

c 2 = M(O)ii +L 2(0)i 2

(a) What is the power p delivered to the coils?
(b) Write this power in the form

dW dO
P=-+T-dt dt

What are W and T?
(c) A small coil is free to rotate in the uniform magnetic

field produced by another coil. The flux-current relation is

1 = Lli, + Moi 2 sin 0

02 = Moi I sin 0 + L 2i2

The coils are excited by dc currents I, and I2. What is the
torque on the small coil?

(d) If the small coil has conductivity or, cross-sectional area
A, total length 1, and is short circuited, *what differential
equation must the current il obey if 0 is a function of time? A
dc current 12 is imposed in coil 2.

(e) The small coil has moment of inertia J. Consider only
small motions around 0 = 0 so that cos 0 - 1. With the torque
and current equations linearized, try exponential solutions of
the form est and solve for the natural frequencies.

(f) The coil is released from rest at 0 = 00. What is O(t) and
il(t)? Under what conditions are the solutions oscillatory?
Damped?

35. A coaxial cable has its short circuited end free to move.

(a) What is the inductance of the cable as a function of x?
(b) What is the force on the end?

36. For the following geometries, find:
(a) The inductance;
(b) The force on the moveable member.
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- I

Depth D

37. A coaxial cylinder is dipped into a magnetizable fluid with
permeability / and mass density p,.. How high h does the fluid
rise within the cylinder?

__ rr-
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fields and waves
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The electromagnetic field laws, derived thus far from the
empirically determined Coulomb-Lorentz forces, are correct
on the time scales of our own physical experiences. However,
just as Newton's force law must be corrected for material
speeds approaching that of light, the field laws must be cor-
rected when fast time variations are on the order of the time it
takes light to travel over the length of a system. Unlike the
abstractness of relativistic mechanics, the complete elec-
trodynamic equations describe a familiar phenomenon-
propagation of electromagnetic waves. Throughout the rest
of this text, we will examine when appropriate the low-
frequency limits to justify the past quasi-static assumptions.

7-1 MAXWELL'S EQUATIONS

7-1-1 Displacement Current Correction to Ampere's Law

In the historical development of electromagnetic field
theory through the nineteenth century, charge and its electric
field were studied separately from currents and their
magnetic fields. Until Faraday showed that a time varying
magnetic field generates an electric field, it was thought that
the electric and magnetic fields were distinct and uncoupled.
Faraday believed in the duality that a time varying electric
field should also generate a magnetic field, but he was not
able to prove this supposition.

It remained for James Clerk Maxwell to show that Fara-
day's hypothesis was correct and that without this correction
Ampere's law and conservation of charge were inconsistent:

VxH=JJ V Jf = 0 (1)

for if we take the divergence of Ampere's law in (1), the
current density must have zero divergence because the
divergence of the curl of a vector is always zero. This result
contradicts (2) if a time varying charge is present. Maxwell

_
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realized that adding the displacement current on the right-
hand side of Ampere's law would satisfy charge conservation,
because of Gauss's law relating D to pf (V D = pr).

This simple correction has far-reaching consequences,
because we will be able to show the existence of electro-
magnetic waves that travel at the speed of light c, thus proving
that light is an electromagnetic wave. Because of the
significance of Maxwell's correction, the complete set of
coupled electromagnetic field laws are called Maxwell's
equations:

Faraday's Law

VxE= B E dl= - B *dS (3)
at L d is

Ampere's law with Maxwell's displacement current correction

Vx H = Jf+D H - dl = Jr dS+d D dS (4)
at dt e

Gauss's laws

V" D=pf > fs D.sdS= Pf dV (5)

V B=0 B dS=0 (6)

Conservation of charge

V" Jrf+L'=O JfdS+ v pfdV=O (7)

As we have justified, (7) is derived from the divergence of (4)
using (5).

Note that (6) is not independent of (3) for if we take the
divergence of Faraday's law, V - B could at most be a time-
independent function. Since we assume that at some point in
time B = 0, this function must be zero.

The symmetry in Maxwell's equations would be complete if
a magnetic charge density appeared on the right-hand side of
Gauss's law in (6) with an associated magnetic current due to
the flow of magnetic charge appearing on the right-hand side
of (3). Thus far, no one has found a magnetic charge or
current, although many people are actively looking.
Throughout this text we accept (3)-(7) keeping in mind that if
magnetic charge is discovered, we must modify (3) and (6)
and add an equation like (7) for conservation of magnetic
charge.

M = ýýý
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7-1-2 Circuit Theory as a Quasi-static Approximation

Circuit theory assumes that the electric and magnetic fields
are highly localized within the circuit elements. Although the
displacement current is dominant within a capacitor, it is
negligible outside so that Ampere's law can neglect time vari-
ations of D making the current divergence-free. Then we
obtain Kirchoff's current law that the algebraic sum of all
currents flowing into (or out of) a node is zero:

V.J = 0=>JdS = E ik= (8)

Similarly, time varying magnetic flux that is dominant
within inductors and transformers is assumed negligible
outside so that the electric field is curl free. We then have
Kirchoff's voltage law that the algebraic sum of voltage drops
(or rises) around any closed loop in a circuit is zero:

VxE=O E=-VV* E dl=iO vA =0 (9)

7-2 CONSERVATION OF ENERGY

7-2-1 Poynting's Theorem

We expand the vector quantity

V -(ExH) =H (VxE)-E . (VxH)

= -H. B-_E D--E *Jr (1)at at

where we change the curl terms using Faraday's and
Ampere's laws.

For linear homogeneous media, including free space, the
constitutive laws are

D=eE, B=IAH (2)

so that (1) can be rewritten as

V. (ExH)+t(eE 2 +AH' ) -E Jf (3)

which is known as Poynting's theorem. We integrate (3) over a
closed volume, using the divergence theorem to convert the
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first term to a surface integral:

(ExH) -dS+ (E 2+E + H) dV=- E JIdV (4)

I V-(ExH)dV
V

We recognize the time derivative in (4) as operating on the
electric and magnetic energy densities, which suggests the
interpretation of (4) as

dW
Pou,+- = -Pa (5)

where Po., is the total electromagnetic power flowing out of
the volume with density

S = E x H watts/m 2 [kg-s-3] (6)

where S is called the Poynting vector, W is the electromag-
netic stored energy, and Pd is the power dissipated or
generated:

Po.t= (ExH).dS= S dS

W= [IeE + tH 2 ] dV (7)

Pd = E -JdV

If E and J, are in the same direction as in an Ohmic conduc-
tor (E • Jr = oE 2), then Pd is positive, representing power dis-
sipation since the right-hand side of (5) is negative. A source
that supplies power to the volume has E and Jf in opposite
directions so that Pd is negative.

7-2-2 A Lossy Capacitor

Poynting's theorem offers a different and to some a
paradoxical explanation of power flow to circuit elements.
Consider the cylindrical lossy capacitor excited by a time
varying voltage source in Figure 7-1. The terminal current
has both Ohmic and displacement current contributions:

eAdv oAv dvv vA IS+ = C-+- C=-T R = (8)1 dT I dt R I 'A

From a circuit theory point of view we would say that the
power flows from the terminal wires, being dissipated in the

M
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4 = ra
2

I~rc

Figure 7-1 The power delivered to a lossy cylindrical capacitor vi ispartly dissipated by
the Ohmic conduction and partly stored in the electric field. This power can also be
thought to flow-in radially from the surrounding electric and magnetic fields via the
Poynting vector S = E x H.

resistance and stored as electrical energy in the capacitor:

V2 
d A fI 2)

P= vi= + d(Cv2) (9)R dt

We obtain the same results from a field's viewpoint using
Poynting's theorem. Neglecting fringing, the electric field is
simply

E, = v/l (10)

while the magnetic field at the outside surface of the resistor
is generated by the conduction and displacement currents:

f i-'dl=l 8Ef,\ dS aAv e dv .
at I/1 dt

where we recognize the right-hand side as the terminal cur-
rent in (8),

H, = il(2ira) (12)

The power flow through the surface at r = a surrounding the
resistor is then radially inward,

S(E x H) dS = - l a ad dz = -vi (13)
. Jis1 2ira

and equals the familiar circuit power formula. The minus
sign arises because the left-hand side of (13) is the power out
of the volume as the surface area element dS points radially
outwards. From the field point of view, power flows into the
lossy capacitor from the electric and magnetic fields outside
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the resistor via the Poynting vector. Whether the power is
thought to flow along the terminal wires or from the sur-
rounding fields is a matter of convenience as the results are
identical. The presence of the electric and magnetic fields are
directly due to the voltage and current. It is impossible to have
the fields without the related circuit variables.

7-2-3 Power in Electric Circuits

We saw in (13) that the flux of S entering the surface
surrounding a circuit element just equals vi. We can show this
for the general network with N terminals in Figure 7-2 using
the quasi-static field laws that describe networks outside the
circuit elements:

VxE=OE=-VVVxE0=>E=-(14)
Vx H = Jf >V - Jf = 0

We then can rewrite the electromagnetic power into a surface
as

Pin=-s ExH*dS

=-IV -(ExH)dV
*v

=V. (VVxH)dV

Figure 7-2 The circuit power into an N terminal network E,..- VAl, equals the
electromagnetic power flow into the surface surrounding the network, -is E XH •dS.
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where the minus is introduced because we want the power in
and we use the divergence theorem to convert the surface
integral to a volume integral. We expand the divergence term
as

0

V- (VVxH)=H- (VxVV)-VV. (VxH)

=-Jf - VV= -V (JTV) (16)

where we use (14).
Substituting (16) into (15) yields

Pin= - V. (JV)dV

=-JV-dS (17)

where we again use the divergence theorem. On the surface
S, the potential just equals the voltages on each terminal wire
allowing V to be brought outside the surface integral:

N

Pin= I - V• J, . dS
k=I s

N

= Y VAIl (18)
k=1

where we recognize the remaining surface integral as just
being the negative (remember dS points outward) of each
terminal current flowing into the volume. This formula is
usually given as a postulate along with Kirchoff's laws in most
circuit theory courses. Their correctness follows from the
quasi-static field laws that are only an approximation to more
general phenomena which we continue to explore.

7-2-4 The Complex Poynting's Theorem

For many situations the electric and magnetic fields vary
sinusoidally with time:

E(r, t) = Re [E(r) e"']
W .(19)

H(r, t) = Re [H(r) e"']

where the caret is used to indicate a complex amplitude that
can vary with position r. The instantaneous power density is
obtained by taking the cross product of E and H. However, it
is often useful to calculate the time-average power density
<S>, where we can avoid the lengthy algebraic and trig-
onometric manipulations in expanding the real parts in (19).
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A simple rule for the time average of products is obtained by
realizing that the real part of a complex number is equal to
one half the sum of the complex number and its conjugate
(denoted by a superscript asterisk). The power density is then

S(r, t)= E(r, t) x H(r, t)

= ¼[f(r)e""+ i*(r) e -""] x [ I(r)e"'+ I*(r) e -"]

= f[A(r) x H(r) e2t + E*(r) X I(r) + E(r) x A*(r)

+E*(r) x A*(r) e - 2i ' ] (20)

The time average of (20) is then

<5 > = ¼[k*(r)x 11(r) + A(r) x A*(r)]

= Re [i(r)XA*(r)]

= Re [*(r)xA(r)] (21)

as the complex exponential terms e 2iW" average to zero over a
period T = 2ir/w and we again realized that the first bracketed
term on the right-hand side of (21) was the sum of a complex
function and its conjugate.

Motivated by (21) we define the complex Poynting vector as

= ~(r)x A*(r) (22)

whose real part is just the time-average power density.
We can now derive a complex form of Poynting's theorem

by rewriting Maxwell's equations for sinusoidal time varia-
tions as

V X E(r) = -jwtIH(r)

V x A(r) = J,(r) + jwe E(r)
(23)

V" E(r) = ýf(r)/e

V B(r) = 0

and expanding the product

V. = V * IE(r)x A*(r)] =-1[I*(r) • V x E(r) - Ei(r) V x i*(r)]
1 1 2= f[-joat IH(r)] + jwe Ik(r)l 2] -E(r) *Jf (r) (24)

which can be rewritten as

V + 2j,[<w, > - <w,>] = -Pd (25)

where

<w,> =41 IHI(r)l2

<w,> = I (r)l (26)

id = ~i(t) . jf(r)
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We note that <w,> and <w,> are the time-average magnetic
and electric energy densities and that the complex Poynting's
theorem depends on their difference rather than their sum.

7-3 TRANSVERSE ELECTROMAGNETIC WAVES

7-3-1 Plane Waves

Let us try to find solutions to Maxwell's equations that only
depend on the z coordinate and time in linear media with
permittivity e and permeability M. In regions where there are
no sources so that pf=-0, Jr =0, Maxwell's equations then
reduce to

aE, aE,. aH
_iX + l, A-y (1)az - z at

aH,. cH, aE
-- i. + =- (2)az az at

aE,
e-= o (3)

aH,
a- = 0 (4)

These relations tell us that at best E, and H, are constant in
time and space. Because they are uncoupled, in the absence
of sources we take them to be zero. By separating vector
components in (1) and (2) we see that E2 is coupled to H, and
E, is coupled to H,:

aE, aH, aE, aH.
az at Oz at

(5)
aH, aE , aH, aE,

az at az at

forming two sets of independent equations. Each solution has
perpendicular electric and magnetic fields. The power flow
S= E X H for each solution is z directed also being perpendic-
ular to E and H. Since the fields and power flow are mutually
perpendicular, such solutions are called transverse elec-
tromagnetic waves (TEM). They are waves because if we take
a/az of the upper equations and a/at of the lower equations
and solve for the electric fields, we obtain one-dimensional
wave equations:

E_ 1 aRE_2 R_ 1 a2E_
IX 9 r II

Z c Oat z c Oat-
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where c is the speed of the wave,

1 1 3x 10 8

c= - = - nm/sec (7)

In free space, where e, = 1 and I, = 1, this quantity equals the
speed of light in vacuum which demonstrated that light is a
transverse electromagnetic wave. If we similarly take a/at of
the upper and a/az of the lower equations in (5), we obtain
wave equations in the magnetic fields:

a2 H, 1 a2H, a H 1 a2H.
2=a2 2a2 at2 (8)

7-3-2 The Wave Equation

(a) Solutions
These equations arise in many physical systems, so their

solutions are well known. Working with the E, and H, equa-
tions, the solutions are

E.(z, t)= E+(t-z/c)+E_(t+z/c)

H,(z, t) = H+(t- z/c) + H_(t + z/c)

where the functions E+, E_, H+, and H_ depend on initial
conditions in time and boundary conditions in space. These
solutions can be easily verified by defining the arguments a
and P with their resulting partial derivatives as

z aa aa 1
a = t---= 1,

c at az c
(10)

P=t+z=a= 1, a= I
c at az c

and realizing that the first partial derivatives of E,(z, t) are

aE. dE+aa dE_ ap

at da at dp at

dE+ dE-
da dO

(11)
aE_ dE+ aa dE_ ap

+-
az da az d1 az

1( dE+ dE+
c da dp
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The second derivatives are then

a2E, dE+2 aa d2E. ap
77 at dS at

d2E+ d2E

I 2E. 11 dE+ a d2E-aI(
z c 1 da2 az + d-

1 /d 2E+ d2E-\ 1 a2E,

which satisfie's the wave equation of (6). Similar operations
apply for H,, E,,and H..

In (9), the pair H+ and E+as well as the pair H- and E. are
not independent, as can be seen by substituting the solutions
of (9) back into (5) and using (11):

8E. aH 1 dE+ dE. (dH+ dH 1==-- - --- +-- =-, -+- (13)az at c da \ da d '

The functions of a and P must separately be equal,

-(E+ - AcH+) = 0, (E- + icH-)= 0 (14)
da dp

which requires that

E+ = uicH+= H+, E- = -cH_ =- HH (15)

where we use (7). Since / has units of Ohms, this quantity
is known as the wave impedance ?,

S= j - 120irj (16)

and has value 120ir 377 ohm in free space (I, = 1, e, = 1).
The power flux density in TEM waves is

S =ExH = [E+(t-z/c)+E-(t+z/c)]ix

x [H+(t- z/c) + H.(t + z/c)]i,

= (E+H++ E-H- + E-H++ E+H.)i, (17)

Using (15) and (16) this result can be written as

s, = (E+ -EP-) (18)
n1
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where the last two cross terms in (17) cancel because of the
minus sign relating E- to H_ in (15). For TEM waves the total
power flux density is due to the difference in power densities
between the squares of the positively z-directed and nega-
tively z-directed waves.

(b) Properties
The solutions of (9) are propagating waves at speed c. To

see this, let us examine E+(t - z/c) and consider the case where
at z = 0, E+(t) is the staircase pulse shown in Figure 7-3a. In
Figure 7-3b we replace the argument t by t-z/c. As long as
the function E, is plotted versus its argument, no matter what
its argument is, the plot remains unchanged. However, in
Figure 7-3c the function E+(t -z/c) is plotted versus t result-
ing in the pulse being translated in time by an amount z/c. To
help in plotting this translated function, we use the following
logic:

(i) The pulse jumps to amplitude Eo when the argument is
zero. When the argument is t - z/c, this occurs for t = z/c.

(ii) The pulse jumps to amplitude 2Eo when the argument
is T. When the argument is t - z/c, this occurs for t =
T+ z/c.

(iii) The pulse returns to zero when the argument is 2 T. For
the argument t - z/c, we have t = 2 T+ z/c.

E, (t), = 0 E, (tQ--

z

(a) (b)

E+ (t )
C

I' -. . . .

(d)

Figure 7-3 (a) E+(t) at z = 0 is a staircase pulse. (b) E+(4) always has the same shape as
(a) when plotted versus 0, no matter what 0 is. Here .4 = t - z/c. (c) When plotted versus
t, the pulse is translated in time where z must be positive to keep t positive. (d) When
plotted versus z, it is translated and inverted. The pulse propagates at speed c in the
positive z direction.
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Note that z can only be positive as causality imposes the
condition that time can only be increasing. The response at
any positive position z to an initial E, pulse imposed at z = 0
has the same shape in time but occurs at a time z/c later. The
pulse travels the distance z at the speed c. This is why the
function E,(t - z/c) is called a positively traveling wave.

In Figure 7-3d we plot the same function versus z. Its
appearance is inverted as that part of the pulse generated first
(step of amplitude EO) will reach any positive position z first.
The second step of amplitude 2Eo has not traveled as far
since it was generated a time T later. To help in plotting, we
use the same criterion on the argument as used in the plot
versus time, only we solve for z. The important rule we use is
that as long as the argument of a function remains constant,
the value of the function is unchanged, no matter how the
individual terms in the argument change.

Thus, as long as

t - z/c = const (19)

E+(t - z/c) is unchanged. As time increases, so must z to satisfy
(19) at the rate

z dz
t - = const - = c (20)

c dt

to keep the E, function constant.
For similar reasons E_(t + z/c) represents a traveling wave at

the speed c in the negative z direction as an observer must
move to keep the argument t + z/c constant at speed:

z dz
t +- = const • = -c (21)

c dt

as demonstrated for the same staircase pulse in Figure 7-4.
Note in Figure 7-4d that the pulse is not inverted when
plotted versus z as it was for the positively traveling wave,
because that part of the pulse generated first (step of ampli-
tude Eo) reaches the maximum distance but in the negative z
direction. These differences between the positively and nega-
tively traveling waves are functionally due to the difference in
signs in the arguments (t- z/c) and (t + z/c).

7-3-3 Sources of Plane Waves

These solutions are called plane waves because at any
constant z plane the fields are constant and do not vary with
the x and y coordinates.

The idealized source of a plane wave is a time varying
current sheet of infinite extent that we take to be x directed,
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E (t + )

(a) (b)

(c) (d)

Figure 7-4 (a) E_(t) at z = O0is a staircase pulse. (b) E-(4) always has the same form of
(a) when plotted versus 4. Here 46 = t +z/c. (c) When plotted versus t, the pulse is
translated in time where z must be negative to keep t positive. (d)When plotted versus z,
it is translated but not inverted.

as shown in Figure 7-5. From the boundary condition on the
discontinuity of tangential H, we find that the x-directed
current sheet gives rise to a y-directed magnetic field:

H,(z = 0+)- H,(z = 0_) = -K,(t)

In general, a uniform current sheet gives rise to a magnetic
field perpendicular to the direction of current flow but in the
plane of the sheet. Thus to generate an x-directed magnetic
field, a y-directed surface current is required.

Since there are no other sources, the waves must travel
away from the sheet so that the solutions on each side of the
sheet are of the form

SH(t - z/c)
H_(t + z/c)

S)H+(t - z/c), z > 0
-rqH_(t + z/c), z<0

(23)

For z > 0, the waves propagate only in the positive z direction.
In the absence of any other sources or boundaries, there can
be no negatively traveling waves in this region. Similarly for
z <0, we only have waves propagating in the -z direction. In
addition to the boundary condition of (22), the tangential
component of E must be continuous across the sheet at z = 0

H+(t)- H_(t) = -K,(t) = H -Kt(t)

7l[H+(t)+H-(t)]=0 (24)2

E (t).z=0
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E, (z, t) = Ct+ )
2

S *..

Hy (z, t)
Kx2t +

2

Ex (z, t) = -
K ( t - c )

2
S

K, (t -- )
H, (z, t)= 2- c

K, (t)

2Ko

Ko

T 2T
E, (z, t)

- 7LKo

Hy (z, t)

-Ko

ct. . •tz

- -Ko L-r-j

(b)

Figure 7-5 (a) A linearly polarized plane wave is generated by an infinite current sheet.
The electric field is in the direction opposite to the current on either side of the sheet.
The magnetic field is perpendicular to the current but in the plane of the current sheet
and in opposite directions as given by the right-hand rule on either side of the sheet. The
power flowS is thus perpendicular to the current and to the sheet. (b) The field solutions
for t > 2 T if the current source is a staircase pulse in time.
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so that the electric and magnetic fields have the same shape as
the current. Because the time and space shape of the fields
remains unchanged as the waves propagate, linear dielectric
media are said to be nondispersive.

Note that the electric field at z = 0 is in the opposite direc-
tion as the current, so the power per unit area delivered by
the current sheet,

-E(z = 0, t) . K.(t) = ) (25)
2

is equally carried away by the Poynting vector on each side of
the sheet:

iz, z>0

S(z - 0)=Ex H iK (t) (26)

4

7-3-4 A Brief Introduction to the Theory of Relativity

Maxwell's equations show that electromagnetic waves
propagate at the speed co = 1/,,/io in vacuum. Our
natural intuition would tell us that if we moved at a speed v we
would measure a wave speed of co - v when moving in the same
direction as the wave, and a speed co + v when moving in the
opposite direction. However, our intuition would be wrong,
for nowhere in the free space, source-free Maxwell's equa-
tions does the speed of the observer appear. Maxwell's equa-
tions predict that the speed of electromagnetic waves is co for
all observers no matter their relative velocity. This assump-
tion is a fundamental postulate of the theory of relativity and
has been verified by all experiments. The most notable
experiment was performed by A. A. Michelson and E. W.
Morley in the late nineteenth century, where they showed
that the speed of light reflected between mirrors is the same
whether it propagated in the direction parallel or perpendic-
ular to the velocity of the earth. This postulate required a
revision of the usual notions of time and distance.

If the surface current sheet of Section 7-3-3 is first turned
on at t = 0, the position of the wave front on either side of the
sheet at time t later obeys the equality

z 2 - C2 = 0 (27)

Similarly, an observer in a coordinate system moving with
constant velocity ui, which is aligned with the current sheet at



t = 0 finds the wavefront position to obey the equality

z ' -cot= 0 (28)

The two coordinate systems must be related by a linear
transformation of the form

zr = a1z +a 2t, t' = b1z +b 2 t (29)

The position of the origin of the moving frame (z'= 0) as
measured in the stationary frame is z = vt, as shown in Figure
7-6, so that a, and a2 are related as

O = alvt + a2t av+a2 =

We can also equate the two equalities of (27) and (28),

2 22= 2 _ 2,2. = )2_C2z -cot =z-c•t =(az +a 2 t)2-ct(b 1z +b 2t)0 2

so that combining terms yields
2

2(l2+C2 2) 2t2 2 2 2z (-al +cobi)-cot\ 1+- - 2) -2(aia 2 -cobib 2 )zt= 0
co

(30)

(31)

(32)

Since (32) must be true for all z and t, each of the coefficients
must be zero, which with (30) gives solutions

1

1 - (V/io)
-V

1a2 -(v/co)

-v/c2
bl

=

=1 -(v/co)
2

1bs= 11 -(v/co) 2

-g

Figure 7-6 The primed coordinate system moves at constant velocity vi, with respect
to a stationary coordinate system. The free space speed of an electromagnetic wave is co
as measured by observers in either coordinate system no matter the velocity v.
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The transformations of (29) are then

z - vt t - vz/c
z = t'= (34)

1- (V/co) ' 11 - (V/co)(

and are known as the Lorentz transformations. Measured
lengths and time intervals are different for observers moving
at different speeds. If the velocity v is much less than the
speed of light, (34) reduces to the Galilean transformations,

lim z'-z-vt, t' t (35)
vlc<< 1

which describe our usual experiences at nonrelativistic
speeds.

The coordinates perpendicular to the motion are
unaffected by the relative velocity between reference frames

x'= x Y,y'= y (36)

Continued development of the theory of relativity is be-
yond the scope of this text and is worth a course unto itself.
Applying the Lorentz transformation to Newton's law and
Maxwell's equations yield new results that at first appearance
seem contrary to our experiences because we live in a world
where most material velocities are much less than co.
However, continued experiments on such disparate time and
space scales as between atomic physics and astronomics verify
the predictions of relativity theory, in part spawned by Max-
well's equations.

7-4 SINUSOIDAL TIME VARIATIONS

7-4-1 Frequency and Wavenumber

If the current sheet of Section 7-3-3 varies sinusoidally with
time as Re (Ko e"i'), the wave solutions require the fields to
vary as ei''t-Z1C)and ei'(t+ic) :

H,(z, t) 2
Re +K eio2'"+c), z<0

(1)
Re(- e-'-', z>0

Ex(z,
t)

Re( - eitKo+z~c)),z <0
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At a fixed time the fields then also vary sinusoidally with
position so that it is convenient to define the wavenumber as

2k accAc

where A is the fundamental spatial period of the wave. At a
fixed position the waveform is also periodic in time with
period T:

1 2. "

T=1=
f a

where f is the frequency of the source. Using (3) with (2) gives
us the familiar frequency-wavelength formula:

O = kc _fAý = c (4)

Throughout the electromagnetic spectrum, summarized in
Figure 7-7, time varying phenomena differ only in the scaling
of time and size. No matter the frequency or wavelength,
although easily encompassing 20 orders of magnitude, elec-
tromagnetic phenomena are all described by Maxwell's equa-
tions. Note that visible light only takes up a tiny fraction of the
spectrum.

Xmeters 3x1
6f 3x10

4
3x10

2 3 3x10- 2
3x10-4 3x1076 3x10

- a
3x10-' 3x10

- 12

102 10
4 106 108 1010 1012

I I I I I I

Radio and television Infrared

AM FM (heat)
AM FM

Circuit theory Microwaves

1014 1016 10la 1020
I I I I

Visible Ultraviolet X-rays
light Red (700nm)

Orange (650nm)
Yellow (600nm)
Green (550nm)
Blue (450nm)
Violet (400nm)

Figure 7-7 Time varying electromagnetic phenomena differ only in the scaling of time
(frequency) and size (wavelength). In linear dielectri,ymedia the frequency and
wavelength are related as fA = c (to= kc), where c = 1/Ve'g is the speed of light in the
medium.

f(Hz)
0
I

Power Gamma
rays
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For a single sinusoidally varying plane wave, the time-
average electric and magnetic energy densities are equal
because the electric and magnetic field amplitudes are related
through the wave impedance 77:

<w,,> = <w,>= 2 1 2HI= 2eELEl K (5)

From the complex Poynting theorem derived in Section
7-2-4, we then see that in a lossless region with no sources for
Iz >0 that Pd = 0 so that the complex Poynting vector has
zero divergence. With only one-dimensional variations with z,
this requires the time-average power density to be a constant
throughout space on each side of the current sheet:

<S > = - Re [i(r)X A*(r)]

(K~it, z>0
= 1 z< (6)

The discontinuity in <S > at z = 0 is due to the power output of
the source.

7-4-2 Doppler Frequency Shifts

If the sinusoidally varying current sheet Re (Ko eiw')moves
with constant velocity vi,, as in Figure 7-8, the boundary
conditions are no longer at z = 0 but at z = vt. The general
form of field solutions are then:

Re (-±+ei•,+-(zc)), z > vt
Re (H- e '

i
-

+
' /c)) z <vt

(7)
[Re (nH.+ei' -/ ), z> vt
Re (-i7/1-ed-('+~c)), z <vt

where the frequencies of the fields w+ and w- on each side of
the sheet will be different from each other as well as differing
from the frequency of the current source w. We assume
v/c << I so that we can neglect relativistic effects discussed in
Section 7-3-4. The boundary conditions

E,.(z = vt) = E,_(z = vt)>A+ ei+' '" - /c= _--_e-'"'+v'c

H,,(z = vt) - H, (z= vt) = -K, (8)

=,+ e,e -t(-c) (c) = -Ko ed"t

must be satisfied for all values of t so that the exponential time
factors in (8) must all be equal, which gives the shifted
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x

E,=Re[-l -e

Ko i•w- (t+ 1)

Hy =Re [ ]

I

oII t

Re(Koe wt )

E = Re [--- ' e

Ko ij, (-L)
HY =Re[ -- y +

O+ + 0(1+) C

Figure 7-8 When a source of electromagnetic waves moves towards an observer, the
frequency is raised while it is lowered when it moves away from an observer.

frequencies on each side of the sheet as

+ Ko1-Hv/c/- d 1- 2+-H-'
1+v/c 2

where v/c << 1. When the source is moving towards an obser-
ver, the frequency is raised while it is lowered when it moves
away. Such frequency changes due to the motion of a source
or observer are called Doppler shifts and are used to measure
the velocities of moving bodies in radar systems. For v/c << 1,
the frequency shifts are a small percentage of the driving
frequency, but in absolute terms can be large enough to be
easily measured. At a velocity v = 300 rm/sec with a driving
frequency of f- 10'0 Hz, the frequency is raised and lowered
on each side of the sheet by Af= +f(v/c) = -104 Hz.

7-4-3 Ohmic Losses

Thus far we have only considered lossless materials. If the
medium also has an Ohmic conductivity o, the electric field

,I

_·
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will cause a current flow that must be included in Ampere's
law:

oE, OH,
Oz at

(10)
aH, aE. aE, (10)

S- - e-- = - aE,--azat at

where for conciseness we only consider the x-directed electric
field solution as the same results hold for the E,, H, solution.
Our wave solutions of Section 7-3-2 no longer hold with this
additional term, but because Maxwell's equations are linear
with constant coefficients, for sinusoidal time variations the
solutions in space must also be exponential functions, which
we write as

E,(z, t)= Re (Eo ei'( 't-k))

H,(z, t) = Re (H 0o ei(~t- hk))

where Eo and H 0oare complex amplitudes and the wavenum-
ber k is no longer simply related to w as in (4) but is found by
substituting (11) back into (10):

-jkEo = -jwioHo
(12)

-jkHo =-jWe (1 + ojwe )Eo

This last relation was written in a way that shows that the
conductivity enters in the same way as the permittivity so that
we can define a complex permittivity E as

S= e(1+ o/ljW) (13)

Then the solutions to (12) are

---- j k2 = W2,AE = oW2 -At 0 Wo hk 2 a,2Ms(1+cr (14)Ho k we ws

which is similar in form to (2) with a complex permittivity.
There are two interesting limits of (14):

(a) Low Loss Limit
If the conductivity is small so that o/aoe << 1, then the solution

of (14) reduces to

lim k= =h& e(1+ 2-) (- (15)
/,.e4CxI c 2 E)

where c is the speed of the light in the medium if there were
no losses, c = 1/IE. Because of the spatial exponential
dependence in (11), the real part of k is the same as for the
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lossless case and represents the sinusoidal spatial distribution
of the fields. The imaginary part of k represents the
exponential decay of the fields due to the Ohmic losses with
exponential decay length •lo, where 71 = -4Ie is the wave
impedance. Note that for waves traveling in the positive z
direction we take the upper positive sign in (15) using the
lower negative sign for negatively traveling waves so that the
solutions all decay and do not grow for distances far from the
source. This solution is only valid for small o"so that the wave is
only slightly damped as it propagates, as illustrated in Figure
7-9a.

eV/6 e2/6

Low loss limit

eP' 6 e-' 5

Large lass limit

Figure 7-9 (a) In a slightly lossy dielectric, the fields decay away from a source at a slow
rate while the wavelength is essentially unchanged. (b) In the large loss limit the spatial
decay rate is equal to the skin depth. The wavelength also equals the skin depth.

_____ ,,g. z
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(b) Large Loss Limit
In the other extreme of a highly conducting material so

that o/wse >> 1, (14) reduces to

lim k 2 =-joAcrk=>k (I-j), 8= (16)

where 8 is just the skin depth found in Section 6-4-3 for
magneto-quasi-static fields within a conductor. The skin-
depth term also arises for electrodynamic fields because the
large loss limit has negligible displacement current compared
to the conduction currents.

Because the real and imaginary part of k have equal
magnitudes, the spatial decay rate is large so that within a few
oscillation intervals the fields are negligibly small, as illus-
trated in Figure 7-9b. For a metal like copper with A= o=

41r x 10-7 henry/m and o - 6 x 107 siemens/m at a frequency
of 1 MHz, the skin depth is 8 -6.5 x 10-5 m.

7-4-4 High-Frequency Wave Propagation in Media

Ohm's law is only valid for frequencies much below the
collision frequencies of the charge carriers, which is typically
on the order of 1013 Hz. In this low-frequency regime the
inertia of the particles is negligible. For frequencies much
higher than the collision frequency the inertia dominates and
the current constitutive law for a single species of charge
carrier q with mass m and number density n is as found in
Section 3-2-2d:

aJ,/at= O~E (17)

where w( = ,•-n/me is the plasma frequency. This constitutive
law is accurate for radio waves propagating in the ionosphere,
for light waves propagating in many dielectrics, and is also
valid for superconductors where the collision frequency is
zero.

Using (17) rather than Ohm's law in (10) for sinusoidal time
and space variations as given in (11), Maxwell's equations are

S ' -jk°o = 8
az at

Theeffectivepermittivityisnowfrequencydepende(18)
ýH, aE. W P

The effective permittivity is now frequency dependent:

A= e(1-w~ /o •2
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The solutions to (18) are

0o O k 2 2 . CO WP

-. . 2 g = (20)
Ho k we c

For w > wp, k is real and we have pure propagation where the
wavenumber depends on the frequency. For w <we,, k is
imaginary representing pure exponential decay.

Poynting's theorem for this medium is

a 1 oJfV S-+ (½sIEI +h&IH62) =-E JI=---2 • -
at woe at

1- a 2 (21)

Because this system is lossless, the right-hand side of (21)
can be brought to the left-hand side and lumped with the
energy densities:

V.S+- [ EI 2+•lHI2+1 I j11 2=0 (22)
at 2 woe

This new energy term just represents the kinetic energy
density of the charge carriers since their velocity is related to
the current density as

11
Jr=qnv= 2 " J--• J [=mnnvI (23)

7-4-5 Dispersive Media

When the wavenumber is not proportional to the
frequency of the wave, the medium is said to be dispersive. A
nonsinusoidal time signal (such as a square wave) will change
shape and become distorted as the wave propagates because
each Fourier component of the signal travels at a different
speed.

To be specific, consider A stationary current sheet source at
z = 0 composed of two signals with slightly different frequen-
cies:

K(t) = Ko[cos (wo + Ao)t + cos (wo o- A)t]

= 2Ko cos Awt cos wot (24)

With Aw << w the fast oscillations at frequency wo are modu-
lated by the slow envelope function at frequency Aw. In a
linear dielectric medium this wave packet would propagate
away from the current sheet at the speed of light, c = 1/v-e).

·
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If the medium is dispersive. with the wavenumber k(w) being
a function of w, each frequency component in (24) travels at a
slightly different speed. Since each frequency is very close to
w0 we expand k(w) as

dk
k(jo+ w) k(wo)+-, A,&

(25)

k(&Oo-Aw)= k(wo)-d-- Ao

where for propagation k(wo) must be real.
The fields for waves propagating in the +z direction are

then of the following form:

E,.(z, t)= Re Eo exp I(woo+w)t - (wo)+k AW+z

+exp [ (woJ-Aw)t- k(wodw)A z

=Re (. exp {j[wot -k(wo)z]}j exp j AW t- A ]

+exp -j Am t - z

= 2Eo cos (wotk- k(wo)z) coswAt - z (26)

where without loss of generality we assume in the last relation
that E0 = Eo is real. This result is plotted in Figure 7-10 as a
function of z for fixed time. The fast waves with argument
wot -k((oo)z travel at the phase speed vp = wo/k(wo) through
the modulating envelope with argument Aw(t-dk/dwooz).
This envelope itself travels at the slow speed

dk dz d(
t- z= const = v = d (27)

known as the group velocity, for it is the velocity at which a
packet of waves within a narrow frequency band around wo
will travel.

For linear media the group and phase velocities are equal:

wo= kc > v, = =

Vd (28)
do
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E4 (s, t = 0) E-a •nl It -A--)1 cosrAwit---ls

Modulating
envelope cos [A(t- )]

Figure 7-10 In a dispersive medium the shape of the waves becomes distorted so the
velocity of a wave is not uniquely defined. For a group of signals within a narrow
frequency band the modulating envelope travels at the group velocity v,. The signal
within the envelope propagates through at the phase velocity v,.

while from Section 7-4-4 in the high-frequency limit for
conductors, we see that

W2 = k2C2++ 2W2 =VW

dw k 2 (29)
V, = - = -C

dk w

where the velocities only make sense when k is real so that
a >04. Note that in this limit

VvJ, = C 2 (30)

Group velocity only has meaning in a dispersive medium
when the signals of interest are clustered over a narrow
frequency range so that the slope defined by (27), is approxi-
mately constant and real.

7-4-6 Polarization

The two independent sets of solutions of Section 7-3-1 both
have their power flow S = E x H in the z direction. One solu-
tion is said to have its electric field polarized in the x direction

,°
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while the second has its electric field polarized in the y direc-
tion. Each solution alone is said to be linearly polarized
because the electric field always points in the same direction
for all time. If both field solutions are present, the direction
of net electric field varies with time. In particular, let us say
that the x and y components of electric field at any value of z
differ in phase by angle 4:

E = Re [Eoi. + E, e'i,] e• ' = Eo cos wti. + E, cos (ot + 4))i,
(31)

We can eliminate time as a parameter, realizing from (31) that

cos wt = EE, 
(32)(32)

sin w cos at cos 4 - EE, = (EJEI,) cos 4)- EE,
sin 4 sin 4

and using the identity that

sin wt + cos2 (Ot

= 1(E ) (EJEn)2 cos 2 4)+ (E/E,)2 - (2E.E/EýoE,0 ) cos 4
I Eo. sin 2 40

(33)

to give us the equation of an ellipse relating E, to E,:

(E +( E, 2 2EE, 2
S cos4 = sin2 4 (34)

(E,. E0 E.E,

as plotted in Figure 7-11 a. As time increases the electric field
vector traces out an ellipse each period so this general case of
the superposition of two linear polarizations with arbitrary
phase 4 is known as elliptical polarization. There are two
important special cases:

(a) Linear Polarization
If E. and E, are in phase so that 4 = 0, (34) reduces to(E.E,\ 2 E, E

E,, E•0= tanO=-• (35)
Ex E.K E, E,.

The electric field at all times is at a constant angle 0 to the x
axis. The electric field amplitude oscillates with time along
this line, as in Figure 7-1 lb. Because its direction is always
along the same line, the electric field is linearly polarized.

(b) Circular Polarization
If both components have equal amplitudes but are 90* out

of phase,

E.o= Eo Eo, 4 = fir/2
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E=Exoix +Eoe ioi

xo fyo -xo Yo0

Figure 7-11 (a) Two perpendicular field components with phase difference 46 have the
tip of the net electric field vector tracing out an ellipse each period. (b) If both field
components are in phase, the ellipse reduces to a straight line. (c) If the field
components have the same magnitude but are 90* out of phase, the ellipse becomes a
circle. The polarization is left circularly polarized to z-directed power flow if the electric
field rotates clockwise and is (d) right circularly polarized if it rotates counterclockwise.

(34) reduces to the equation of a circle:

E2 +E2 = E0 (37)

The tip of the electric field vector traces out a circle as time
evolves over a period, as in Figure 7-11 c. For the upper (+)
sign for 4 in (36), the electric field rotates clockwise while the
negative sign has the electric field rotating counterclockwise.
These cases are, respectively, called left and right circular
polarization for waves propagating in the +z direction as
found by placing the thumb of either hand in the direction of
power flow. The fingers on the left hand curl in the direction
of the rotating field for left circular polarization, while the
fingers of the right hand curl in the direction of the rotating
field for right circular polarization. Left and right circular
polarizations reverse for waves traveling in the -z direction.

7-4-7 Wave Propagation in Anisotropic Media

Many properties of plane waves have particular appli-
cations to optics. Because visible light has a wavelength on the
order of 500 nm, even a pencil beam of light 1 mm wide7 is
2000 wavelengths wide and thus approximates a plane wave.

1

( Ex)2 +
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,•wt= 0, 2r

= Exo coswt
= EO coswt

(b)

- )

2

Wt = r
E x
0

Left circular polarization Right circular polarization

(c)

Figure 7-11

(a) Polarizers
Light is produced by oscillating molecules whether in a

light bulb or by the sun. This natural light is usually
unpolarized as each molecule oscillates in time and direction
independent of its neighbors so that even though the power
flow may be in a single direction the electric field phase
changes randomly with time and the source is said to be
incoherent. Lasers, an acronym for "light amplification by
stimulated emission of radiation," emits coherent light by
having all the oscillating molecules emit in time phase.

A polarizer will only pass those electric field components
aligned with the polarizer's transmission axis so that the
transmitted light is linearly polarized. Polarizers are made of
such crystals as tourmaline, which exhibit dichroism-the
selective absorption of the polarization along a crystal axis.
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The polarization perpendicular to this axis is transmitted.
Because tourmaline polarizers are expensive, fragile, and

of small size, improved low cost and sturdy sheet polarizers
were developed by embedding long needlelike crystals or
chainlike molecules in a plastic sheet. The electric field
component in the long direction of the molecules or crystals is
strongly absorbed while the perpendicular component of the
electric field is passed.

For an electric field of magnitude Eo at angle 4 to the
transmission axis of a polarizer, the magnitude of the trans-
mitted field is

E, = Eo cos 4 (38)

so that the time-average power flux density is

<S > = I Re [i(r)x A*(r)]1

= - cos' 4 (39)
2 71

which is known as the law of Malus.

(b) Double Refraction (Birefringence)
If a second polarizer, now called the analyzer, is placed

parallel to the first but with its transmission axis at right
angles, as in Figure 7-12, no light is transmitted. The
combination is called a polariscope. However, if an anisotro-
pic crystal is inserted between the polarizer and analyzer,
light is transmitted through the analyzer. In these doubly
refracting crystals, light polarized along the optic axis travels
at speed c1u while light polarized perpendicular to the axis
travels at a slightly different speed c,. The crystal is said to be
birefringent. If linearly polarized light is incident at 450 to the
axis,

E(z = 0, t) = Eo(i, + i,) Re (edw) (40)

the components of electric field along and perpendicular to
the axis travel at different speeds:

E,(z, t) = Eo Re (ei<(ct-hII)), kt = a/c1
E,(z, t) = Eo Re (eijt-h''z), k± = wo/c (41)

After exiting the crystal at z = 1,the total electric field is

E(z = i, t) = Eo Re [ei'(e-iLi,,+ e-i'i,)]

= Eo Re [ei"(-l-')(i, + eihlr-k)'i,)] (42)
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Crossed polarizer
(analyzer)

Incident field at = 0.

at

Elliptically
polarized wave

Complex electric field vector rotates
clockwise along crystal

Doubly refracting
(birefringent) medium

Linearly
polarized

wave

Waves polarized along this
axis travel at speed cq

Transmission axis

Polarizer

Figure 7-12 When a linearly polarized wave passes through a doubly refracting
(birefringent) medium at an angle to the crystal axes, the transmitted light is elliptically
polarized.

which is of the form of (31) for an elliptically polarized wave
where the phase difference is

S= (kll- kJ)1 = ol 1 1
cli c-L

When 4 is an integer multiple of 27r, the light exiting the
crystal is the same as if the crystal were not there so that it is
not transmitted through the analyzer. If 45 is an odd integer
multiple of 7r, the exiting light is also linearly polarized but
perpendicularly to the incident light so that it is polarized in
the same direction as the transmission axis of the analyzer,
and thus is transmitted. Such elements are called half-wave
plates at the frequency of operation. When 4 is an odd
integer multiple of ur/2, the exiting light is circularly

L
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polarized and the crystal serves as a quarter-wave plate.
However, only that polarization of light along the trans-
mission axis of the analyzer is transmitted.

Double refraction occurs naturally in many crystals due to
their anisotropic molecular structure. Many plastics and
glasses that are generally isotropic have induced birefrin-
gence when mechanically stressed. When placed within a
polariscope the photoelastic stress patterns can be seen. Some
liquids, notably nitrobenzene, also become birefringent when
stressed by large electric fields. This phenomena is called the
Kerr effect. Electro-optical measurements allow electric field
mapping in the dielectric between high voltage stressed elec-
trodes, useful in the study of high voltage conduction and
breakdown phenomena. The Kerr effect is also used as a light
switch in high-speed shutters. A parallel plate capacitor is
placed within a polariscope so that in the absence of voltage
no light is transmitted. When the voltage is increased the light
is transmitted, being a maximum when 4 = w. (See problem
17.)

7-5 NORMAL INCIDENCE ONTO A PERFECT CONDUCTOR

A uniform plane wave with x-directed electric field is
normally incident upon a perfectly conducting plane at z = 0,
as shown in Figure 7-13. The presence of the boundary gives
rise to a reflected wave that propagates in the -z direction.
There are no fields within the perfect conductor. The known
incident fields traveling in the +z direction can be written as

Ei(z, t) = Re (Ei eik1t-'i)
(1)

Hi(z, t)= Re (eitm-2)i(1

while the reflected fields propagating in the -z direction are
similarly

E,(z, t) = Re (P, ei"c+Ai.)

H,(z, t) = Re ( - ei7 +• i, (2)

where in the lossless free space

710 = v4"o/eo, k = ,"ego (3)

Note the minus sign difference in the spatial exponential
phase factors of (1) and (2) as the waves are traveling in
opposite directions. The amplitude of incident and reflected
magnetic fields are given by the ratio of electric field ampli-
tude to the wave impedance, as derived in Eq. (15) of Section

I
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eo, AO (170=v/-o)

Er = Re(E, e j(r+kX)i. )

H, (, t)= ,o j(ot+kz)H,, (z,0 = -2E coskzcoswt H, = Re(-L e?0 -710

Figure 7-13 A uniform plane wave normally incident upon a perfect conductor has
zero electric field at the conducting surface thus requiring a reflected wave. The source
of this reflected wave is the surface current at z = 0, which equals the magnetic field
there. The total electric and magnetic fields are 900 out of phase in time and space.

7-3-2. The negative sign in front of the reflected magnetic
field for the wave in the -z direction arises because the power
flow S, = E, x H, in the reflected wave must also be in the -z
direction.

The total electric and magnetic fields are just the sum of
the incident and reflected fields. The only unknown
parameter E, can be evaluated from the boundary condition
at z =0 where the tangential component of E must be
continuous and thus zero along the perfect conductor:

Ei+E,== 0 2=> (4)

The total fields are then the sum of the incident and reflected
fields

E.(z, t)= Ei(z, t) + E,(z, t)

= Re [Ei(e -i ~ -e+3k ' ) eic]

= 2E, sin kz sin wt

H,(z, t)= Hi(z, t)+H,(z, t)

= Re (e-jkz + e +L') eiw (5)

2Ei
= - cos kz cos ot

7lo

Ex(s,

m
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where we take Ai = Ei to be real. The electric and magnetic
fields are 90* out of phase with each other both in time and
space. We note that the two oppositely traveling wave solu-
tions combined for a standing wave solution. The total solu-
tion does not propagate but is a standing sinusoidal solution
in space whose amplitude varies sinusoidally in time.

A surface current flows on the perfect conductor at z = 0
due to the discontinuity in tangential component of H,

2E,
K, = H,(z= O)=-cos t (6)

11o

giving rise to a force per unit area on the conductor,

F = 2K x oH = p0oH, (z = 0)i = 2eoE? cos2 Wti, (7)

known as the radiation pressure. The factor of 2 arises in (7)
because the force on a surface current is proportional to the
average value of magnetic field on each side of the interface,
here being zero for z = 0+.

7-6 NORMAL INCIDENCE ONTO A DIELECTRIC

7-6-1 Lossless Dielectric

We replace the perfect conductor with a lossless dielectric
of permittivity e2 and permeability l2, as in Figure 7-14, with
a uniform plane wave normally incident from a medium with
permittivity el and permeability j1. In addition to the
incident and reflected fields for z < 0, there are transmitted
fields which propagate in the +z direction within the medium
for z > 0:

Ei(z, t) = Re [4i ei-A)i,], ki = W ,L

HE(z, t)= Re[ ei(ut-kI')i, , Al=

1 <0

E,(z, t)= Re [- • ei"*+'A)i,]

1(1)

E,(z, t) =Re [E ej"')i.•, k2 = 0 ]
H,(z, t)= Re [E itu*-k+:i], (12= 1

It is necessary in (1) to use the appropriate wavenumber
and impedance within each region. There is no wave travel-
ing in the -z direction in the second region as we assume no
boundaries or sources for z > 0.
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Selp
VEIA

Ei = Re(Eie i)(

ki = kli

H -i j(e t-kx i)

I e-i)
y

Er = Re( re i (Q'I+kIdi)

Hr
= 

Re(-- -lRe t )

kr.= -ki is is

e 2, P2 (2 C2E2

Et = Re(Et ei
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k2s) is)

k, = k2i2 = is

H =- Re(-t- e hjt-k2ziy)

Figure 7-14 A uniform plane wave normally incident upon a dielectric interface
separating two different materials has part of its power reflected and part transmitted.

The unknown quantities E, and E, can be found from the
boundary conditions of continuity of tangential E and H at
z = 0,

1 r2

from which we find the reflection R and transmission T field
coefficients as

R=-=-
E. ml+?h

E, 2712T= -X=
Ei 72+ 2 11
E, 112+111

where from (2)

1+R=T

If both mediums have the same wave impedance, II1 = 12,
there is no reflected wave.

523

Ei 712+711
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7-6-2 Time-Average Power Flow

The time-average power flow in the region z <0 is

<S&>= 2 Re [ .(z) A (z)]

= Re [E • -,h ' " + ,e+i*'"][E1 e+ik' - E e-ihI

[1 '1

+-Re [PA* e e+
2

iz- P ie-20k 1z

27 a (5)

The last term on the right-hand side of (5) is zero as it is the
difference between a number and its complex conjugate,
which is pure imaginary and equals 2j times its imaginary
part. Being pure imaginary, its real part is zero. Thus the
time-average power flow just equals the difference in the
power flows in the incident and reflected waves as found
more generally in Section 7-3-2. The coupling terms between
oppositely traveling waves have no time-average yielding the
simple superposition of time-average powers:

<s, > = 2[I •1-il 2-111]

= [1 -R 2] (6)
2n,

This net time-average power flows into the dielectric
medium, as it also equals the transmitted power;

1I 1I1 2T2  1 2

<S,> = I-'= [I-R'] (7)
2712 2n2 271

7-6-3 Lossy Dielectric

If medium 2 is lossy with Ohmic conductivity o, the solu-
tions of (3) are still correct if we replace the permittivity 62 by
the complex permittivity S,.

2=e 1+(8)

so that the wave impedance in region 2 is complex:

'12 = 'IA/

I ____
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We can easily explore the effect of losses in the low and large
loss limits.

(a) Low Losses
If the Ohmic conductivity is small, we can neglect it in all

terms except in the wavenumber k2:

lim k2-1E -2 (10)
/W624C1 2 82

The imaginary part of k2 gives rise to a small rate of
exponential decay in medium 2 as the wave propagates away
from the z = 0 boundary.

(b) Large Losses
For large conductivities so that the displacement current is

negligible in medium 2, the wavenumber and impedance in
region 2 are complex:

(k=1-ij Q 2

lim (11)
o,_ ,*'2 1 +1

The fields decay within a characteristic distance equal to the
skin depth 8. This is why communications to submerged
submarines are difficult. For seawater, ~2 = 0 =
41rX 10-7 henry/m and o-4 siemens/m so that for 1 MHz
signals, 8-0.25m. However, at 100Hz the skin depth
increases to 25 meters. If a submarine is within this distance
from the surface, it can receive the signals. However, it is
difficult to transmit these low frequencies because of the large
free space wavelength, A-3 106 m. Note that as the
conductivity approaches infinity,

lim - I (12)-( 1o12 = 0 (T=0

so that the field solution approaches that of normal incidence
upon a perfect conductor found in Section 7-5.

EXAMPLE 7-1 DIELECTRIC COATING

A thin lossless dielectric with permittivity e and permeabil-
ity M is coated onto the interface between two infinite half-
spaces of lossless media with respective properties (E , p1r) and
(e6, Ip), as shown in Figure 7-15. What coating parameters e
and Ct and thickness d will allow all the time-average power
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H1

Region 1

Electrodynamics-Fieldsand Waves

= I_-AI

Y' "e-

No reflections

if d -, n= 1,3,5...
4

and 7 = V711-2 ,where = 2•r is

measured within the coating

Figure 7-15 A suitable dielectric coating applied on the interface of discontinuity
between differing media can eliminate reflections at a given frequency.

from region 1 to be transmitted through the coating to region
2? Such coatings are applied to optical components such as
lenses to minimize unwanted reflections and to maximize the
transmitted light intensity.

SOLUTION

For all the incident power to be transmitted into region 2,
there can be no reflected field in region 1, although we do
have oppositely traveling waves in the coating due to the
reflection at the second interface. Region 2 only has positively
z-directed power flow. The fields in each region are thus of
the following form:

Region 1

Ex= Re [E 1 ei("-k&)ix],

HI=Re Ee -k,>i, , ki =
Si

E2

E2 k2
d

H2

Region 2
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Coating

E+ = Re [E+eit""-a'i,], k = o/c = wE1

H+= Re [E, e' t"+ni,] 1

EH- = Re e[Eei(+')i,]

Region 2

E2 = Re [P2 ei(kt-k)ix], k2 = IC =w(62/

H 2 = Re [E2 e••M )i, , *92

Continuity of tangential E and H at z = 0 and z = d requires

1=t++L-, E, E+-E-

P+e-i' + - e+iu = E2e-isd

P+ e-"d-- e+i e-ikgd

71 712

Each of these amplitudes in terms of E 1 is then

E.= - 1+-

~ = ej'gdE+e- +L~ e+iv ]

=12 ei d[t+ e-iud- _e+id]
77

Solving this last relation self-consistently requires that

.+e-'( 1- +L e" 1+ =0

Writing ~+and .. in terms of t 1 yields

(I+I)i I 72)+e2ji1 +1) (1 _j = 0

Since this relation is complex, the real and imaginary parts
must separately be satisfied. For the imaginary part to be zero
requires that the coating thickness d be an integral number of
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quarter wavelengths as measured within the coating,

2kd = nar d = nA/4, n = 1, 2,3,...

The real part then requires

1+1+ 1  n even

) ]1 n odd

For the upper sign where d is a multiple of half-wavelengths
the only solution is

P12=-1 (d=nA/4, n=2,4,6,...)

which requires that media 1 and 2 be the same so that the
coating serves no purpose. If regions 1 and 2 have differing
wave impedances, we must use the lower sign where d is an
odd integer number of quarter wavelengths so that

=1= 712#1 2 = fq2 (d=nA/4, n =1,3,5,...)

Thus, if the coating is a quarter wavelength thick as measured
within the coating, or any odd integer multiple of this thick-
ness with its wave impedance equal to the geometrical average
of the impedances in each adjacent region, all the time-
average power flow in region 1 passes through the coating
into region 2:

<S,> . . .
2 , 2 712

(*E e+'hz - e' -'•
=2Re (, e-" +- e+·) ( e +

271

Note that for a given coating thickness d, there is no reflection
only at select frequencies corresponding to wavelengths d =
nA/4, n = 1,3,5,.... For a narrow band of wavelengths
about these select wavelengths, reflections are small. The
magnetic permeability of coatings and of the glass used in
optical components are usually that of free space while the
permittivities differ. The permittivity of the coating e is then
picked so that

and with a thickness corresponding to the central range of the
wavelengths of interest (often in the visible).

I _
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7-7 UNIFORM AND NONUNIFORM PLANE WAVES

Our analysis thus far has been limited to waves propagating
in the z direction normally incident upon plane interfaces.
Although our examples had the electric field polarized in the
x direction., the solution procedure is the same for the y-
directed electric field polarization as both polarizations are
parallel to the interfaces of discontinuity.

7-7-1 Propagation at an Arbitrary Angle

We now consider a uniform plane wave with power flow at
an angle 0 to the z axis, as shown in Figure 7-16. The electric
field is assumed to be y directed, but the magnetic field that is
perpendicular to both E and S now has components in the x
and z directions.

The direction of the power flow, which we can call z', is
related to the Cartesian coordinates as

z'=x sin O+z cos 0

so that the phase factor kz' can be written as

kz' = kx + k,z, k, = k sin 0

k, = k cos 0

where the wavenumber magnitude is

E = Re(Ee

scos0

0 i,+ sin Oi l

Figure 7-16 The spatial dependence of a uniforiN plane wave at an arbitrary angle 0
can be expressed in terms of a vector wavenumber k as e-ik' ,where k is in the direction
of power flow and has magnitude co/c.
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This allows us to write the fields as

E = Re [ ee•t-1kx-h"z•i,]
A (4)

H= Re [E(-cos Oi,+sin Oi,) ei''-t--."-h.4

We note that the spatial dependence of the fields can be
written as e-i Lk' ,where the wavenumber is treated as a vector:

k = ki + ki +ki, (5)
with

r= xix +yi, +zi, (6)
so that

kr=r=+k,y+ky +kz (7)

The magnitude of k is as given in (3) and its direction is the
same as the power flowS:

IAI2
S=ExH = - (cos Oi, +sin ix,)cos2 (wt -k - r)

1EI 2k
- - cos 2 (wt - k r) (8)

where without loss of generality we picked the phase of f to
be zero so that it is real.

7-7-2 The Complex Propagation Constant

Let us generalize further by considering fields of the form

E = Re [E e"' e- '']= Re [E e( ' - '
tkr) e-"I]

H = Re [Hi e' e-' ''] = Re [i e(t - k r) e-"a] (9)

where y is the complex propagation vector and r is the posi-
tion vector of (6):

- = a + jk = y,i, + yi, + y i, (10)
Y' r = yx + y,y + y,z

We have previously considered uniform plane waves in
lossless media where the wavenumber k is pure real and z
directed with a =0 so that y is pure imaginary. The
parameter a represents the decay rate of the fields even
though the medium is lossless. If a is nonzero, the solutions
are called nonuniform plane waves. We saw this decay in our
quasi-static solutions of Laplace's equation where solutions
had oscillations in one direction but decay in the perpendic-
ular direction. We would expect this evanescence to remain at
low frequencies.
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The value of the assumed form of solutions in (9) is that the
del (V) operator in Maxwell's equations can be replaced by the
vector operator -y:

V= -i, -+-i, -izax ay az

= -Y (11)

This is true because any spatial derivatives only operate on
the exponential term in (9). Then the source free Maxwell's
equations can be written in terms of the complex amplitudes
as

- x fi =ij•- (12)

-Y -,tI= 0

The last two relations tell us that y is perpendicular to both
E and H. If we take y x the top equation and use the second
equation, we have

-7 x (y x •) = -jot (y XHI)= -jay (-jweE)
_=- ACet (13)

The double cross product can be expanded as

-- x(,y X f) = -y(y •I) + (,y y)i

= (,y ./)j = -_oWCE (14)

The y --i term is zero from the third relation in (12). The
dispersion relation is then

y*y= (ar- k +2j k)= -W9Ie (15)

For solution, the real and imaginary parts of (15) must be
separately equal:

'2 - k2 = --- P_ E (16)
at k=0

When a= 0, (16) reduces to the familiar frequency-
wavenumber relation of Section 7-3-4.

The last relation now tells us that evanescence (decay) in
space as represented by a is allowed by Maxwell's equations,
but must be perpendicular to propagation represented by k.
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We can compute the time-average power flow for fields of
the form of (9) using (12) in terms of either E or H as follows:

(17)<S > = - Re ( x ii*)
- JRe(r (y*) x fi*)-'.Re jI k2 WE ymp (17)<S> to write the (power flow in terms of either E or * )

Re 
jWR

( k H 9 1 (I_*)
ReH| - `9Re

Although both final expressions in (17) are equivalent, it is
convenient to write the power flow in terms of either E or H.
When E is perpendicular to both the real vectors a and 0,
defined in (10) and (16), the dot product y* • E is zero. Such a
mode is called transverse electric (TE), and we see in (17) that
the time-average power flow is still in the direction of the
wavenumber k. Similarly, when H is perpendicular to a and
13, the dot product y H* is zero and we have a transverse
magnetic (TM) mode. Again, the time-average power flow in
(17) is in the direction of k. The magnitude of k is related to w
in (16).

Note that our discussion has been limited to lossless
systems. We can include Ohmic losses if we replace E by the
complex permittivity E of Section 7-4-3 in (15) and (17).
Then, there is always decay (a 4 0) because of Ohmic dis-
sipation (see Problem 22).

7-7-3 Nonuniform Plane Waves

We can examine nonuniform plane wave solutions with
nonzero a by considering a current sheet in the z = 0 plane,
which is a traveling wave in the x direction:

K,(z = 0) = Ko cos (wt - kx) = Re (Ko ei" '
j-

='kx))

_I··I
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The x-directed surface current gives rise to a y-directed
magnetic field. Because the system does not depend on the y
coordinate, solutions are thus of the following form:

,=Re (H1e e' "), z > 0OH,=
Re (H2 eJ e- "' ), z<0

A. (19)

Re 7X Ho i, e ir"e-'- , z>O

Re -Y2 iie 'We"'r], z<0

where ,yand y2 are the complex propagation vectors on each
side of the current sheet:

yi = yliix + yiz
(20)

7Y2 = Y2A x + Y2 (0

The boundary condition of the discontinuity of tangential H
at z = 0 equaling the surface current yields

-AI e~-~,X + A2 e-^2- = Ko e-ik" (21)

which tells us that the x components of the complex prop-
agation vectors equal the trigonometric spatial dependence of
the surface current:

Y.l = 2x.= jk. (22)

The z components ofy'1 and y2 are then determined from (15)
as

2 2 21
yx + Y2 =-••2 = + -•-We)1/•2 (23)

If k2 <Co 2e, y,is pure imaginary representing propagation
and we have uniform plane waves. If k2 >W 2e6/, then y, is
pure real representing evanescence in the z direction so that
we generate nonuniform plane waves. When w = 0, (23) cor-
responds to Laplacian solutions that oscillate in the x direc-
tion but decay in the z direction.

The z component of y is of opposite sign in each region,

Yl = --Y2 •= +(k -_W2ey)1/2 (24)

as the waves propagate or decay away from the sheet.
Continuity of the tangential component of E requires

YlI = H22 H2 = -H = Ko/2 (25)

If k.= 0, we re-obtain the solution of Section 7-4-1.
Increasing k. generates propagating waves with power flow in
the ki,+ ksi. directions. At k = w 2 , kz = 0so that the power
flow is purely x directed with no spatial dependence on z.
Further increasing k. converts k,to a, as y, becomes real and
the fields decay with z.
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7-8 OBLIQUE INCIDENCE ONTO A PERFECT CONDUCTOR

7-8-1 E Field Parallel to the Interface

In Figure 7-17a we show a uniform plane wave incident
upon a perfect conductor with power flow at an angle 0i to
the normal. The electric field is parallel to the surface with
the magnetic field having both x and z components:

Ei = Re [Ei ei('tL'-.x-kz)i,]

Hi=Re [ (-cos Oii. +sin Oii.) ej(i -t . -k.- Z)

where

k,i = k sin Oi
ki = k cos Oi

k=< 0 eA, T1 1

H,

E,
)P~kor

OH

E,

Hj

a=-

(b)

Figure 7-17 A uniform plane wave obliquely incident upon a perfect conductor has its
angle of incidence equal to the angle of reflection. (a) Electric field polarized parallel to
the interface. (b) Magnetic field parallel to the interface.

0= -

I

x
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There are no transmitted fields within the perfect conductor,
but there is a reflected field with power flow at angle 0,from
the interface normal. The reflected electric field is also in the
y direction so the magnetic field, which must be perpendic-
ular to both E and S= E x H, is in the direction shown in
Figure 7-17a:

E,= Re [E, ei("-"k-,+",z)i,]

H, = Re [-(cos O,i, + sin 0,i,) eit" - , +',

where the reflected wavenumbers are

kx,= k sin 0,

k,,=k cos 0,(4)

At this point we do not know the angle of reflection 0,or
the reflected amplitude E,.They will be determined from the
boundary conditions at z = 0 of continuity of tangential E and
normal B. Because there are no fields within the perfect
conductor these boundary conditions at z = 0 are

4 e --'z + 4,e-ir"= 0
(5)

-(Ei sin Oi e- i'" +E sin 0,e- "'') = 0

These conditions must be true for every value of x along z = 0
so that the phase factors given in (2) and (4) must be equal,

kx.= ký,,= O = 0,= 0 (6)

giving the well-known rule that the angle of incidenceequals the
angle of reflection. The reflected field amplitude is then

t = -i (7)

with the boundary conditions in (5) being redundant as they
both yield (7). The total fields are then:

E,= Re [Ei(e -ik' -- e+ik' ) e i(a-kx)]

= 2Ej sin k,z sin (wt- kx)

H=Re E[cos O(-e-j '-e+k-')i,+sin O(e-'

-e +jk.)i] ej(-t-k.x] (8)

=2E[-cos 0cos kAz cos (wt- kx)i,

+ sin 0 sin k,z sin (wt- kAx)i

where without loss of generality we take ei to be real.
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We drop the i and r subscripts on the wavenumbers and
angles because they are equal. The fields travel in the x
direction parallel to the interface, but are stationary in the z
direction. Note that another perfectly conducting plane can
be placed at distances d to the left of the interface at

k,d = nir (9)

where the electric field is already zero without disturbing the
solutions of (8). The boundary conditions at the second
conductor are automatically satisfied. Such a structure is called
a waveguide and is discussed in Section 8-6.

Because the tangential component of H is discontinuous at
z = 0, a traveling wave surface current flows along the inter-
face,

2E,
K, = -H,(z = 0) = -cos cos (wt - kx) (10)

From (8) we compute the time-average power flow as

<S > = 1 Re [E(x, z) x I*(x, z)]

2E'
= E2- sin 0 sin kzi, (11)

We see that the only nonzero power flow is in the direction
parallel to the interfacial boundary and it varies as a function
of z.

7-8-2 H Field Parallel to the Interface

If the H field is parallel to the conducting boundary, as in
Figure 7-17b, the incident and reflected fields are as follows:

Ei = Re [Ei (cos Oii, -sin 0ii,) ei(t~' - '
k=

-4z)]

E, = Re [E, (-cos Ori, -sin O1,i) ei(t-h-. x k' )] (12)

H, = Re e

The tangential component of E is continuous and thus zero
at z = 0:

AE cos c0 e-ik o' - cos 0,e-i ," = 0 (13)

There is no normal component of B. This boundary condi-
tion must be satisfied for all values of x so again the angle of

__I
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incidence must equal the angle of reflection (Oi = 0,) so that

E£ = P, (14)

The total E and H fields can be obtained from (12) by adding
the incident and reflected fields and taking the real part;

E = Re {ti [cos 0(e - ij' - e+ijh")ix

-sin 0(e - i
k
'
z + e+jk")i,] eij(W" -kX

= 2E {cos 0 sin kz sin (wt - kx)i,
(15)

- sin 0 cos kz cos (wt - k~)i,}

H= Re (eikz e+jhz) ej(.t -k.x)

2E,
=- E cos kzz cos (wtot - kxx)i,

The surface current on the conducting surface at z = 0 is
given by the tangential component of H

2E,
K.(z = 0) = H,(z = 0) = - cos (ot- kx) (16)

while the surface charge at z = 0 is proportional to the normal
component of electric field,

tr,(z = 0) = -eE(z = 0) = 2eEi sin 0 cos (wt - k~x) (17)

Note that (16) and (17) satisfy conservation of current on the
conducting surface,

V" K + =0• + = 0 (18)
at ax at

where

Vx =- i + i,
Ox ay

is the surface divergence operator. The time-average power
flow for this polarization is also x directed:

<S> = 1 Re (E x AI*)

2 2= • sin 0 cos2 k,zi, (19)71
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7-9 OBLIQUE INCIDENCE ONTO A DIELECTRIC

7-9-1 E Parallel to the Interface

A plane wave incident upon a dielectric interface, as in
Figure 7-18a, now has transmitted fields as well as reflected
fields. For the electric field polarized parallel to the interface,
the fields in each region can be expressed as

Ei = Re [E, ei "'" z'i,]

Hi = Re [(-cos 0i. +sin Oi,)ei
•-Aa-s, ]

E, = Re [E( ei(,-.x+k-) i,l

H, = Re [E(cos ,Pi,+sin Oi.) ei () • - ' + ] ()

E, = Re [E1 e •k, k, ,]Z

H= Re [.(-cos O,i+sinOie i t2) 
-k.,=-A.,z)

where 8i, 0,, and 0, are the angles from the normal of the
incident, reflected, and transmitted power flows. The
wavenumbers in each region are

k• = kAsin 0i, kx,= k1 sin 0, , =,,k2 sin 0,
(2)

k = k cos 8, k cos 0,, k, = k2 cos 0,

where the wavenumber magnitudes, wave speeds, and wave
impedances are

ki k2 CI •71=- 2=-, C=
1 E2 1(3)

1I'1
= , 2a= , c= 1-

The unknown angles and amplitudes in (1) are found from
the boundary conditions of continuity of tangential E and H
at the z = 0 interface.

ei -i.k-i + re-L =4,e - "

- i cos 0 i e -j'kix + E, cos Or e -jkS , cos 0, e -ikr,,
(4)

These boundary conditions must be satisfied point by point
for all x. This requires that the exponential factors also be
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E2 - A2

E1 1,

C2 , U2

- u tr - C1 .. i

Figure 7-18 A uniform plane wave obliquely incident upon a dielectric interface also
has its angle of incidence equal to the angle of reflection while the transmitted angle is
given by Snell's law. (a) Electric field polarized parallel to the interface. (b) Magnetic
field parallel to the interface.

equal so that the x components of all wavenumbers must be
equal,

k.i = k., = kR, > kl sin Oi = ki sin 0, = k2 sin 0,

which relates the angles as

0, = 8,

sin 01 = (c2/ci) sin Oi

1 S 1

.q
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As before, the angle of incidence equals the angle of
reflection. The transmission angle obeys a more complicated
relation called Snell's law relating the sines of the angles. The
angle from the normal is largest in that region which has the
faster speed of electromagnetic waves.

In optics, the ratio of the speed of light in vacuum, co =

1/ ,e-oo, to the speed of light in the medium is defined as the
index of refraction,

ni = co/c, n2 = Co/IC (8)

which is never less than unity. Then Snell's law is written as

sin 0, = (n1 /n 2 ) sin Oi (9)

With the angles related as in (6), the reflected and transmitted
field amplitudes can be expressed in the same way as for
normal incidence (see Section 7-6-1) if we replace the wave
impedances by 71 -* 17/cos 0 to yield

712 711

E, cos 0, cos 0i 12os O - 711 cos 0

Ei 712 11i +12co s+i0+cosOt

cos 6, cos 0,
(10)

S2112 2 cosiO 1 0
cos o ( 72+ . '2cos 0i+lcos
cos 0, +cos 0, cos Os

In (4) we did not consider the boundary condition of
continuity of normal B at z = 0. This boundary condition is
redundant as it is the same condition as the upper equation in
(4):

-'(Pi+4r) sin 0i = L-4 sin 0, > (1i + r) = (11)
711 712

where we use the relation between angles in (6). Since

711 c1 712 c2

the trigonometric terms in (11) cancel due to Snell's law.
There is no normal component of D so it is automatically
continuous across the interface.

7-9-2 Brewster's Angle of No Reflection

We see from (10) that at a certain angle of incidence, there
is no reflected field as R = 0. This angle is called Brewster's
angle:

R = 0='712 cos 0i = 71 cos Ot
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By squaring (13), replacing the cosine terms with sine terms
(cos2 0 = 1- sin' 0), and using Snell's law of (6), the Brewster
angle On is found as

sin2 OB -E 2 /(EL 2 ) (14)
1 -(_O/•s)2

There is not always a real solution to (14) as it depends on the
material constants. The common dielectric case, where 1~1 =
P,2 - j but I # e2, does not have a solution as the right-hand
side of (14) becomes infinite. Real solutions to (14) require the
right-hand side to be between zero and one. A Brewster's
angle does exist for the uncommon situation where e1 = E2
and P 1 #I 2:

sin 2 B= 1 tan O8 = (15)
1+A/II 2 A1

At this Brewster's angle, the reflected and transmitted power
flows are at right angles (On + 0, = ir/2) as can be seen by using
(6), (13), and (14):

cos (On + 80)= cos OB cos 0, - sin On sin 0,

= cos 2 2 Asin2 On

A A22-1 + 2

= - sin2 e~(J + = (16)

7-9-3 Critical Angle of Transmission

Snell's law in (6) shows us that if c2 >CI, large angles of
incident angle Oi could result in sin 0, being greater than
unity. There is no real angle 0, that satisfies this condition.
The critical incident angle 0c is defined as that value of Oi that
makes 0, = ir/2,

sin 0c= C1/c2 (17)

which has a real solution only if cI <c2. At the critical angle,
the wavenumber k., is zero. Lesser incident angles have real
values of k,. For larger incident angles there is no real angle 0,
that satisfies (6). Snell's law must always be obeyed in order to
satisfy the boundary conditions at z =0 for all x. What
happens is that 0, becomes a complex number that satisfies
(6). Although sin 0, is still real, cos 0, is imaginary when sin 0,
exceeds unity:

cos 0, = 41-sin 0,
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This then makes k,, imaginary, which we can write as

ka,= k2 cos 0, = -ja (19)

The negative sign of the square root is taken so that waves
now decay with z:

E, = Re t ei[-( . ,"e-i(,])
(20)

H, = Re [(-cos Oi +sin+ ,in) ei("*-,= ~x e-a

The solutions are now nonuniform plane waves, as discussed
in Section 7-7.

Complex angles of transmission are a valid mathematical
concept. What has happened is that in (1) we wrote our
assumed solutions for the transmitted fields in terms of pure
propagating waves. Maxwell's equations for an incident angle
greater than the critical angle require spatially decaying
waves with z in region 2 so that the mathematics forced k=. to
be imaginary.

There is no power dissipation since the z-directed time-
average power flow is zero,

<S,> = -I Re [E,H]

- Re -(-cos 0,)* e-I= (21)

because cos 0, is pure imaginary so that the bracketed term in
(21) is pure imaginary. The incident z-directed time-average
power is totally reflected. Even though the time-averaged
z-directed transmitted power is zero, there are nonzero but
exponentially decaying fields in region 2.

7-9-4 H Field Parallel to the Boundary

For this polarization, illustrated in Figure 7-18b, the fields
are

Ej = Re [Ei (cos O8i. -sin Oii.) ei(t-k.Xk-k )]

Hi = Re [ L iei(L-k.-hi,]

E, = Re [E, (-cos ,i. -sin O,i,) ei (*' - .,x+k' ,)]
(22)

H, = Re [Leit:--~ +k')i ,

E, = Re [tE (cos 0,ix -sin 0,i,) eit( '
m

- x,- ~k ' )]

H,= Re [L eiY-k.,=-.,Ci]
7L2
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where the wavenumbers and impedances are the same as in
(2) and (3).

Continuity of tangential E and H at z = 0 requires

Ei cos 0i e-"*-* -~, cos 0, e-i"-' =, cos 0, e-"--'

4, e-'ix"+4, e-i.,x 4, e-i'x (23)

Again the phase factors must be equal so that (5) and (6) are
again true. Snell's law and the angle of incidence equalling
the angle of reflection are independent of polarization.

We solve (23) for the field reflection and transmission
coefficients as

E, nl cos Oi - 12 COS 0,
R = -= (24)

Ei 72 cos , a cosCOS 0

, 2712 cos OG
T =--= (25)

Ei '/2 COs Ot + ~ cos 0i

Now we note that the boundary condition of continuity of
normal D at z = 0 is redundant to the lower relation in (23),

EIEisin O9+EI, sin 0, = E2E, sin 0, (26)

using Snell's law to relate the angles.
For this polarization the condition for no reflected waves is

R = 0> 7q2 cos O1 = rl cos Oi (27)

which from Snell's law gives the Brewster angle:

I- e sp2/(e2/z,)
sin2 On = 1(21L1) (28)

1-(e /E2)

There is now a solution for the usual case where /A. ==2 but
El # E2:

sin 2 OB = 1 tan O = (29)
l+EII/2 81

At this Brewster's angle the reflected and transmitted power
flows are at right angles (OB + 0,) = r/2 as can be seen by using
(6), (27), and (29)

cos (OB + 0,) = cos OB cos 0,- sin OB sin 0,

= cos2 OG -lsin' eG
&1 E2

= j -sin 2 0. (V + r•)= 0 (30)
"el E2e•
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Because Snell's law is independent of polarization, the
critical angle of (17) is the same for both polarizations. Note
that the Brewster's angle for either polarization, if it exists, is
always less than the critical angle of (17), as can be particularly
seen when A =-L2 for the magnetic field polarized parallel to
the interface or when 81 = e2 for the electric field polarized
parallel to the interface, as then

1 1
= i + 1 (31)sin eB sin O+

7-10 APPLICATIONS TO OPTICS

Reflection and refraction of electromagnetic waves
obliquely incident upon the interface between dissimilar
linear lossless media are governed by the two rules illustrated
in Figure 7-19:

(i) The angle of incidence equals the angle of reflection.
(ii) Waves incident from a medium of high light velocity

(low index of refraction) to one of low velocity (high
index of refraction) are bent towards the normal. If the
wave is incident from a low velocity (high index) to high
velocity (low index) medium, the light is bent away from
the normal. The incident and refracted angles are
related by Snell's law.

El

1:

Figure 7-19 A summary of reflection and refraction phenomena across the interface
separating two linear media. When 90=-0 (Brewster's angle), there is no reflected ray.
When 0, > 0, (critical angle), the transmitted fields decay with z.
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Most optical materials, like glass, have a permeability of
fr~ee space o0 . Therefore, a Brewster's angle of no reflection
only exists if the H field is parallel to the boundary.

At the critical angle, which can only exist if light travels
from a high index of refraction material (low light velocity) to
one of low index (high light velocity), there is a transmitted
field that decays with distance as a nonuniform plane wave.
However, there is no time-average power carried by this
evanescent wave so that all the time-average power is
reflected. This section briefly describes various applications of
these special angles and the rules governing reflection and
refraction.

7-10-1 Reflections from a Mirror

A person has their eyes at height h above their feet and a
height Ah below the top of their head, as in Figure 7-20. A
mirror in front extends a distance Ay above the eyes and a
distance y below. How large must y and Ay be so that the
person sees their entire image? The light reflected off the
person into the mirror must be reflected again into the
person's eyes. Since the angle of incidence equals the angle of
reflection, Figure 7-20 shows that Ay = Ah/2 and y = h/2.

7-10-2 Lateral Displacement of a Light Ray

A light ray is incident from free space upon a transparent
medium with index of refraction n at angle 0,, as shown in
Figure 7-21. The angle of the transmitted light is given by
Snell's law:

sin 0, = (1/n) sin Oi (1)

Ah
Ah Ay=- 2

ror

Figure 7-20 Because the angle of incidence equals the angle of reflection, a person can
see their entire image if the mirror extends half the distance of extent above and below
the eyes.
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-' dsin(6i-6,)
&A.- l I COSU0r

62 
6
Bi

-<-- d-->-

Figure 7-21 A light ray incident upon a glass plate exits the plate into the original
medium parallel to its original trajectory but laterally displaced.

When this light hits the second interface, the angle 0, is now
the incident angle so that the transmitted angle 0 2 is again
given by Snell's law:

sin 02 = n Sin 0, = sin Oi (2)

so that the light exits at the original incident angle Oi.
However, it is now shifted by the amount:

d sin (0i - 0,)
cos 0,

If the plate is glass with refractive index n = 1.5 and thickness
d = 1 mm with incident angle Oi = 30*, the angle 0, in the glass
is

sin 0,= 0.33= 0,= 19.50 (4)

so that the lateral displacement is s = 0.19 mm.

7-10-3 Polirization By Reflection

Unpolarized light is incident upon the piece of glass in
Section 7-10-2 with index of refraction n = 1.5. Unpolarized
light has both E and H parallel to the interface. We assume
that the permeability of the glass equals that of free space and
that the light is incident at the Brewster's angle OB for light
polarized with H parallel to the interface. The incident and

I
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transmitted angles are then

tan Os = EIE = n 0 = 56. 3 °

tan 0, = IEo/e = 1/n = 0, = 33.70 (5)

The Brewster's angle is also called the polarizing angle
because it can be used to separate the two orthogonal
polarizations. The polarization, whose H field is parallel to
the interface, is entirely transmitted at the first interface with
no reflection. The other polarization with electric field
parallel to the interface is partially transmitted and reflected.
At the second (glass-free space) interface the light is incident
at angle 0,. From (5) we see that this angle is the Brewster's
angle with H parallel to the interface for light incident from
the glass side onto the glass-free space interface. Then again,
the H parallel to the interface polarization is entirely trans-
mitted while the E parallel to the interface polarization is
partially reflected and partially transmitted. Thus, the
reflected wave is entirely polarized with electric field parallel
to the interface. The transmitted waves, although composed
of both polarizations, have the larger amplitude with H

S H

. E
Polarized ligi

(E parallel to inte
ed
lel
:e)

Unpolarized
light

(E and H parallel
to interface)

Figure 7-22 Unpolarized light incident upon glass with A = A-o can be polarized by
reflection if it is incident at the Brewster's angle for the polarization with H parallel to
the interface. The transmitted light becomes more polarized with H parallel to the
interface by adding more parallel glass plates.

zed

Ilel
ce)



548 Electrodynamics-Fields and Waves

parallel to the interface because it was entirely transmitted
with no reflection at both interfaces.

By passing the transmitted light through another parallel
piece of glass, the polarization with electric field parallel to
the interface becomes further diminished because it is par-
tially reflected, while the other polarization is completely
transmitted. With more glass elements, as in Figure 7-22, the
transmitted light can be made essentially completely
polarized with H field parallel to the interface.

7-10-4 Light Propagation In Water

(a) Submerged Source
A light source is a distance d below the surface of water

with refractive index n = 1.33, as in Figure 7-23. The rays
emanate from the source as a cone. Those rays at an angle
from the normal greater than the critical angle,

sin O, = 1/n > 0, = 48.80 (6)

are not transmitted into the air but undergo total internal
reflection. A circle of light with diameter

D = 2d tan Oc - 2.28d (7)

then forms on the water's surface due to the exiting light.

(b) Fish Below a Boat
A fish swims below a circular boat of diameter D, as in

Figure 7-24. As we try to view the fish from the air above, the
incident light ray is bent towards the normal. The region
below the boat that we view from above is demarcated by the
light rays at grazing incidence to the surface (0i = 1r/2) just
entering the water (n = 1.33) at the sides of the boat. The
transmitted angle of these light rays is given from Snell's law
as

sin O1 1
sin 0, = sin = - = 48.8" (8)

n n

Figure 7-23 Light rays emanating from a source within a high index of refraction
medium are totally internally reflected from the surface for angles greater than the
critical angle. Lesser angles of incidence are transmitted.

I

J
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D

Y=-
2

tanO 1

549

Figure 7-24 A fish cannot be seen from above if it swims below a circular boat within
the cone bounded by light rays at grazing incidence entering the water at the side of the
boat.

These rays from all sides of the boat intersect at the point a
distance y below the boat, where

D D
tan 0t =-- y = 0.44D

2y 2 tan 0,

If the fish swims within the cone, with vertex at the point y
below the boat, it cannot be viewed from above.

7-10-5 Totally Reflecting Prisms

The glass isoceles right triangle in Figure 7-25 has an index
of refraction of n = 1.5 so that the critical angle for total

- - = [n( ' 2z[22<Ss,> n+ I

Figure 7-25 A totally reflecting prism. The index of refraction n must exceed 2 so
that the light incident on the hypotenuse at 450 exceeds the critical angle.

- PWWW))~;)~W) HWIYrYlur

Z
vtzk ýD-



550 Electrodynamics-Fields and Waves

internal reflection is

1 1
sin oc =- 0 c = 41.80 (10)

n 1.5

The light is normally incident on the vertical face of the
prism. The transmission coefficient is then given in Section
7-6-1 as

E, 2n 2/n 2
T =-=-= 0.8 (11)

Ei i7+tjo 1+1/n n+1

where because the permeability of the prism equals that of
free space n = ve/Eo while 1/1o0 = VE••e = 1/n. The transmitted
light is then incident upon the hypotenuse of the prism at an
angle of 450, which exceeds the critical angle so that no power
is transmitted and the light is totally reflected being turned
through a right angle. The light is then normally incident
upon the horizontal face with transmission coefficient:

E2  2/0 2 2n
T2 = ------. = 1.2 (12)

0.8Ei 7 + o l/n + 1 n+l

The resulting electric field amplitude is then

P2 = TIT 2 E, = 0.96Ei (13)

The ratio of transmitted to incident power density is

<S> 21| 12/7o 1tl 2 24 2<S>= 217o, Pi21 (24 2 -0.92 (14)
<s1> |/ 1 o(25

This ratio can be increased to unity by applying a quarter-
wavelength-thick dielectric coating with index of refraction
ncoating= -nh, as developed in Example 7-1. This is not usually
done because the ratio in (14) is already large without the
expense of a coating.

7-10-6 Fiber Optics

(a) Straight Light Pipe
Long chin fibers of transparent material can guide light

along a straight path if the light within the pipe is incident
upon the wall at an angle greater than the critical angle
(sin 0, = 1/n):

sin 02 = cos 0, - sin 0~ (15)

The light rays are then totally internally reflected being
confined to the pipe until they exit, as in Figure 7-26. The

I
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no =1

Figure 7-26 The index of refraction of a straight light pipe must be greater than /2 for
total internal reflections of incident light at any angle.

incident angle is related to the transmitted angle from Snell's
law,

sin 0, = (1/n) sin Oi (16)

so that (15) becomes

cos 0 = %1-sin = 1-(1/n 2 ) sin" - 1/n (17)

which when solved for n yields

n 2 - 1 +sin2 0i (18)

If this condition is met for grazing incidence (i0 = ar/2), all
incident light will be passed by the pipe, which requires that

n2>-2*n - r2 (19)

Most types of glass have n - 1.5 so that this condition is easily
met.

(b) Bent Fibers
Light can also be guided along a tortuous path if the fiber is

bent, as in the semi-circular pipe shown in Figure 7-27. The
minimum angle to the radial normal for the incident light
shown is at the point A. This angle in terms of the radius of
the bend and the light pipe width must exceed the critical angle

R
sin OA =- sin 0c (20)

R+d

+d

Figure 7-27 Light can be guided along a Circularly bent fiber if R/d > 1/(n - 1) as then
there is always total internal reflection each time the light is incident on the walls.

+d
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so that

R/d 1Rd 1- (21)
R/d + n

which when solved for Rid requires

R 1
-a-- (22)d n-I

PROBLEMS

Section 7-1
1. For the following electric fields in a linear media of
permittivity e and permeability Cj find the charge density,
magnetic field, and current density.

(a) E = Eo(xi. +yi,) sin wt
(b) E = Eo(yi, -xi,) cos wt
(c) E= Re[Eo e" \-•--&)i,]. How must k,, k,, and o be

related so that J = 0?

2. An Ohmic conductor of arbitrary shape has an initial
charge distribution po(r) at t = 0.

(a) What is the charge distribution for all time?
(b) The initial charge distribution is uniform and is

confined between parallel plate electrodes of spacing d. What
are the electric and magnetic fields when the electrodes are
opened or short circuited?

(c) Repeat (b) for coaxial cylindrical electrodes of inner
radius a and outer radius b.

(d) When does a time varying electric field not generate a
magnetic field?

3. (a) For linear media of permittivity e and permeability /,
use the magnetic vector potential A to rewrite Faraday's law
as the curl of a function.

(b) Can a scalar potential function V be defined? What is
the electric field in terms of V and A? The choice of V is not
unique so pick V so that under static conditions E = -V V.

(c) Use the results of (a) and (b) in Ampere's law with
Maxwell's displacement current correction to obtain a single
equation in A and V. (Hint: Vx (Vx A) = V(V - A) -V 2A.)

(d) Since we are free to specify V *A, what value should we
pick to make (c) an equation just in A? This is called setting
the gauge.

(e) Use the results of (a)-(d) in Gauss's law for D to obtain a
single equation in V.
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(f) Consider a sinusoidally varying point charge at r = 0,
Se" .'t . Solve (e) for r > 0.

Hint:
1 8 (ra 82a

r - =- (rV)

Define a new variable (rV). By symmetry, V only depends on r
and waves can only propagate away from the charge and not
towards it. As r - 0, the potential approaches the quasi-static
Coulomb potential.

Section 7-2
4. Poynting's theorem must be modified if we have a
hysteretic material with a nonlinear and double-valued rela-
tionship between the polarization P and electric field E and
the magnetization M and magnetic field H.

(a) For these nonlinear constitutive laws put Poynting's
theorem in the form

8w
V S+-= -Pd - Pp- PMat

where Pp and PM are the power densities necessary to
polarize and magnetize the material.

(b) Sinusoidal electric and magnetic fields E = E, cos at and
H = H, cos at are applied. How much energy density is dis-
sipated per cycle?

5. An electromagnetic field is present within a superconduc-
tor with constituent relation

aJf= wE
8t

(a) Show that Poynting's theorem can be written in the
form

8w
V.s+-=0

8t
What is w?

I

A

M

k r ,
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(b) What is the velocity of the charge carriers each with
charge q in terms of the current density Jr? The number
density of charge carriers is n.

(c) What kind of energy does the superconductor add?
(d) Rewrite Maxwell's equations with this constitutive law

for fields that vary sinusoidally with time.
(e) Derive the complex Poynting theorem in the form

V.-[½(r)XH*(r) + 2j < w > = 0

What is <w>?

6. A paradoxical case of Poynting's theorem occurs when a
static electric field is applied perpendicularly to a static
magnetic field, as in the case of a pair of electrodes placed
within a magnetic circuit.

y y

(a) What are E, H, and S?
(b) What is the energy density stored in the system?
(c) Verify Poynting's theorem.

7. The complex electric field amplitude has real and
imaginary parts

E(r) = E, +jEi

Under what conditions are the following scalar and vector
products zero:

(a) E E 10
(b) E • - 0
(c) E xE* 0
(d) E x E* 1 0

Section 7.3
8. Consider a lossy medium of permittivity e, permeability ;.,
and Ohmic conductivity or.

(a) Write down the field equations for an x-directed elec-
tric field.
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(b) Obtain a single equation in E,.
(c) If the fields vary sinusoidally with time,

Ex = Re [PE(z) e"it]

what are the spatial dependences of the fields?
(d) Specialize (c) to the (i) low loss limit (o/sE << 1) and (ii)

large loss limit (o•/e >1).
(e) Repeat (a)-(c) if the medium is a plasma with constitu-

tive law
aJ= eE
at

(f) A current sheet Ko cos wti, is placed at z = 0. Find the
electric and magnetic fields if the sheet is placed within an
Ohmic conductor or within a plasma.

9. A uniformly distributed volume current of thickness 2d,
Jo cos wti., is a source of plane waves.

e0, 1O

< 2d

(a) From Maxwell's equations obtain a single differential
equation relating E, to J..

(b) Find the electric and magnetic fields within and outside
the current distribution.

(c) How much time-average power per unit area is
delivered by the current?

(d) How does this generated power compare to the elec-
tromagnetic time-average power per unit area leaving the
volume current at z = ±d?

10. A TEM wave (E., H,) propagates in a medium whose
permittivity and permeability are functions of z, e(z), and
1A(Z).

(a) Write down Maxwell's equations and obtain single
partial differential equations in E. and H,.

(b) Consider the idealized case where e(z)=ee " Ze and
L(z)=L e-alzI.A current sheet Koe"'i. is at z =0. What are

o6, 00
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the resulting electric and magnetic fields on each side of the
sheet?

(c) For what values of a are the solutions spatially
evanescent or oscillatory?

11. We wish to compare various measurements between two
observers, the second moving at a constant velocity vi, with
respect to the first.

(a) The first observer measures simultaneous events at two
positions z and z2 so that tL =lt. What is the time interval
between the two events t' -t as measured by the second
observer?

(b) The first observer measures a time interval At = tl - t2
between two events at the same position z. What is the time
interval as measured by the second observer?

(c) The first observer measures the length of a stick as
L = z -z. What is the length of the stick as measured by the
second observer?

12. A stationary observer measures the velocity of a particle
as u = ni. + u,i, + ui,.

(a) What velocity, u'=u'i.+u'i,+u'i,, does another
observer moving at constant speed vi, measure?

(b) Find u' for the following values of u where co is the free
space speed of light:

(i) u = co0i.
(ii) u = coi,

(iii) u = coi
(iv) u = (co/F)[i1 +i, +i,]

(c) Do the results of (a) and (b) agree with the postulate
that the speed of light for all observers is co?

Section 7.4
13. An electric field is of the form

E = 100 ej(2wx 10t-2wx 10-i2)iX volts/m

(a) What is the frequency, wavelength, and speed of light
in the medium?

(b) If the medium has permeability lo = 47r x 10-7 henry/m,
what is the permittivity e, wave impedance 'i, and the magnetic
field?

(c) How much time-average power per unit area is carried
by the wave?

14. The electric field of an elliptically polarized plane wave in
a medium with wave impedance 'i is

E = Re (E.oi, + E,o esi,)et(w' t - AX

where E=o and E,o are real.
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(a) What is the magnetic field?
(b) What is the instantaneous and time-average power flux

densities?

15. In Section 3-1-4 we found that the force on one of the
charges Q of a spherical atomic electric dipole of radius Ro is

Q1 1dS41reoRJ

where d is the dipole spacing.
(a) Write Newton's law for this moveable charge with mass

M assuming that the electric field varies sinusoidally with time
as Eocoswt and solve for d. (Hint: Let wo = Q2I(M47oRE).)

(b) What is the polarization P as a function of E if there are
N dipoles per unit volume? What is the frequency dependent
permittivity function e(w), where

D(r) = e (w)E(r)

This model is often appropriate for light propagating in
dielectric media.

(c) Use the results of (b),in Maxwell's equations to find the
relation between the wavenumber k and frequency w.

(d) For what frequency ranges do we have propagation or
evanescence?

(e) What are the phase and group velocities of the waves?
(f) Derive the complex Poynting's theorem for this dis-

persive dielectric.

16. High-frequency wave propagation in the ionosphere is
partially described by the development in Section 7-4-4 except
that we must include the earth's dc magnetic field, which we
take to be Hoi,.

(a) The charge carriers have charge q and mass m. Write the
three components of Newton's force law neglecting collisions
but including inertia and the Coulomb-Lorentz force law.
Neglect the magnetic field amplitudes of the propagating
waves compared to Ho in the Lorentz force law.

(b) Solve for each component of the current density J in
terms of the charge velocity components assuming that the
propagating waves vary sinusoidally with time as ey'

Hint: Define

2 qn qijoHo
mE m

(c) Use the results of (b) in Maxwell's equations for fields of
the form ei(t-kz) to solve for the wavenumber k in terms of o.

(d) At what frequencies is the wavenumber zero or infinite?
Over what frequency range do we have evanescence or
propagation?
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(e) For each of the two modes found in (c), what is the
polarization of the electric field?

(f) What is the phase velocity of each wave? Since each mode
travels at a different speed, the atmosphere acts like an aniso-
tropic birefringent crystal. A linearly polarized wave
Eo ei(dt-h°o>i, is incident upon such a medium. Write this field
as the sum of right and left circularly polarized waves.
Hint:

Eoi.= (i. +ji,)+ (i -i,)
2 2

(g) If the transmitted field at z = 0 just inside the medium has
amplitude E, eai,, what are the electric and magnetic fields
throughout the medium?

17. Nitrobenzene with 1A= to and e = 35eo is placed between
parallel plate electrodes of spacing s and length I stressed by a
dc.voltage Vo. Measurements have shown that light polarized
parallel to the dc electric field travels at the speed c1l, while light
polarized perpendicular to the dc electric field travels slightly
faster at the speed c,, being related to the dc electric field Eo
and free space light wavelength as

1 1
- ABE

C11 CL

where B is called the Kerr constant which for nitrobenzene is
B -4.3 x 10 - 12 sec/V 2 at A = 500 nm.

(a) Linearly polarized light with free space wavelength A=
500 nm is incident at 450 to the dc electric field. After exiting
the Kerr cell, what is the phase difference between the field
components of the light parallel and perpendicular to the dc
electric field?

(b) What are all the values of electric field strengths that
allow the Kerr cell to act as a quarter- or half-wave plate?

(c) The Kerr cell is placed between crossed polarizers
(polariscope). What values of electric field allow maximum
light transmission? No light transmission?

Section 7.5
18. A uniform plane wave with y-directed electric field is
normally incident upon a plasma medium at z = 0 with consti-
tutive law 8Jf/at = (peE. The fields vary sinusoidally in time as
e.

(a) What is the general form of the incident, reflected, and
transmitted fields?

(b) Applying the boundary conditions, find the field
amplitudes.

(c) What is the time-average electromagnetic power density
in each region for w > w, and for w <w,?
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eC, P0

4e E

4-~ SI

Hi

19. A polarizing filter to microwaves is essentially formed by
many highly conducting parallel wires whose spacing is much
smaller than a wavelength. That polarization whose electric
field is transverse to the wires passes through. The incident
electric field is

E = E, cos (wt - kz)i, + E, sin (wt - kz)i,

wires

(a) What is the incident magnetic field and incident power
density?

(b) What are the transmitted fields and power density?
(c) Another set of polarizing wires are placed parallel but a

distance d and orientated at an angle 4 to the first. What are
the transmitted fields?

20. A uniform plane wave with y-directed electric field
E,=Eocosw(t-z/c) is normally incident upon a perfectly
conducting plane that is moving with constant velocity vi.,
where v << c.

(a) What are the total electric and magnetic fields in each
region?

(b) What is the frequency of the reflected wave?
(c) What is the power flow density? Why can't we use the

complex Poynting vector to find the time-average power?

I

I

I I
I



560 Electrodynamics-Fields and Waves

x

Eli

Section 7.6
21. A dielectric (62, 1L2) of thickness d coats a perfect conduc-
tor. A uniform plane wave is normally incident onto the
coating from the surrounding medium with properties
(e1, j1A).

E1, MI

x EH

Y Hi

I f ,z
0 d

(a) What is the general form of the fields in the two dielectric
media? (Hint: Why can the transmitted electric field be writ-
ten as E, = Re [E, sin k2(z -d) e ti.]?)

(b) Applying the boundary conditions, what are the field
amplitudes?

(c) What is the time-average power flow in each region?
(d) What is the time-average radiation pressure on the

conductor?

Section 7.7
22. An electric field of the form Re (E er"' eV ') propagates in
a lossy conductor with permittivity E, permeability j, and
conductivity o. If /y = a +jk, what equalities must a and k obey?

I

--- '-' 2
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23. A sheet of surface charge with charge density oo sin (wt -
k.x) is placed at z = 0 within a linear medium with properties
(e,6L).

of = oosin(wt--k. x)

ex

(a) What are the electric and magnetic fields?
(b) What surface current flows on the sheet?

24. A current sheet of the form Re (Ko ei("'t->)i.)is located in
free space at z = 0. A dielectric medium (e, g) of semi-infinite
extent is placed at z = d.

Re[Koe j(wt - kz )iz I

C0,,A

'2
:·nw

I I z
0 d

(a) For what range of frequency can we have a nonuniform
plane wave in free space and a uniform plane wave in the
dielectric? Nonuniform plane wave in each region? Uniform
plane wave in each region?

(b) What are the electric and magnetic fields everywhere?
(c) What is the time-average z-directed power flow density

in each region if we have a nonuniform plane wave in free
space but a uniform plane wave in the dielectric?

Section 7.8
25. A uniform plane wave Re (Eo ei("-ik=-kc)i,) is obliquely
incident upon a right-angled perfectly conducting corner. The
wave is incident at angle 90to the z = 0wall.

e, )A

CO, oAO

I I

,x
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E i

(a) Try a solution composed of the incident and reflected
waves off each surface of the conductor. What is the general
form of solution? (Hint: There are four different waves.)

(b) Applying the boundary conditions, what are the electric
and magnetic fields?

(c) What are the surface charge and current distributions
on the conducting walls?

(d) What is the force per unit area on each wall?
(e) What is the power flow density?

Section 7.9
26. Fermat's principle of least time states that light, when
reflected or refracted off an interface, will pick the path of least
time to propagate between two points.

t
LAC

4I
(a) A beam of light from point A is incident upon a dielec-

tric interface at angle 90 from the normal and is reflected
through the point B at angle 0,.In terms of 6O,0,, hi and h2, and
the speed of light c, how long does it take light to travel from A
to B along this path? What other relation is there between O6,0,,
LAB, hi and h2 ?

(b) Find the angle Oithat satisfies Fermat's principle. What is
0,?

I
LA

4,

DD
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(c) In terms of Oi, 0,, hI, hs, and the light speeds c1 and c2 in
each medium, how long does it take light to travel from A to C?

(d) Find the relationship between Oi and 0, that satisfies
Fermat's principle.

27. In many cases the permeability of dielectric media equals
that of free space. In this limit show that the reflection and
transmission coefficients for waves obliquely incident upon
dielectric media are: E parallel to the interface

sin (O6 - 0t) 2 cos 0i sin 0,
R= T=

sin (Oi + 0,)' sin (60+ 0,)

H parallel to the interface

tan (Oi - 0,) 2 cos 0i sin 0,
R= T=

tan (0i + 0)' sin (0i + 0,) cos (0i - 0,)

28. White light is composed of the entire visible spectrum.
The index of refraction n for most materials is a weak function
of wavelength A, often described by Cauchy's equation

n = A + B/A2

Pe

A beam of white light is incident at 30" to a piece of glass with
A = 1.5 and B = 5 x 10- s5 m 2. What are the transmitted angles
for the colors violet (400 nm), blue (450 nm), green (550 nm),
yellow (600 nm), orange (650 nm), and red (700 nm)? This
separation of colors is called dispersion.

29. A dielectric slab of thickness d with speed of light c2 is
placed within another dielectric medium of infinite extent with
speed of light c1, where cl < c2 . An electromagnetic wave with
H parallel to the interface is incident onto the slab at angle O6.

(a) Find the electric and magnetic fields in each region.
(Hint: Use Cramer's rule to find the four unknown field
amplitudes in terms of Ei.)

t
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(b) For what range of incident angle do we have uniform or
nonuniform plane waves through the middle region?

(c) What is the transmitted time-average power density with
uniform or nonuniform plane waves through the middle
region. How can we have power flow through the middle
region with nonuniform plane waves?

Section 7.10
30. Consider the various prisms shown.

(a) What is the minimum index of refraction n1 necessary
for .no time-average power to be transmitted across the
hypotenuse when the prisms are in free space, n2 = 1, or water,
n2 = 1.33?

(b) At these values of refractive index, what are the exiting
angles 0.?

564 Electodynamics-Fieldsand Waves
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31. A fish below the surface of water with index of refraction
n = 1.33 sees a star that he measures to be at 30* from the
normal. What is the star's actual angle from the normal?

32. A straight light pipe with refractive index n, has a dielec-
tric coating with index n2 added for protection. The light pipe
is usually within free space so that ns is typically unity.

(a) Light within the pipe is incident upon the first interface
at angle 81. What are the angles O2 and Os?

(b) What value of 01 will make Os just equal the critical angle
for total internal reflection at the second interface?

(c) How does this value differ from the critical angle if the
coating was not present so that ni was directly in contact with
n3?

(d) If we require that total reflection occur at the first
interface, what is the allowed range of incident angle 01. Must
the coating have a larger or smaller index of refraction than
the light pipe?

33. A spherical piece of glass of radius R has refractive index
n.

(a) A vertical light ray is incident at the distance x (x <R)
from the vertical diameter. At what distance y from the top of
the sphere will the light ray intersect the vertical diameter?
For what range of n and x will.the refracted light intersect the
vertical diameter within the sphere?

02:

X3
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n=1

(b) A vertical light beam of radius aR (a < 1) is incident
upon a hemisphere of this glass that rests on a table top. What
is the radius R' of the light on the table?

566
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The uniform plane wave solutions developed in Chapter 7
cannot in actuality exist throughout all space, as an infinite
amount of energy would be required from the sources.
However, TEM waves can also propagate in the region of
finite volume between electrodes. Such electrode structures,
known as transmission lines, are used for electromagnetic
energy flow from power (60 Hz) to microwave frequencies, as
delay lines due to the finite speed c of electromagnetic waves,
and in pulse forming networks due to reflections at the end of
the line. Because of the electrode boundaries, more general
wave solutions are also permitted where the electric and
magnetic fields are no longer perpendicular. These new
solutions also allow electromagnetic power flow in closed
single conductor structures known as waveguides.

8-1 THE TRANSMISSION LINE EQUATIONS

8-1-1 The Parallel Plate Transmission Line

The general properties of transmission lines are illustrated
in Figure 8-1 by the parallel plate electrodes a small distance d
apart enclosing linear media with permittivity e and
permeability Cj. Because this spacing d is much less than the
width w or length i, we neglect fringing field effects and
assume that the fields only depend on the z coordinate.

The perfectly conducting electrodes impose the boundary
conditions:

(i) The tangential component of E is zero.
(ii) The normal component of B (and thus H in the linear

media) is zero.

With these constraints and the, neglect of fringing near the
electrode edges, the fields cannot depend on x or y and thus
are of the following form:

E = E,(z, t)i,
(1)

H = H,(z, t)i,

which when substituted into Maxwell's equations yield

I
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Figure 8-1 The simplest transmission line consists of two parallel perfectly conduct-
ing plates a small distance d apart.

= aE, aH,
ata• Z at

VxH= -E ' = -E
at az at

We recognize these equations as the same ones developed
for plane waves in Section 7-3-1. The wave solutions found
there are also valid here. However, now it is more convenient
to introduce the circuit variables of voltage and current along
the transmission line, which will depend on z and t.

Kirchoff's voltage and current laws will not hold along the
transmission line as the electric field in (2) has nonzero curl
and the current along the electrodes will have a divergence
due to the time varying surface charge distribution, o-, =
±eE,(z, t). Because E has a curl, the voltage difference
measured between any two points is not unique, as illustrated
in Figure 8-2, where we see time varying magnetic flux pass-
ing through the contour LI. However, no magnetic flux
passes through the path L 2, where the potential difference is
measured between the two electrodes at the same value of z,
as the magnetic flux is parallel to the surface. Thus, the
voltage can be uniquely defined between the two electrodes at
the same value of z:

v(z,t)= J
z =const

E - dl = E,(z, t)d
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AL2

' 3E dl=0
E 22 all L2fE - di = -podf a- ds

L1 st

Figure 8-2 The potential difference measured between any two arbitrary points at
different positions z, and zg on the transmission line is not unique-the line integral L,
of the electric field is nonzero since the contour has magnetic flux passing through it. If
the contour L2 lies within a plane of constant z such as at z,, no magnetic flux passes
through it so that the voltage difference between the two electrodes at the same value
of z is unique.

Similarly, the tangential component of H is discontinuous
at each plate by a surface current +K. Thus, the total current
i(z, t) flowing in the z direction on the lower plate is

i(z, t)= K,w = H,w

Substituting (3) and (4) back into (2) results in the trans-
mission line equations:

av ai
-. = -L-

Oz at
(5)

ai av-= -c-
z -at

where L and C are the inductance and capacitance per unit
length of the parallel plate structure:

Ild
L = - henry/m,

w
C=w-farad/m

d

If both quantities are multiplied by the length of the line 1,
we obtain the inductance of a single turn plane loop if the line
were short circuited, and the capacitance of a parallel plate
capacitor if the line were open circuited.

It is no accident that the LC product

LC= ejA = 1/c2

is related to the speed of light in the medium.

8-1-2 General Transmission Line Structures

The transmission line equations of (5) are valid for any
two-conductor structure of arbitrary shape in the transverse
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xy plane but whose cross-sectional area does not change along
its axis in the z direction. L and C are the inductance and
capacitance per unit length as would be calculated in the
quasi-static limits. Various simple types of transmission lines
are shown in Figure 8-3. Note that, in general, the field
equations of (2) must be extended to allow for x and y
components but still no z components:

E = ET(x, y, z, t) = E.i + E,i,, E,=0 (8)
H= HT(x, y, z, t)= Hi.+H+i,, H = 0

We use the subscript T in (8) to remind ourselves that the
fields lie purely in the transverse xy plane. We can then also
distinguish between spatial derivatives along the z axis (a/az)
from those in the transverse plane (a/ax, alay):

a
V= T_+iz (9)

ix+iy-

We may then write Maxwell's equations as

VTXET
+ (i. XET)= - a--T

a aET

VTXHT+-(i xHT)= e -

az at

VT- ET=O (10)

VT-HT=O

The following vector properties for the terms in (10) apply:

(i) VTX HT and VTX ET lie purely in the z direction.
(ii) i, xET and i, x HT lie purely in the xy plane.

D D
€,/a /-•---- D ------n

Coaxial cable Wire above plane

Figure 8-3 Various types of simple transmission lines.
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Thus, the equations in (10) may be separated by equating
vector components:

VTET=O, VrXHr=0
(11)

VT'ET=0, VT HT)=0

8 , HT 8DET ,.
(i, x ET)= -AT - = L-(i, x HT)az at az at (12)

8 OET
-(i. HT)= -
az at

where the Faraday's law equalities are obtained by crossing
with i, and expanding the double cross product

i, X (iZXET)=i(i ET)-ET(i i,)=-ET (13)

and remembering that i, *Er= 0.
The set of 'equations in (11) tell us that the field depen-

dences on the transverse coordinates are the same as if the
system were static and source free. Thus, all the tools
developed for solving static field solutions, including the two-
dimensional Laplace's equations and the method of images,
can be used to solve for ET and HT in the transverse xy plane.

We need to relate the fields to the voltage and current
defined as a function of z and t for the transmission line of
arbitrary shape shown in Figure 8-4 as

v(z, t)= Er*dl
- const (14)

i(z, t) = HtourLHT " ds
at constant z
enclosing the
innerconductor

The related quantities of charge per unit length q and flux
per unit length A along the transmission line are

q(z, t) = ETr nds
2-const (15)

A(z, t) =pj Hr - (i, xdl)
zconst

The capacitance and inductance per unit length are then
defined as the ratios:

q(z, t) _ ETE * (1ds
(16)

A(z, t)_= P HT"(i xdl)

i(z, t) LHT *ds -const
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Figure 8-4 A general transmission line has two perfect conductors whose cross-
sectional area does not change in the direction along its z axis, but whose shape in the
transverse xy plane is arbitrary. The electric and magnetic fields are perpendicular, lie
in the transverse xy plane, and have the same dependence on x and y as if the fields
were static.

which are constants as the geometry of the transmission line
does not vary with z. Even though the fields change with z, the
ratios in (16) do not depend on the field amplitudes.

To obtain the general transmission line equations, we dot
the upper equation in (12) with dl, which can be brought
inside the derivatives since dl only varies with x and y and not
z or t. We then integrate the resulting equation over a line at
constant z joining the two electrodes:

E-* U) = (i2 XH,) -dl)

=-( f2 HT. (i x dl)) (17)

where the last equality is obtained using the scalar triple
product allowing the interchange of the dot and the cross:

(iZ x HT) dl = -(HT x i,) dl = -HT, (i, x dl) (18)

We recognize the left-hand side of (17) as the z derivative
of the voltage defined in (14), while the right-hand side is the
negative time derivative of the flux per unit length defined in
(15):

av 8A ai
- -L- (19)

az at at

We could also have derived this last relation by dotting the
upper equation in (12) with the normal n to the inner

x
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conductor and then integrating over the contour L sur-
rounding the inner conductor:

nErds) = a n*(ixHT) ds) = -- HrTds

(20)

where the last equality was again obtained by interchanging
the dot and the cross in the scalar triple product identity:

n - (i x HT) = (nx iZ) - HT= -HT - ds (21)

The left-hand side of (20) is proportional to the charge per
unit length defined in (15), while the right-hand side is pro-
portional to the current defined in (14):

1 aq ai av ai
- -4 J C- z = -e - (22)

E az at az at
Since (19) and (22) must be identical, we obtain the general

result previously obtained in Section 6-5-6 that the
inductance and capacitance per unit length of any arbitrarily
shaped transmission line are related as

LC = eL (23)

We obtain the second transmission line equation by dotting
the lower equation in (12) with dl and integrating between
electrodes:

(e 'E.dl)= 2 (i, HT)dl)=-( 2 HT" (i xdl))

(24)

to yield from (14)-(16) and (23)

av 1 aA L ai ai av
= - = -- - -C- (25)

at j az / az az at

EXAMPLE 8-1 THE COAXIAL TRANSMISSION LINE

Consider the coaxial transmission line shown in Figure 8-3
composed of two perfectly conducting concentric cylinders of
radii a and b enclosing a linear medium with permittivity e
and permeability 1L. We solve for the transverse dependence
of the fields as if the problem were static, independent of
time. If the voltage difference between cylinders is v with the
inner cylinder carrying a total current i the static fields are

v i
Er=lb H = -

r In (b/a) 27rr

I



The TransmissionLine Equations 575

The surface charge per unit length q and magnetic flux per
unit length A are

q = eEr(r=a)2nran (b/a
In (bla)

A= H, dr = -n

so that the capacitance and inductance per unit length of this
structure are

q 2iw A / b
C=_ = 2r__ L == Inn-

v In(ba)' i 21r a

where we note that as required

LC= eJL

Substituting Er and H4 into (12) yields the following trans-
mission line equations:

aE, aH, av = i
az at az at

aH,= E,E ai_ av
e- - -C-

az at az at

8-1-3 Distributed Circuit Representation

Thus far we have emphasized the field theory point of view
from which we have derived relations for the voltage and
current. However, we can also easily derive the transmission
line equations using a distributed equivalent circuit derived
from the following criteria:

(i) The flow of current through a lossless medium between
two conductors is entirely by displacement current, in
exactly the same way as a capacitor.

(ii) The flow of current along lossless electrodes generates a
magnetic field as in an inductor.

Thus, we may discretize the transmission line into many
small incremental sections of length Az with series inductance
L Az and shunt capacitance C Az, where L and C are the
inductance and capacitance per unit lengths. We can also take
into account the small series resistance of the electrodes R Az,
where R is the resistance per unit length (ohms per meter)
and the shunt conductance loss in the dielectric G Az, where
G is the conductance per unit length (siemens per meter). If
the transmission line and dielectric are lossless, R = 0,G = 0.
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The resulting equivalent circuit for a lossy transmission line
shown in Figure 8-5 shows that the current at z + Az and z
differ by the amount flowing through the shunt capacitance
and conductance:

8v(z, t)i(z, t)- i(z + Az, t) = C Az a + G Az v(z, t) (26)
at

Similarly, the voltage difference at z +Az from z is due to the
drop across the series inductor and resistor:

8i(z +Az, t)v(z, t)- v(z +Az, t) = LAz ) + i(z + Az, t)R Az (27)
at

By dividing (26) and (27) through by Az and taking the
limit as Az -- 0, we obtain the lossy transmission line equa-
tions:

i(z +Az,t)-i(z,t) ai av
lim C-- G
Az-0 AZ az at (28)

v(z+Az, t)-v(z,t) av ai i
lim -L-_ iR
A-0o Az az at

which reduce to (19) and (25) when R and G are zero.

8-1-4 Power Flow

Multiplying the upper equation in (28) by v and the lower
by i and then adding yields the circuit equivalent form of
Poynting's theorem:

a(vi)=a(Cv2 +Li 2)-Gv2 - iR (29)
az at.

v(s, t) - v(s + As, t)= L As- i(s + As, t) + i(s + As, t)R As

i(s, t) - i(s + As. t) = CAs - v(s, t) + GAsV(s, t)

Figure 8-5 Distributed circuit model of a transmission line including small series and
shunt resistive losses.
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The power flow vi is converted into energy storage ( Cv'+
'Li 2 ) or is dissipated in the resistance and conductance per
unit lengths.

From the fields point of view the total electromagnetic
power flowing down the transmission line at any position z is

P(z, t) =J (ET x HT) i, dS = ET (HTx it) dS (30)
s Js

where S is the region between electrodes in Figure 8-4.
Because the transverse electric field is curl free, we can define
the scalar potential

VxET=O0 ET'=-VTV (31)

so that (30) can be rewritten as

P(z, t) = s (i, x HT) VTVdS (32)

It is useful to examine the vector expansion

.2-0

VT" [V(i. X HT)] = (i X HT) VTV+ VVT" (i~,X HT)
(33)

where the last term is zero because i. is a constant vector and
HT is also curl free:

Vr- (iXHT)=HT- (VTXiZ)-i (VTXHT)=O (34)

Then (32) can be converted to a line integral using the two-
dimensional form of the divergence theorem:

P(z, t) = f V. [V(I HT)]dS

(35)

=-I V(iXH) .n ds

contours on
the surfaces of
both electrodes

where the line integral is evaluated at constant z along the
surface of both electrodes. The minus sign arises in (35)
because n is defined inwards in Figure 8-4 rather than
outwards as is usual in the divergence theorem. Since we are
free to pick our zero potential reference anywhere, we take
the outer conductor to be at zero voltage. Then the line
integral in (35) is only nonzero over the inner conductor,
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where V= v:

P(z, t) = -v (ix, HT) nds
inner
conductor

=v f (HTXit).nds

inner
conductor

=v V Hr (i, xn) ds
inneructor

conductdr

= V HTrds

iondeuctor

= vi (36)

where we realized that (i, x n) ds = ds, defined in Figure 8-4 if
L lies along the surface of the inner conductor. The elec-
tromagnetic power flowing down a transmission line just
equals the circuit power.

8-1-5 The Wave Equation

Restricting ourselves now to lossless transmission lines so
that R = G = 0 in (28), the two coupled equations in voltage
and current can be reduced to two single wave equations in v
and i:

a2v= 2 C2v
2=c 0

at az2
(37)

09i ,• 'i
2 = C 2

where the speed of the waves is

1 1
c m/sec (38)

As we found in Section 7-3-2 the solutions to (37) are
propagating waves in the +z directions at the speed c:

v(z, t) = V+(t- z/c)+ V_(t + z/c)
(39)

i(z, t) = I+(t - z/c) + I(t + z/c)

where the functions V+, V-, I+, and I_ are .determined by
boundary conditions imposed by sources and transmission

I
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line terminations. By substituting these solutions back into
(28) with R = G = 0, we find the voltage and current functions
related as

V, = I+Zo
(40)

V_ = -I-Zo

where

Zo0 = L/C ohm (41)

is known as the characteristic impedance of the transmission
line, analogous to the wave impedance 77 in Chapter 7. Its
inverse Yo = 1/Zo is also used and is termed the characteristic
admittance. In practice, it is difficult to measure L and C of a
transmission line directly. It is easier to measure the wave
speed c and characteristic impedance Zo and then calculate L
and C from (38) and (41).

The most useful form of the transmission line solutions of
(39) that we will use is

v(z, t) V+(t - z/c) + V(t + z/c)
(42)

i(z, t) = Yo[V+(t - z/c) - V (t + z/c)]

Note the complete duality between these voltage-current
solutions and the plane wave solutions in Section 7-3-2 for the
electric and magnetic fields.

8-2 TRANSMISSION LINE TRANSIENT WAVES

The easiest way to solve for transient waves on transmission
lines is through use of physical reasoning as opposed to
mathematical rigor. Since the waves travel at a speed c, once
generated they cannot reach any position z until a time z/c
later. Waves traveling in the positive z direction are described
by the function V+(t-z/c) and waves traveling in the -z
direction by V_(t + z/c). However, at any time t and position z,
the voltage is equal to the sum of both solutions while the
current is proportional to their difference.

8-2-1 Transients on Infinitely Long Transmission Lines

The transmission line shown in Figure 8-6a extends to
infinity in the positive z direction. A time varying voltage
source V(t) that is turned on at t = 0 is applied at z = 0 to the
line which is initially unexcited. A positively traveling wave
V+(t - z/c) propagates away from the source. There is no
negatively traveling wave, V (t + z/c) =O0. These physical
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Zo =1 1C VLC

0

+

Zo v(O, t) = 0 
v(t)

R, + Z,

O

Figure 8-6 (a)A semi-infinite transmission line excited by a voltage source at z = 0.(b)
To the source, the transmission line looks like a resistor Zo equal to the characteristic
impedance. (c) The spatial distribution of the voltage v(z, t)at various times for a
staircase pulse of V(t). (d) If the voltage source is applied to the transmission line
through a series resistance R, the voltage across the line at z = 0 is given by the voltage
divider relation.

arguments are verified mathematically by realizing that at
t = 0 the voltage and current are zero for z > 0,

v(z, t = 0) = V+(-z/c) + V_(z/c)= 0
(1)

i(z, t= 0) = Yo[V+(-z/c)- V(z/c)] = 0

which only allows the trivial solutions

V+(-z/c) = 0, V_(z/c)= 0

Since z can only be positive, whenever the argument of V+ is
negative and of V_ positive, the functions are zero. Since i can
only be positive, the argument of V_(t + z/c) is always positive

580

v(t)

I

I J
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so that the function is always zero. The argument of V+(t-
z/c) can be positive, allowing a nonzero solution if t > z/c
agreeing with our conclusions reached by physical
arguments.

With V_(t + z/c)= 0, the voltage and current are related as

v(z, t) = V+(t - z/c)
(3)

i(z, t) = YoV+(t- z/c)

The line voltage and current have the same shape as the
source, delayed in time for any z by z/c with the current scaled
in amplitude by Yo. Thus as far as the source is concerned,
the transmission line looks like a resistor of value Zo yielding
the equivalent circuit at z = 0 shown in Figure 8-6b. At z = 0,
the voltage equals that of the source

v(0, t) = V(t) = V+(t) (4)

If V(t) is the staircase pulse of total duration T shown in
Figure 8-6c, the pulse extends in space over the spatial
interval:

Ofz-ct, OS TT
(5)

c(t- T):5z<-ct, t>T

The analysis is the same even if the voltage source is in
series with a source resistance R,, as in Figure 8-6d. At z = 0
the transmission line still looks like a resistor of value Zo so
that the transmission line voltage divides in the ratio given by
the equivalent circuit shown:

v(z = 0, t) = Zo V(t)= V(t)
R, + Zo

(6)
v(t)

i(z = 0, t) = YoV+(t) -
R,+Z 0

The total solution is then identical to that of (3) and (4) with
the voltage and current amplitudes reduced by the voltage
divider ratio Zo/(R, + Zo).

8-2-2 Reflections from Resistive Terminations

(a) Reflection Coefficient
All transmission lines must have an end. In Figure 8-7 we

see a positively traveling wave incident upon a load resistor RL
at z = I.The reflected wave will travel back towards the source
at z = 0 as a V_ wave. At the z = I end the following circuit
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il = I, t)

Zo,c.

KZ

+

RL v( = 1, t)

z=I
v(Z = 1, t) = V+ + V_ = i( = 1, t)RL RL Yo[V, - V. I

V. RL -ZO
L v RL+Zo

Figure 8-7 A V. wave incident upon the end of a transmission line with a load
resistor RL is reflected as a V- wave.

relations hold:

v(1, t) = V+(t - /c) + V_(t + 1/c)

= i(l, t)RL

= YoRL[V+(t - 1/c) - V_(t + 1/c)] (7)

We then find the amplitude of the negatively traveling wave
in terms of the incident positively traveling wave as

FL = V_(t + l/c) RL - Zo (8)
V(t - 1/c) RL + Z

where rL is known as the reflection coefficient that is of the
same form as the reflection coefficient R in Section 7-6-1 for
normally incident uniform plane waves on a dielectric.

The reflection coefficient gives us the relative amplitude of
the returning V- wave compared to the incident V+ wave.
There are several important limits of (8):

(i) If RL = ZO, the reflection coefficient is zero (FL = 0) so
that there is no reflected wave and the line is said to be
matched.

(ii) If the line is short circuited (RL = 0), then rL = -1. The
reflected wave is equal in amplitude but opposite in sign
to the incident wave. In general, if RL < Zo, the reflected
voltage wave has its polarity reversed.

(iii) If the line is open circuited (RL = co), then FL = + 1. The
reflected wave is identical to the incident wave. In
general, if RL > Z, the reflected voltage wave is of the
same polarity as the incident wave.

(b) Step Voltage
A dc battery of voltage Vo with series resistance R, is

switched onto the transmission line at t=0, as shown in
Figure 8-8a. At z = 0, the source has no knowledge of the

I
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VO -- Z, c,T= c = RL

(a)

i= Yo(V, - V_) R

Vo zo V++ V_

s=O z=l

V= o Vo - Zo RL -& V
RV +Z, Rs +ZO RL +Z o

ro rs rL

(b)

Figure 8-8 (a) A dc voltage Vo is switched onto a resistively loaded transmission line
through a source resistance R,. (b)The equivalent circuits at z= 0 and z = I allow us to
calculate the reflected voltage wave amplitudes in terms of the incident waves.

line's length or load termination, so as for an infinitely long
line the transmission line looks like a resistor of value Zo to
the source. There is no V_ wave initially. The V, wave is
determined by the voltage divider ratio of the series source
resistance and transmission line characteristic impedance as
given by (6).

This V+ wave travels down the line at speed c where it is
reflected at z = I for t > T, where T = /c is the transit time for
a wave propagating between the two ends. The new V- wave
generated is related to the incident V+ wave by the reflection
coefficient rL. As the V+ wave continues to propagate in the
positive z direction, the V_ wave propagates back towards the
source. The total voltage at any point on the line is equal to
the sum of V+ and V_ while the current is proportional to
their difference.

When the V- wave reaches the end of the transmission line
at z = 0 at time 2 T, in general a new V. wave is generated,
which can be found by solving the equivalent circuit shown in
Figure 8-8b:

v(O, t)+ i(O, t)R, = Vo= V+(O, t)+ V_(O, t)

+ YoR.[V+(0, t)- V(0, t)] = Vo (9)
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to yield
Zo Vo R, - Zo

V+(0, t)= rV_(0, t) + o rF = (10)
Zo+R,' R,+Z (

where r, is just the reflection coefficient at the source end.
This new V. wave propagates towards the load again
generating a new V_ wave as the reflections continue.

If the source resistance is matched to the line, R, = Zo so
that F, = 0, then V+ is constant for all time and the steady state
is reached for t > 2 T. If the load was matched, the steady state
is reached for t > T no matter the value of R,. There are no
further reflections from the end of a matched line. In Figure
8-9 we plot representative voltage and current spatial dis-
tributions for various times assuming the source is matched to
the line for the load being matched, open, or short circuited.

(i) Matched Line
When RL = Zo the load reflection coefficient is zero so that

V+ = Vo/2 for all time. The wavefront propagates down the
line with the voltage and current being identical in shape.
The system is in the dc steady state for t - T.

R,= Zo

Zo, c, T = I/c R,

V(, t) t<T i(Z, tl t<T

Vo
"T

Yo V+ZI± 1v.
ct I (b) ct I •

Figure 8-9 (a) A dc voltage is switched onto a transmission line with load resistance
RL through a source resistance R, matched to the line. (b) Regardless of the load
resistance, half the source voltage propagates down the line towards the load. If the
load is also matched to the line (RL = Zo), there are no reflections and the steady state
of v(z, it 7T)= Vo/2, i(z, t T) = YoVo/2 is reached for it T. (c) If the line is short
circuited (RL = 0), then FL = - I so that the V. and V_ waves cancel for the voltage but
add for the current wherever they overlap in space. Since the source end is matched,
no further reflections arise at z = 0 so that the steady state is reached for t 2 T. (d) If
the line is open circuited (RL = oo) so that rL = + 1, the V+ and V_ waves add for the
voltage but cancel for the current.

I

V+ Yo Vo

S 
2
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i(z, t) = Yo [V+ - V_v(Z, t) = V+ + V

T<t <2T

V+
---

I-c(t-T) It -

Short circuited line, RL 0, (v(z, t > 2T) = 0, i(z, t > 2T) = Yo Vo)

Figure 8-9

i(z, t)= Yo[V+ -V I

Open circuited line, RL

(d)

(ii) Open Circuited Line
When RL = cO the reflection coefficient is unity so that V+ =

V . When the incident and reflected waves overlap in space
the voltages add to a stairstep pulse shape while the current is
zero. For t 2 T, the voltage is Vo everywhere on the line
while the current is zero.

(iii) Short Circuited Line
When RL = 0 the load reflection coefficient is -1 so that

V, = -V_. When the incident and reflected waves overlap in
space, the total voltage is zero while the current is now a
stairstep pulse shape. For t-2:2T the voltage is zero every-
where on the line while the current is Vo/Zo.

8-2-3 Approach to the dc Steady State

If the load end is matched, the steady state is reached after
one transit time T= 1/c for the wave to propagate from the
source to the load. If the source end is matched, after one

585

v(z, t) = V+ V

v(z, t) = V÷ + V_

-, (v(z, t > 2T) = Vo, i(z, t > 2T) = 0)
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round trip 2 T=21/c no further reflections occur. If neither
end is matched, reflections continue on forever. However, for
nonzero and noninfinite source and load resistances, the
reflection coefficient is always less than unity in magnitude so
that each successive reflection is reduced in amplitude. After
a few round-trips, the changes in V, and V_ become smaller
and eventually negligible. If the source resistance is zero and
the load resistance is either zero or infinite, the transient
pulses continue to propagate back and forth forever in the
lossless line, as the magnitude of the reflection coefficients are
unity.

Consider again the dc voltage source in Figure 8-8a
switched through a source resistance R. at t =0 onto a
transmission line loaded at its z = I end with a load resistor RL.
We showed in (10) that the V+ wave generated at the z = 0
end is related to the source and an incoming V_ wave as

Zo R, -Zov+= r Vo +rv_, F0= ,= (11)
R, +Zo R,+Zo

Similarly, at z = 1,an incident V+ wave is converted into a V_
wave through the load reflection coefficient:

RL - ZoV_ = rLV+, FL = (12)
RL +Zo

We can now tabulate the voltage at z = 1using the following
reasoning:

(i) For the time interval t < T the voltage at z = I is zero as
no wave has yet reached the end.

(ii) At z=0 for O0t52T, V_=0 resulting in a V+ wave
emanating from z = 0 with amplitude V+ = Fo Vo.

(iii) When this V+ wave reaches z = I, a V_ wave is generated
with amplitude V = FLV+. The incident V+ wave at
z = I remains unchanged until another interval of 2 T,
whereupon the just generated V_ wave after being
reflected from z = 0 as a new V+ wave given by (11)
again returns to z = I.

(iv) Thus, the voltage at z = 1 only changes at times (2n -
1)T, n = 1, 2,...., while the voltage at z = 0 changes at
times 2(n - 1)T. The resulting voltage waveforms at the
ends are stairstep patterns with steps at these times.

The nth traveling V+ wave is then related to the source and
the (n - 1)th V_ wave at z = 0 as

V+. = F0oV+ (,V-_(,-)(13)
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while the (n - 1)th V- wave is related to the incident (n - 1)th
V+ wave at z = l as

V-(n-_,,I) = rLV+o.,_) (14)

Using (14) in (13) yields a single linear constant coefficient
difference equation in V+,:

V+ - rrLV+(-r)= Fo Vo (15)

For a particular solution we see that V+, being a constant
satisfies (15):

Fo
V+. = C C(1 - FsFL) FoVoC= ro io Vo (16)

To this solution we can add any homogeneous solution
assuming the right-hand side of (15) is zero:

V+.-FsrLV+(n-•)= 0 (17)

We try a solution of the form

V+.= AA" (18)

which when substituted into (17) requires

AA"-'(A -F, FL) = 0=)A = rjFL (19)

The total solution is then a sum of the particular and
homogeneous solutions:

r0
V+.= o Vo+A(F•,L) n (20)

1 - FFL

The constant A is found by realizing that the first transient
wave is

V = roVo= Fo Vo+A(F, L) (21)
1-F, FL

which requires A to be

ro Vo
A = (22)

so that (20) becomes

TorVo
V+n 1 [-(F, L)"] (23)

Raising the index of (14) by one then gives the nth V_ wave
as

V_-n = rLV+n (24)
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so that the total voltage at z = I after n reflections at times
(2n- 1)T, n = 1, 2, ... , is

Vro(1 +FL)
Vn = V+n +V-.= [1 --(FFrL)"] (25)

or in terms of the source and load resistances

RL
V, R R, Vo[1- (rFL)"] (26)

RL + R,

The steady-state results as n - o. If either R, or RL are
nonzero or noninfinite, the product of F,fL must be less than
unity. Under these conditions

lim (FFrL )"= 0 (27)
(Ir,rL <1)

so that in the steady state

lim V, = R Vo (28)
._-0 R, + R,

which is just the voltage divider ratio as if the transmission
line was just a pair of zero-resistance connecting wires. Note
also that if either end is matched so that either r, or FrL is
zero, the voltage at the load end is immediately in the steady
state after the time T.

In Figure 8-10 the load is plotted versus time with R,= 0
and RL = 3Zo so that F,rL = - and with RL = Zo so that

t=O

V0  Zo, c, T = I/c RL

v(z = I, t) I i
0 0

5, -a Steady state
R16 Vo 32 Vo VO

. Vo 16 "o 32

JI Vo

T 3T 5T 7T 9T 11T

n=l n=2 n=3 n=4 n=5

Figure 8-10 The load voltage as a function of time when R,= 0 and R, = 3Zo so that
,r.L = -- (solid) and with RL = IZo so that F,FL = 2 (dashed). The dc steady state is the

same as if the transmission line were considered a pair of perfectly conducting wires in
a circuit.

V0

I
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r•rL = +-.Then (26) becomes

(Vo[l-(-)"], RL=3Zo
V, Vo[1 -(-)"], RL = 3Zo (29)

The step changes in load voltage oscillate about the steady-
state value V4 = Vo. The steps rapidly become smaller having
less than one-percent variation for n > 7.

If the source resistance is zero and the load resistance is
either zero or infinite (short or open circuits), a lossless
transmission line never reliches a dc steady state as the limit of
(27) does not hold with F,FL = 1. Continuous reflections
with no decrease in amplitude results in pulse waveforms for
all time. However, in a real transmission line, small losses in
the conductors and dielectric allow a steady state to be even-
tually reached.

Consider the case when R,= 0 and RL = o0so that rrL =
-1. Then from (26) we have

0, n even (30)
= 2 Vo, n odd

which is sketched in Figure 8-1 la.
For any source and load resistances the current through

the load resistor at z = I is

V,. Vo01(l+ [I)
I,= [l-(F,Ft)" ]RL RL(-rFrL)

2VoF0 [1-(FsFL)"]
RL +Z (-r )(31)

If both R, and RL are zero so that F,TL = 1, the short circuit
current in (31) is in the indeterminate form 0/0, which can be
evaluated using l'H6pital's rule:

2VoFo [-n(F,F)"-']
lim I.=

r.r,-j RL+Zo (-1)

2Von2Vn (32)

As shown by the solid line in Figure 8-11 b, the current
continually increases in a stepwise fashion. As n increases to
infinity, the current also becomes infinite, which is expected
for a battery connected across a short circuit.

8-2-4 Inductors and Capacitors as Quasi-static Approximations to
Transmission Lines

If the transmission line was one meter long with a free
space dielectric medium, the round trip transit time 2 T = 21/c
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v(z = 1,t)

Open circuited line (RL = ..R s = 0)

H H
T 3T 5T 7T 9T t

i(s = 1, t)

Short circuited line (RL = 0,

Transmission line

RS = 0)

F Quasi-static
/ "inductive

approximation
t = O

S2 T=1c d

N- B--- Depth w

I I I I I ,..
3T 5T 7T 9T

n=3 n=4

(b)

Figure 8-11 The (a) open circuit voltage and (b) short circuit current at the z = I end
of the transmission line for R, = 0. No dc steady state is reached because the system is
lossless. If the short circuited transmission line is modeled as an inductor in the
quasi-static limit, a step voltage input results in a linearly increasing current (shown
dashed). The exact transmission line response is the solid staircase waveform.

is approximately 6 nsec. For many circuit applications this
time is so fast that it may be considered instantaneous. In this
limit the quasi-static circuit element approximation is valid.

For example, consider again the short circuited trans-
mission line (RL = 0) of length I with zero source resistance.
In the magnetic quasi-static limit we would call the structure
an inductor with inductance Ll (remember, L is the
inductance per unit length) so that the terminal voltage and
current are related as

i
v = (Ll)-

2Vo

I

r
2V

--

dr
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If a constant voltage Vo is applied at t= 0, the current is
obtained by integration of (33) as

Vo
i = •-t (34)

Ll

where we use the initial condition of zero current at t = 0. The
linear time dependence of the current, plotted as the dashed
line in Figure 8-11 b, approximates the rising staircase wave-
form obtained from the exact transmission line analysis of
(32).

Similarly, if the transmission line were open circuited with
RL = 00, it would be a capacitor of value C1 in the electric
quasi-static limit so that the voltage on the line charges up
through the source resistance R, with time constant 7 = R,CI
as

v(t) = Vo(1 - e - "') (35)

The exact transmission line voltage at the z = I end is given by
(26) with RL = co so that FL = 1:

V. = Vo(1l-F") (36)

where the source reflection coefficient can be written as

R,- Zo
R, + Zo

R (37)
R, + JIC

If we multiply the numerator and denominator of (37)
through by Cl, we have

R,C1 - 1t
R,CI+I1T

T-T 1-TIT (38)(38)
+ T 1+ T/7

where

T= 1,L-= I/c (39)

For the quasi-static limit to be valid, the wave transit time T
must be much faster than any other time scale of interest so
that T/T<< 1. In Figure 8-12 we plot (35) and (36) for two
values of T/7 and see that the quasi-static and transmission
line results approach each other as T/r.becomes small.

When the roundtrip wave transit time is so small compared
to the time scale of interest so as to appear to be instan-
taneous, the circuit treatment is an excellent approximation.
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RS

+

Vo-- t=O T=l/c
- T1 .1 2T 1 1F

.1 .25

t - I --

2. :3.

Figure 8-12 The open circuit voltage at z= I for a step voltage applied at = 0
through a source resistance R, for various values of T/7, which is the ratio of prop-
agation time T= /c to quasi-static charging time r = R,CL. The dashed curve shows the
exponential rise obtained by a circuit analysis assuming the open circuited transmission
line is a capacitor.

If this propagation time is significant, then the transmission
line equations must be used.

8-2-5 Reflections from Arbitrary Terminations

For resistive terminations we have been able to relate
reflected wave amplitudes in terms of an incident wave ampli-
tude through the use of a reflection coefficient becadse the
voltage and current in the resistor are algebraically related.
For an arbitrary termination, which may include any
component such as capacitors, inductors, diodes, transistors,
or even another transmission line with perhaps a different
characteristic impedance, it is necessary to solve a circuit
problem at the end of the line. For the arbitrary element with
voltage VL and current IL at z = 1,shown in Figure 8-13a, the
voltage and current at the end of line are related as

v(z = 1, t) = VL(t) = V+(t - 1/c) + V-(t + /c) (40)

i(= 1, ) = IL() = Yo[V+(t - I/c)- V_(t + I/c)] (41)

We assume that we know the incident V+ wave and wish to
find the reflected V_ wave. We then eliminate the unknown
V_ in (40) and (41) to obtain

2V+(t - /c) = VL(t)+ IL(t)Zo (42)

which suggests the equivalent circuit in Figure 8-13b.
For a particular lumped termination we solve the

equivalent circuit for VL(t) or IL(t). Since V+(t - /c) is already
known as it is incident upon the termination, once VL(t) or

II m •

t
w

1-e - ti
' (r=Rs Cl )

t
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I, (t)= Yn[V.. It-/c)-- VIt - I+/c)]

= V(t -I/c) + V_(t+ I/c)

+t-

2V+ (t - I/c)

+

VL (t)

(ar)

Figure 8-13 A transmission line with an (a) arbitrary load at the z = Lend can be
analyzed from the equivalent circuit in (b). Since V+ is known, calculation of the load
current or voltage yields the reflected wave V_.

IL(t) is calculated from the equivalent circuit, V_(t + 1/c) can
be calculated as V_ = VL - V+.

For instance, consider the lossless transmission lines of
length I shown in Figure 8-14a terminated at the end with
either a lumped capacitor CL or an inductor LL. A step
voltage at t= 0 is applied at z =0 through a source resistor
matched to the line.

The source at z = 0 is unaware of the termination at z =1
until a time 2T. Until this time it launches a V+ wave of
amplitude Vo/2. At z = 1,the equivalent circuit for the capaci-
tive termination is shown in Figure 8-14b. Whereas resistive
terminations just altered wave amplitudes upon reflection,
inductive and capacitive terminations introduce differential
equations.

From (42), the voltage across the capacitor vc obeys the
differential equation

dvy
ZoCL,+ v, = 2V+ = Vo, t> T (43)

dt
with solution

v,(t) = Vo[1 -e-(-T)/ZOCL], t> T (44)

Note that the voltage waveform plotted in Figure 8-14b
begins at time T= 1/c.

Thus, the returning V_ wave is given as

V_ = v, - V+ = Vo/2 + Vo e-(-T)/ZoCL (45)

This reflected wave travels back to z = 0, where no further
reflections occur since the source end is matched. The cur-
rent at z = 1 is then

dv, Vo
i,= c•--•v--o e('-T/ZoC, t> T (46)

di Zo

and is also plotted in Figure 8-14b.

1,(t)YOI . (t-1/0 - _(t+I0



S= 0 z=1

i(s = I, t)

Vo e _-(-TilZOCZ r>T

V( = I, t)

+

LL V~L~t)

t>T

(C)

Figure 8-14 (a) A step voltage is applied to transmission lines loaded at z = 1with a
capacitor CL or inductor LL. The load voltage and current are calculated from the (b)
resistive-capacitive or (c) resistive-inductive equivalent circuits at z = I to yield
exponential waveforms with respective time constants 7= ZoCL and 7 = LL/Zo as the
solutions approach the dc steady state. The waveforms begin after the initial V. wave
arrives at z = Iafter a time T=1/c. There are no further reflections as the source end is
matched.
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If the end at z = 0 were not matched, a new V+ would be
generated. When it reached z = 1, we would again solve the
RC circuit with the capacitor now initially charged. The
reflections would continue, eventually becoming negligible if
R, is nonzero.

Similarly, the governing differential equation for the
inductive load obtained from the equivalent circuit in Figure
8-14c is

diL
L +LiLZo=2V, = Vo, t>T (47)

dt

with solution

iLt = (1-- e--n •ZoLL), t>T (48)
Zo

The voltage across the inductor is

diL
VL= LL = V oe-(-T)ZdLo' t> T (49)

dt

Again since the end at z = 0 is matched, the returning V_
wave from z = I is not reflected at z = 0. Thus the total voltage
and current for all time at z = I is given by (48) and (49) and is
sketched in Figure 8-14c.

8-3 SINUSOIDAL TIME VARIATIONS

8-3-1 Solutions to the Transmission Line Equations

Often transmission lines are excited by sinusoidally varying
sources so that the line voltage and current also vary sinusoi-
dally with time:

v(z, t) = Re [i(z) e" ]

i(z, t)= Re [i(z) e"i

Then as we found for TEM waves in Section 7-4, the voltage
and current are found from the wave equation solutions of
Section 8-1-5 as linear combinations of exponential functions
with arguments t - z/c and t + z/c:

v(z, t) = Re [' + ecio(-,) + _ ei,•(+ 4c)]

i(z, t)= Yo Re [9, ei' -_L e-"(t+zIc)] (2)

Now the phasor amplitudes V, and V_ are complex numbers
and do not depend on z or t.



596 Guided Electromagnetic Waves

By factoring out the sinusoidal time dependence in (2), the
spatial dependences of the voltage and current are

S(z) = 9. e- i +_ e+ik
(3)

i(z) = Yo(V e - " - - e) (3)

where the wavenumber is again defined as

k = t/c (4)

8-3-2 Lossless Terminations

(a) Short Circuited Line
The transmission line shown in Figure 8-15a is excited by a

sinusoidal voltage source at z = -1 imposing the boundary
condition

v(z = -1, t)= Vo cos ot

= Re (Vo ei') O(z = -1) = Vo =+ ej + e-+'•

(5)

Note that to use (3) we must write all sinusoids in complex
notation. Then since all time variations are of the form ei L,
we may suppress writing it each time and work only with the
spatial variations of (3).

Because the transmission line is short circuited, we have the
additional boundary condition

v(z = 0, t) = 0 (z = ) = = + _ (6)

which when simultaneously solved with (5) yields

Vo (7)

2 j sin ki

The spatial dependences of the voltage and current are
then

Vo(e - i& - e~) Vo sin kz

2j sin kl sin kl
(8)

Vo°Yo(e-'"+ee) .VoYocos kz
2j sin kl sin kl

The instantaneous voltage and current as functions of space
and time are then

sin kz
v(z, t)= Re [(z) ei ] = - Vo i cos 0t

(9)

i(z, t)= Re [i(z) e] V0 cos kz sin wt
sin kl
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-I

lim v(-I) = j(LI)w(-1)
kI'1

S-jVoYocosks
sin kI

lim
kl< 1

597

sinki
otkl

Figure 8-15 The voltage and current distributions on a (a) short circuited and (b)
open circuited transmission line excited by sinusoidal voltage sources at z = -. If the
lines are much shorter than a wavelength, they act like reactive circuit elements. (c) As
the frequency is raised, the impedance reflected back as a function of z can look
capacitive or inductive making the transition through open or short circuits.

The spatial distributions of voltage and current as a
function of z at a specific instant of time are plotted in Figure
8-15a and are seen to be 90* out of phase with one another in
space with their distributions periodic with wavelength A
given by

2x 2nc
A L=

9 W
R



Vo sin cat

s=0

Vocosksa(,) = -!cosL

kl< 1*

-)-n = ,LC

Figure 8-15
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The complex impedance at any position z is defined as

Z(z) = () (11)

which for this special case of a short circuited line is found
from (8) as

Z(z)= -jZo tan kz (12)

In particular, at z = -1, the transmission line appears to the
generator as an impedance of value

Z(z = -1) = jZo tan kl (13)

From the solid lines in Figure 8-15c we see that there are
various regimes of interest:

(i) When the line is an integer multiple of a half
wavelength long so that kl= nar, n = 1, 2, 3, ... , the
impedance at z = -1 is zero and the transmission line
looks like a short circuit.

(ii) When the-line is an odd integer multiple of a quarter
wavelength long so that kl= (2n- 1)r/2, n = 1, 2, ... ,
the impedance at z = -1 is infinite and the transmission
line looks like an open circuit.

(iii) Between the short and open circuit limits (n - 1)7r < kl <
(2n-l))r/2, n= 1,2,3,..., Z(z=-I) has a positive
reactance and hence looks like an inductor.

(iv) Between the open and short circuit limits (n -2)1r < kl <
ner, n = 1, 2 . . , Z(z = -1) has a negative reactance aid
so looks like a capacitor.

Thus, the short circuited transmission line takes on all
reactive values, both positive (inductive) and negative
(capacitive), including open and short circuits as a function of
kl. Thus, if either the length of the line 1or the frequency is
changed, the impedance of the transmission line is changed.

Examining (8) we also notice that if sin kl= 0, (kl= n=r,
n = 1, 2, .. .), the voltage and current become infinite (in
practice the voltage and current become large limited only by
losses). Under these conditions, the system is said to be
resonant with the resonant frequencies given by

wo = nrc/I, n = 1,2, 3,... (14)

Any voltage source applied at these frequencies will result in
very large voltages and currents on the line.

(b) Open Circuited Line
If the short circuit is replaced by an open circuit, as in

Figure 8-15b, and for variety we change the source at z = -1 to
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Vo sin wt the boundary conditions are

i(z = 0, t)= 0
(15)

v(z =-1, t) = Vo sin wt = Re (-jVo ei")

Using (3) the complex amplitudes obey the relations

C(z = 0) = 0 = Yo(V+ - V_)
. (16)

;(z = -1) = -jVO = 9+ ei4 + e-' (16)

which has solutions

9=_ -iV (17)2 cos klI

The spatial dependences of the voltage and current are then

-_V_ - Va
;(z)= -j (e-' +ej )= cos kz

2 cos ki cos kl
(18)

f(z) - ,= (e -e •+ • ) = -V sin kz
2 cos l cos kl

with instantaneous solutions as a function of space and time:

Vo cos kz
v(z, t) = Re [;(z) e~"] = sin .

cos kl
(19)

i(z, t)= Re [t(z) e)j] =- sin kz cos wt
cos kl

The impedance at z = -1 is

Z(z = -1) -jZo cot kl (20)

Again the impedance is purely reactive, as shown by the
dashed lines in Figure 8-15c, alternating signs every quarter
wavelength so that the open circuit load looks to the voltage
source as an inductor, capacitor, short or open circuit
depending on the frequency and length of the line.

Resonance will occur if

cos kl= 0 (21)

or

kl= (2n - 1) r/2, n = 1, 2, 3,... (22)

so that the resonant frequencies are

(2n - 1)7rc
.= (2n- (23)

21

·· ___I
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8-3-3 Reactive Circuit Elements as Approximations to Short Transmission
Lines

Let us re-examine the results obtained for short and open
circuited lines in the limit when I is much shorter than the
wavelength A so that in this long wavelength limit the spatial
trigonometric functions can be approximated as

lim sin kz - kz
lim.i os kz - (24)

Using these approximations, the voltage, current, and
impedance for the short circuited line excited by a voltage
source Vo cos wt can be obtained from (9) and (13) as

V0 z
v(z, t)= -- cos owt, v(-l, t)= Vo cos ot

VoYo Vo sin ot
lim i(z,t) sinmot, i(-1,t)=

,l k1 (Ll)ow

.*Zol
Z(-L) =jZokl = - = jo(L)

(25)

We see that the short circuited transmission line acts as an
inductor of value (Ll) (remember that L is the inductance per
unit length), where we used the relations

1O , 1
JC- (26)

Note that at z = -I,

di(-I, t)
v(-l, t) = (Ll)

dt

Similarly for the open circuited line we obtain:

(27)

v(z, t)= Vo sin ot
lim i(z, t) = -VoYokz cos ot,

-jZo -j
Z(-) = - -

ki (Cl)w

i(-i, t) = (Cl)w Vo cos ot

(28)

For the open circuited transmission line, the terminal
voltage and current are simply related as for a capacitor,

i(-, t)= (C) d (- t)
dt

(29)

with capacitance given by (Cl).
In general, if the frequency of excitation is low enough so

that the length of a transmission line is much shorter than the
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wavelength, the circuit approximations of inductance and
capacitance are appropriate. However, it must be remem-
bered that if the frequencies of interest are so high that the
length of a circuit element is comparable to the wavelength, it
no longer acts like that element. In fact, as found in Section
8-3-2, a capacitor can even look like an inductor, a short
circuit, or an open circuit at high enough frequency while vice
versa an inductor can also look capacitive, a short or an open
circuit.

In general, if the termination is neither a short nor an open
circuit, the voltage and current distribution becomes more
involved to calculate and is the subject of Section 8-4.

8-3-4 Effects of Line Losses

(a) Distributed Circuit Approach
If the dielectric and transmission line walls have Ohmic

losses, the voltage and current waves decay as they propagate.
Because the governing equations of Section 8-1-3 are linear
with constant coefficients, in the sinusoidal steady state we
assume solutions of the form

v(z, t)= Re (V e"Y-(")
(30)

i(z, t)= Re (I ej
dw )

where now o and k are not simply related as the nondisper-
sive relation in (4). Rather we substitute (30) into Eq. (28) in
Section 8-1-3:

az at

(31)

= -La-- iR * -ik = -(Li + R)f
az at

which requires that

V jk Ljw + R
I (Cjo +G) jk

We solve (32) self-consistently for k as

k2 = -(Lj + R)(Cjof + G) = LCW2 - jo.(RC + LG) - RG
(33)

The wavenumber is thus complex so that we find the real
and imaginary parts from (33) as

k= k,+jk,k - k = LCo - RG
(34)

2kAi = -o(RC+LG)
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In the low loss limit where wRC<< 1 and wLG<< 1, the
spatial decay of ki is small compared to the propagation
wavenumber k,. In this limit we have the following approxi-
mate solution:

A,. NC•+oI-=±zolc

lim w(RC+LG) Ir (35)
xRC<I ki = +G

oLG< 2k, 2 L CI F:2(RYo+ GZo)

We use the upper sign for waves propagating in the +z
direction and the lower sign for waves traveling in the -z
direction.

(b) Distortionless lines
Using the value of k of (33),

k = ± [-(Ljw + R)(Cjw + G)] "/ (36)

in (32) gives us the frequency dependent wave impedance for
waves traveling in the ±z direction as

Ljw+R 1 V + RIL 12

I Cw + G C ijow + G/C (37)

If the line parameters are adjusted so that

RG (38)
LC

the impedance in (37) becomes frequency independent and
equal to the lossless line impedance. Under the conditions of
(38) the complex wavenumber reduces to

k,=.±.fLC, k,= rJRG (39)

Although the waves are attenuated, all frequencies propagate
at the same phase and group velocities as for a lossless line

) 1
VP =--=-I-

do, 1 (40)

Vg= dk,

Since all the Fourier components of a pulse excitation will
travel at the same speed, the shape of the pulse remains
unchanged as it propagates down the line. Such lines are
called distortionless.
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(c) Fields Approach
If R = 0, we can directly find the TEM wave solutions using

the same solutions found for plane waves in Section 7-4-3.
There we found that a dielectric with permittivity e and small
Ohmic conductivity a has a complex wavenumber:

lim k- •-L(41)
albmQ(c \( _C 2

Equating (41) to (35) with R = 0 requires that GZo= oq.
The tangential component of H at the perfectly conducting

transmission line walls is discontinuous by a surface current.
However, if the wall has a large but noninfinite Ohmic
conductivity o-,, the fields penetrate in with a characteristic
distance equal to the skin depth 8 = -12/o,. The resulting
z-directed current gives rise to a z-directed electric field so
that the waves are no longer purely TEM.

Because we assume this loss to be small, we can use an
approximate perturbation method to find the spatial decay
rate of the fields. We assume that the fields between parallel
plane electrodes are essentially the same as when the system is
lossless except now being exponentially attenuated as e-" ,

where a = -ki:

E,(z, t)= Re [Eej(' -k x) e-' ]
(42)

H,(z,t)= Re ej(|-k- , e- , k,=

From the real part of the complex Poynting's theorem
derived in Section 7-2-4, we relate the divergence of the
time-average electromagnetic power density to the time-
average dissipated power:

V" <S>=--<Pd> (43)

Using the divergence theorem we integrate (43) over a
volume of thickness Az that encompasses the entire width and
thickness of the line, as shown in Figure 8-16:

VV<S> dV= <S> dS

= <S,(z +Az)>dS
"+Az

- <S,(z)> dS=- <Pd> dV (44)

The power <Pd> is dissipated in the dielectric and in the
walls. Defining the total electromagnetic power as

<P()>= <S,(z)> dS (45)
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H

K=!ip:H. . _ __

<P(z)>= f<S (z >dS

CA01

E, H ae-*
z

< 
P(z + As)> = f< S,

I

(s + As)>dS

z + As
J- <PdL>
2 <p>

Figure 8-16 A transmission line with lossy walls and dielectric results in waves that
decay as they propagate. The spatial decay rate a of the fields is approximately
proportional to the ratio of time average dissipated power per unit length <PL> to the
total time average electromagnetic power flow <P> down the line.

(44) can be rewritten as

<P(z+Az)>-<P(z)>=-f <Pd> dxdydz (46)

Dividing through by dz = Az, we have in the infinitesimal limit

<P(z+ z)>- <P(z)> d<P> <P> dx dy
lim = 7 <Pd>dxdyA o Az fS

= -<PdL> (47)

where <PaL> is the power dissipated per unit length. Since
the fields vary as e - = , the power flow that is proportional to
the square of the fields must vary as e - "' so that

d<P>
dz= -2a<P>= -<PdL>
dz

(48)

which when solved for the spatial decay rate is proportional to
the ratio of dissipated power per unit length to the total

d

0
o ,

-- r···
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electromagnetic power flowing down the transmission line:

1 <P,>a <P> (49)
2 <P>

For our lossy transmission line, the power is dissipated both
in the walls and in the dielectric. Fortunately, it is not neces-
sary to solve the complicated field problem within the walls
because we already approximately know the magnetic field at
the walls from (42). Since the wall current is effectively
confined to the skin depth 8, the cross-sectional area through
which the current flows is essentially w8 so that we can define
the surface conductivity as o,8, where the electric field at the
wall is related to the lossless surface current as

K, = a•8E (50)

The surface current in the wall is approximately found from
the magnetic field in (42) as

K, = -H, = -EJ1 (51)

The time-average power dissipated in the wall is then

w =I Kww 1 Il•w
<PdL>wan= Re (E, K*)= 2 2- (52)

2 2 o,8 2 (52)y

The total time-average dissipated power in the walls and
dielectric per unit length for a transmission line system of
depth w and plate spacing d is then

<PdL> = 2<PdL>•>wa, + 2( EI 2wd

= Iw(2 8+ o-d (53)

where we multiply (52) by two because of the losses in both
electrodes. The time-average electromagnetic power is

<P> = wd (54)
2 1

so that the spatial decay rate is found from (49) as

a = -ki = 2+ d) = o+ (55)

Comparing (55) to (35) we see that

GZo = o7, R Yo -
7lr-ýSd

1 d oaw 2
Zo -= - j, G = - R (56)

Yo w d' o,ww

I
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8-4 ARBITRARY IMPEDANCE TERMINATIONS

8-4-1 The Generalized Reflection Coefficient

A lossless transmission line excited at z = -1 with a sinusoi-
dal voltage source is now terminated at its other end at z = 0
with an arbitrary impedance ZL, which in general can be a
complex number. Defining the load voltage and current at
z=0 as

v(z = 0, t)= VL(t) = Re (VL e"')
(1)

i(z = 0, t) = iL(t) = Re (IL e"n), IL = VLJZL

where VL and IL are complex amplitudes, the boundary
conditions at z = 0 are

V, + V_ = VL (2)

Yo(V- V_) = IL = VLIZL

We define the reflection coefficient as the ratio

FL = V_/V+ (3)

and solve as

ZL - Zo
L - - (4)

ZL + Zo

Here in the sinusoidal steady state with reactive loads, FL
can be a complex number as ZL may be complex. For tran-
sient pulse waveforms, IFL was only defined for resistive loads.
For capacitative and inductive terminations, the reflections
were given by solutions to differential equations in time. Now
that we are only considering sinusoidal time variations so that
time derivatives are replaced by jw, we can generalize FL for
the sinusoidal steady state.

It is convenient to further define the generalized reflection
coefficient as

V_ e j" V

where FL is just F(z = 0). Then the voltage and current on the
line can be expressed as

i(z) = V+ e-i[l ++F(z)]
(6)

f(z) = YoV+ e-j~[1-F(z)]

The advantage to this notation is that now the impedance
along the line can be expressed as

7Z ' I( 1 + f-z
Z.( = =)

Zo f(z)Zo 1-f(z)
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where Z, is defined as the normalized impedance. We can
now solve (7) for F(z) as

Z,(z)- 1
F(z) = - (8)

Z.(z) + 1

Note the following properties of Z,(z) and F(z) for passive
loads:

(i) Z,(z) is generally complex. For passive loads its real part
is allowed over the range from zero to infinity while its
imaginary part can extend from negative to positive
infinity.

(ii) The magnitude of F(z), IFL1 must be less than or equal
to 1 for passive loads.

(iii) From (5), if z is increased or decreased by a half
wavelength, F(z) and hence Z,(z) remain unchanged.
Thus, if the impedance is known at any position, the
impedance of all-points integer multiples of a half
wavelength away have the same impedance.

(iv) From (5), if z is increased or decreased by a quarter
wavelength, F(z) changes sign, while from (7) Z,(z) goes
to its reciprocal= 1/Z,(z)= Y,(z).

(v) If the line is matched, ZL = Zo, then FL = 0 and Z,(z) = 1.
The impedance is the same everywhere along the line.

8-4-2 Simple Examples

(a) Load Impedance Reflected Back to the Source
Properties (iii)-(v) allow simple computations for trans-

mission line systems that have lengths which are integer
multiples of quarter or half wavelengths. Often it is desired to
maximize the power delivered to a load at the end of a
transmission line by adding a lumped admittance Y across the
line. For the system shown in Figure 8-17a, the impedance of
the load is reflected back to the generator and then added in
parallel to the lumped reactive admittance Y. The normalized
load impedance of (RL + jXL)/Zo inverts when reflected back
to the source by a quarter wavelength to Zo/(RL +jXL). Since
this is the normalized impedance the actual impedance is
found by multiplying by Zo to yield Z(z = -A/4)=
Z2/(RL +jXL). The admittance of this reflected load then adds
in parallel to Y to yield a total admittance of Y+ (RL +0jXL)/Z.
If Y is pure imaginary and of opposite sign to the reflected
load susceptance with value -jX/JZo, maximum power is
delivered to the line if the source resistance Rs also equals the
resulting line input impedance, Rs = ZO/RL. Since Y is purely



Arbitrary lnpedance Terminations

z2

2=I

(a)

RL

4

(b)

Figure 8-17 The normalized impedance reflected back through a quarter-wave-long
line inverts. (a) The time-average power delivered to a complex load can be maximized
if Y is adjusted to just cancel the reactive admittance of the load reflected back to the
source with R, equaling the resulting input resistance. (b) If the length l2 of the second
transmission line shown is a quarter wave long or an odd integer multiple of A/4 and its
characteristic impedance is equal to the geometric average of Z' and RL, the input
impedance Zi, is matched to Z,.

reactive and the transmission line is lossless, half the time-
average power delivered by the source is dissipated in the load:

1 V0 1 RLV0
8 Rs 8 Zo

Such a reactive element Y is usually made from a variable
length short circuited transmission line called a stub. As
shown in Section 8-3-2a, a short circuited lossless line always
has a pure reactive impedance.

To verify that the power in (9) is actually dissipated in the
load, we write the spatial distribution of voltage and current
along the line as

i(z) = V+ e-i(l + rL e2jkz)

(10)
i(z) = YoV+ e-i(1 --TL e )

609

Vo coswt ZL = RL +jX L

Zi 2 = Z1 if

Z 2 = ZIR L

Y I

n
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where the reflection coefficient for this load is given by (4) as

R L +jXL - Zo
Rl. j (11)

At z = -1 = -A/4 we have the boundary condition

i(z = -1)= Vo/2 V+ eik(l + L -2 k) (12)
(12)

=jV+(1- rL)

which allows us to solve for V+ as

-jV, -ijv0v+= (, = - o(RL + jXL + Zo) (13)
2(1 - FL) 4Zo

The time-average power dissipated in the load is then

<PL> -=Re [i(z = O)f*(z = 0)]

=j1 (Z = 0)JIR

= jIV+1 21 12-rLI RL

= V2 YRL (14)

which agrees with (9).

(b) QuarterWavelength Matching
It is desired to match the load resistor RL to the trans-

mission line with characteristic impedance ZI for any value of
its length 11. As shown in Figure 8-17b, we connect the load to
Z, via another transmission line with characteristic
impedance Z2.We wish to find the values of Z2 and 12 neces-
sary to match RL to Zi.

This problem is analogous to the dielectric coating problem
of Example 7-1, where it was found that reflections could be
eliminated if the coating thickness between two different
dielectric media was an odd integer multiple of a quarter
wavelength and whose wave impedance was equal to the
geometric average of the impedance in each adjacent region.
The normalized load on Z2 is then Z,2 = RLZ2. If 12 is an odd
integer multiple of a quarter wavelength long, the normalized
impedance Z,2 reflected back to the first line inverts to Z 2/RL.
The actual impedance is obtained by multiplying this
normalized impedance by Z2 to give Z2/RL. For Zi, to be
matched to Z, for any value of 1~, this impedance must be
matched to ZI:

, = Z/RL ~ Z 2 = -J1R) (15)
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8-4-3 The Smith Chart

Because the range of allowed values of rL must be
contained within a unit circle in the complex plane, all values
of Z.(z) can be mapped by a transformation within this unit
circle using (8). This transformation is what makes the substi-
tutions of (3)-(8) so valuable. A graphical aid of this mathe-
matical transformation was developed by P. H. Smith in 1939
and is known as the Smith chart. Using the Smith chart avoids
the tedium in problem solving with complex numbers.

Let us define the real and imaginary parts of the normal-
ized impedance at some value of z as

Z-(z)= r+jx (16)

The reflection coefficient similarly has real and imaginary
parts given as

F(z) = r, + jFi (17)

Using (7) we have

1+FT,+jFir+jx= 1+r,-ir (18)

Multiplying numerator and denominator by the complex
conjugate of the denominator (I-F,+jFt) and separating
real and imaginary parts yields

1-

2ri(1 - F,)+2 F+f
(1-r,(+r 9

Since we wish to plot (19) in the r,-Ii plane we rewrite
these equations as

+11rI '(1 +r)2 (20)
1)2+ 

1 12

Both equations in (20) describe a family of orthogonal
circles.The upper equation is that of a circle of radius 1/(1 + r)
whose center is at the position Fr = 0, r, = r/(l'+r). The lower
equation is a circle of radius I1/xl centered at the position
r, = 1, i = 1/x. Figure 8-18a illustrates these circles for a
particular value of r and x, while Figure 8,18b shows a few
representative values of r and x. In Figure 8-19, we have a
complete Smith chart. Only those parts of the circles that lie
within the unit circle in the I plane are considered for passive
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Figure 8-18 For passive loads the Smith chart is constructed within the unit circle in
the complex F plane. (a) Circles of constant normalized resistance r and reactance x
are constructed with the centers and radii shown. (b) Smith chart construction for
various values of r and x.

resistive-reactive loads. The values of IF(z) themselves are
usually not important and so are not listed, though they can
be easily found from (8). Note that all circles pass through the
point r, = 1, ri = 0.

The outside of the circle is calibrated in wavelengths
toward the generator, so if the impedance is known at any
point on the transmission line (usually at the load end), the
impedance at any other point on the line can be found using
just a compass and a ruler. From the definition of F(z) in (5)
with z negative, we move clockwise around the Smith chart
when heading towards the source and counterclockwise when
moving towards the load.
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Figure 8-18

In particular, consider the transmission line system in
Figure 8-20a. The normalized load impedance is Z,= 1+ j.
Using the Smith chart in Figure 8-20b, we find the load
impedance at position A. The effective impedance reflected
back to z = -1 must lie on the circle of constant radius return-
ing to A whenever I is an integer multiple of a half
wavelength. The table in Figure 8-20 lists the impedance at
z = -1 for various line lengths. Note that at point C, where
I= A/4, that the normalized impedance is the reciprocal of
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Figure 8-19 A complete Smith chart.

that at A. Similarly the normalized impedance at B is the
reciprocal of that at D.

The current from the voltage source is found using the
equivalent circuit shown in Figure 8-20c as

i= Iif sin (wt-4)

where the current magnitude and phase angle are

Vo

1 50+Z(z =-1)1'
S Im [Z(z = -1)]# = tan-i
50 + Re [Z(z = -1)]

(22)

Representative numerical values are listed in Figure 8-20.

I



50

Vosinct Zo = 50 Z, = 50(1 + jl

z= -I z=0

Point I Z,(z =-) IIjZo/Vo
l+j 0.447
2-j 0.316
(1 -j) 0.632
4+.2j 0.707

26.60
-18.4*
-18.4"

8.1"

Figure 8-20 (a) The load impedance at z = 0 reflected back to the source is found
using the (b) Smith chart for various line lengths. Once this impedance is known the
source current is found by solving the simple series circuit in (c).
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8-4-4 Standing Wave Parameters

The impedance and reflection coefficient are not easily
directly measured at microwave frequencies. In practice, one
slides an ac voltmeter across a slotted transmission line and
measures the magnitude of the peak or rms voltage and not
its phase angle.

From (6) the magnitude of the voltage and current at any
position z is

j (z) = IVl I +r(z)l
(23)

If(z)1 = Yol V+1 I - r(z)I

From (23), the variations of the voltage and current
magnitudes can be drawn by a simple construction in the r
plane, as shown in Figure 8-21. Note again that IV+J is just a
real number independent of z and that Ir(z)l 5 1 for a passive
termination. We plot II + r(z)l and II - F(z)I since these
terms are proportional to the voltage and current magni-
tudes, respectively. The following properties from this con-

r(z= 0)

Towards
generator

(z < 0)

= rL e +2i

Figure 8-21 The voltage and current magnitudes along a transmission line are
respectively proportional to the lengths of the vectors I1 +F(z)| and II- (z)J in the
complex r plane.
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struction are apparent:

(i) The magnitude of the current is smallest and the
voltage magnitude largest when F(z)= 1 at point A and
vice versa when r(z)= -1 at point B.

(ii) The voltage and current are in phase at the points of
maximum or minimum magnitude of either at points A
or B.

(iii) A rotation of r(z) by an angle ir corresponds to a
change of A/4 in z, thus any voltage (or current) maxi-
mum is separated by A/4 from its nearest minima on
either side.

By plotting the lengths of the phasors I1± F(z)I, as in
Figure 8-22, we obtain a plot of what is called the standing
wave pattern on the line. Observe that the curves are not
sinusoidal. The minima are sharper than the maxima so the
minima are usually located in position more precisely by
measurement than the maxima.

From Figures 8-21 and 8-22, the ratio of the maximum
voltage magnitude to the minimum voltage magnitude is
defined as the voltage standing wave ratio, or VSWR for
short:

I (z)m= 1+IL_ = VSWR (24)
iN(z), min 1- rL

The VSWR is measured by simply recording the largest and
smallest readings of a sliding voltmeter. Once the VSWR is
measured, the reflection coefficient magnitude can be cal-
culated from (24) as

VSWR- 1IrLI=VSWR (25)
VSWR + 1

The angle 4 of the reflection coefficient

rL =IIrL eIw (26)

can also be determined from these standing wave measure-
ments. According to Figure 8-21, r(z) must swing clockwise
through an angle 0 + ir as we move from the load at z = 0
toward the generator to the first voltage minimum at B. The
shortest distance din, that we must move to reach the first
voltage minimum is given by

2kdmin = + r (27)
or

=4 1 (28)
ir A
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Voltage
Current

r, = 0
VSWR = 1.

,r= 0.5e
/d4

11 + PI(2)1

Figure 8-22 Voltage and current standing wave patterns plotted for various values of
the VSWR.

A measurement of dmin, as well as a determination of the
wavelength (the distance between successive minima or
maxima is A/2) yields the complex reflection coefficient of the
load using (25) and (28). Once we know the complex
reflection coefficient we can calculate the load impedance



ArbitraryImpedance Transformations 619

from (7). These standing wave measurements are sufficient to
determine the terminating load impedance ZL. These
measurement properties of the load reflection coefficient and
its relation to the load impedance are of great importance at
high frequencies where the absolute measurement of voltage
or current may be difficult. Some special cases of interest are:

(i) Matched line-If FL =0, then VSWR= 1. The voltage
magnitude is constant everywhere on the line.

(ii) Short or open circuited line-If IrLI = 1, then VSWR=
oo. The minimum voltage on the line is zero.

(iii) The peak normalized voltage Ii(z)/V+I is 1+ I LI while
the minimum normalized voltage is 1-I r I.

(iv) The normalized voltage at z =0 is I + r. I while the
normalized current Ii(z)/ Yo V+ at z = 0 is )I -LI.

(v) If the load impedance is real (ZL = RL), then (4) shows
us that rL is real. Then evaluating (7) at z = 0, where
F(z = 0) = L, we see that when ZL > Zo that VSWR =
ZS.Zo while if ZL <Zo, VSWR = Zo/ZL.

For a general termination, if we know the VSWR and dmin,
we can calculate the load impedance from (7) as

ZL=Z l+IrLI e'
I-IZrLj e"'

[VSWR+ 1+ (VSWR- 1) e"]=Z[VSWR+1(VSWR-1) (29)

Multiplying through by e-" 2 and then simplifying yields

Zo[VSWR - j tan (4/2)]
[1 -j VSWR tan (4/2)]

SZ0o[1 -j VSWR tan kdmin] (30)(30)
[VSWR - j tan kdmin]

EXAMPLE 8-2 VOLTAGE STANDING WAVE RATIO

The VSWR on a 50-Ohm (characteristic impedance)
transmission line is 2. The distance between successive voltage
minima is 40 cm while the distance from the load to the first
minima is 10 cm. What is the reflection coefficient and load
impedance?
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SOLUTION

We are given

VSWR = 2

21r(10) wr

2(40) 4

The reflection coefficient is given from (25)-(28) as

rL = e-i'/2 -
3

while the load impedance is found from (30) as

50(1 - 2j)
2-j

= 40- 30j ohm

8-5 STUB TUNING

In practice, most sources are connected to a transmission
line through a series resistance matched to the line. This
eliminates transient reflections when the excitation is turned
on or off. To maximize the power flow to a load, it is also
necessary for the load impedance reflected back to the source
to be equal to the source impedance and thus equal to the
characteristic impedance of the line, Zo. This matching of the
load to the line for an arbitrary termination can only be
performed by adding additional elements along the line.

Usually these elements are short circuited transmission
lines, called stubs, whose lengths can be varied. The reactance
of the stub can be changed over the range from -joo to joo
simply by,varying its length, as found in Section 8-3-2, for the
short circuited line. Because stubs are usually connected in
parallel to a transmission line, it is more convenient to work
with admittances rather than impedances as admittances in
parallel simply add.

8-5-1 Use of the Smith Chart for Admittance Calculations

Fortunately the Smith chart can also be directly used for
admittance calculations where the normalized admittance is
defined as

Y(zl 1

YO Z,(Z)
Y.(z) = r0L.tz)
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If the normalized load admittance YVL is known, straight-
forward impedance calculations first require the computation

Z, = 1/ Y,. (2)

so that we could enter the Smith chart at ZLa. Then we rotate
by the required angle corresponding to 2hz and read the new
Z,(z). Then we again compute its reciprocal to find

Y,(z)= 1/Z,(z) (3)

The two operations of taking the reciprocal are tedious. We
can use the Smith chart itself to invert the impedance by using
the fact that the normalized impedance is inverted by a A/4
section of line, so that a rotation of F(z) by 1800 changes a
normalized impedance into its reciprocal. Hence, if the
admittance is given, we enter the Smith chart with a given
value of normalized admittance Y. and rotate by 1800 to find
Z. We then rotate by the appropriate number of wavelengths
to find Z,(z). Finally, we again rotate by 180" to find Y.(z)=
1/Z.(z). We have actually rotated the reflection coefficient by
an angle of 2r+-2kz. Rotation by 2ir on the Smith chart,
however, brings us back to wherever we started, so that only
the 2kz rotation is significant. As long as we do an even
number of ir rotations by entering the Smith chart with an
admittance and leaving again with an admittance, we can use
the Smith chart with normalized admittances exactly as if they
were normalized impedances.

EXAMPLE 8-3 USE OF THE SMITH CHART FOR ADMITTANCE
CALCULATIONS

The load impedance on a 50-Ohm line is

ZL = 50(1 +j)

What is the admittance of the load?

SOLUTION

By direct computation we have

1 1 (1 -j)
ZL 50(1+j) 100

To use the Smith chart we find the normalized impedance at
A in Figure 8-23:

Z,,L = I +j
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Figure 8-23 The Smith chart offers a convenient way to find the reciprocal of a
complex number using the property that the normalized impedance reflected back by
a quarter wavelength inverts. Thus, the normalized admittance is found by locating
the normalized impedance and rotating this point by 1800 about the constant I L1
circle.

The normalized admittance that is the reciprocal of thJ
normalized impedance is found by locating the impedance a
distance A/4 away from the load end at B.:

YL = 0.5(1 -j): YL = Y.Yo= (1 -j)/100

Note that the point B is just 1800 away from A on the
constant IFL circle. For more complicated loads the Smith
chart is a convenient way to find the reciprocal of a complex
number.
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8-5-2 Single-Stub Matching

A termination of value ZL = 50(1 +j)on a 50-Ohm trans-
mission line is to be matched by means of a short circuited
stub at a distance 11from the load, as shown in Figure 8-24a.
We need to find the line length 1I and the length of the stub 12

such that the impedance at the junction is matched to the line
(Zi, = 50 Ohm). Then we know that all further points to the
left of the junction have the same impedance of 50 Ohms.

Because of the parallel connection, it is simpler to use the
Smith chart as an admittance transformation. The normal-
ized load admittance can be computed using the Smith chart
by rotating by 180* from the normalized load impedance at A,
as was shown in Figure 8-23 and Example 8-3,

ZL= l+j (4)

to yield

YL = 0.5(1 -j) (5)

at the point B.
Now we know from Section 8-3-2 that the short circuited

stub can only add an imaginary component to the admittance.
Since we want the total normalized admittance to be unity to
the left of the stub in Figure 8-24

Yi,,= Y + Y2= 1 (6)

when YnL is reflected back to be Y, it must wind up on the
circle whose real part is 1 (as Y2 can only be imaginary), which
occurs either at C or back at A allowing l1 to be either 0.25A at
A or (0.25 +0.177)A = 0.427A at C (or these values plus any
integer multiple of A/2). Then YV is either of the following two
conjugate values:

= I+j, 11=0.25A(A) (7)

11-j, 1,= 0.427A (C)

For Yi, to be unity we must pick Y2 to have an imaginary
part to just cancel the imaginary part of YI:

-j, 11 = 0.25A
S+, 1,= 0.427A (8)

which means, since the shorted end has an infinite admit-
tance at D that the stub must be of length such as to rotate the
admittance to the points E or F requiring a stub length 12 of
(A/8)(E) or (3A/8)(F)(or these values plus any integer multiple



ZL = 50(1+j)

=0.

= 0.

- at
rt
uited
of
bs.

Figure 8-24 (a) A single stub tuner consisting of a variable length short circuited line
12 can match any load to the line by putting the stub at the appropriate distance 1, from
the load. (b) Smith chart construction. (c) Voltage standing wave pattern.
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I t 0I

Vma,

Vmmn

Figure 8-24

of A/2).Thus, the solutions can be summarized as

11 = 0.25A + nA/2, 12 = A/8+m/2
or (9)

11= 0.427A + nA/2, 12 = 3A/8 + mA/2

where n and m are any nonnegative integers (including zero).
When the load is matched by the stub to the line, the VSWR

to the left of the stub is unity, while to the right of the stub
over the length 11the reflection coefficient is

FL= - (10)
ZL + l 2+j

which has magnitude

fLI = 1/,5= 0.447 (11)

so that the voltage standing wave ratio is

VSWR= FL 2.62 (12)

The disadvantage to single-stub tuning is that it is not easy
to vary the length II. Generally new elements can only be
connected at the ends of the line and not inbetween.

8-5-3 Double-Stub Matching

This difficulty of not having a variable length line can be
overcome by using two short circuited stubs a fixed length
apart, as shown in Figure 8-25a. This fixed length is usually
RA. A match is made by adjusting the length of the stubs 1, and



Y-->. __ y >

(a)

Figure 8-25 (a) A double stub tuner of fixed spacing cannot match all loads but is
useful because additional elements can only be placed at transmission line terminations
and not at any general position along a line as required for a single-stub tuner. (b)
Smith chart construction. If the stubs are 1A apart, normalized load admittances whose
real part exceeds 2 cannot be matched.
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12. One problem with the double-stub tuner is that not all
loads can be matched for a given stub spacing.

The normalized admittances at each junction are related as

Y,= Yi+ YL (13)
Y,,= Y2 + Yb

where Y, and Y2 are the purely reactive admittances of the
stubs reflected back to the junctions while Yb is the admit-
tance of Y. reflected back towards the load by 8A. For a match
we require that Y,, be unity. Since Y2 iApurely imaginary, the
real part of Yb must lie on the circle with a real part of unity.
Then Y. must lie somewhere on this circle when each point
on the circle is reflected back by 2A. This generates another
circle that is ·2r back in the counterclockwise direction as we
are moving toward the load, as illustrated in Figure 8-25b. To
find the conditions for a match, we work from left to right
towards the load using the following reasoning:

(i) Since Y2 is purely imaginary, the real part of Yb must lie
on the circle with a real part of unity, as in Figure 8-25b.

(ii) Every possible point on Yb must be reflected towards the
load by IA to find the locus of possible match for Y,. This
generates another circle that is irr back in the counter-
clockwise direction as we move towards the load, as in
Figure 8-25b.

Again since Y, is purely imaginary, the real part of Y, must
also equal the real part of the load admittance. This yields two
possible solutions if the load admittance is outside the
forbidden circle enclosing all load admittances with a real
part greater than 2. Only loads with normalized admittances
whose real part is less than 2 can be matched by the double-
stub tuner of 3A spacing. Of course, if a load is within the
forbidden circle, it can be matched by a double-stub tuner if
the stub spacing is different than -A.

EXAMPLE 8-4 DOUBLE-STUB MATCHING

The load impedance ZL = 50(1 +j) on a 50-Ohm line is to
be matched by a double-stub tuner of 8A spacing. What stub
lengths I1and 12 are necessary?

SOLUTION

The normalized load impedance Z.A = 1+j corresponds to
a normalized load admittance:

YnL =0.5(1 -j)



(b)

Figure 8-26 (a) The Smith chart construction for a double-stub tuner of -A spacing
with Z,.= I +j. (b) The voltage standing wave pattern.
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Then the two solutions for Y, lie on the intersection of the
circle shown in Figure 8-26a with the r = 0.5 circle:

Y,a = 0.5-0.14i

Y-2 = 0.5 - 1.85/

We then find Y, by solving for the imaginary part of the
upper equation in (13):

S= I - Y)0.36j = 0.305A (F)

-1.35j:• I => 0.1A (E)

By rotating the Y. solutions by -A back to the generator
(270" clockwise, which is equivalent to 900 counterclockwise),
their intersection with the r = 1 circle gives the solutions for
Yb as

Ybi = 1.0-0.72j

Yb2 = 1.0+2.7j

This requires Y2 to be

Y2 =- Im (Yb)= 0.72j 12 = 0.349A (G)
-2.7j/=> 2 = 0.056A (H)

The voltage standing wave pattern along the line and stubs is
shown in Figure 8.26b. Note the continuity of voltage at the
junctions. The actual stub lengths can be those listed plus any
integer multiple of A/2.

8-6 THE RECTANGULAR WAVEGUIDE

We showed in Section 8-1-2 that the electric and magnetic
fields for TEM waves have the same form of solutions in the
plane transverse to the transmission line axis as for statics. The
inner conductor within a closed transmission line structure
such as a coaxial cable is necessary for TEM waves since it
carries a surface current and a surface charge distribution,
which are the source for the magnetic and electric fields. A
hollow conducting structure, called a waveguide, cannot pro-
pagate TEM waves since the static fields inside a conducting
structure enclosing no current or charge is zero.

However, new solutions with electric or magnetic fields
along the waveguide axis as well as in the transverse plane are
allowed. Such solutions can also propagate along transmission
lines. Here the axial displacement current can act as a source
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of the transverse magnetic field giving rise to transverse
magnetic (TM) modes as the magnetic field lies entirely
within the transverse plane. Similarly, an axial time varying
magnetic field generates transverse electric (TE) modes. The
most general allowed solutions on a transmission line are
TEM, TM, and TE modes. Removing the inner conductor on
a closed transmission line leaves a waveguide that can only
propagate TM and TE modes.

8-6-1 Governing Equations

To develop these general solutions we return to Maxwell's
equations in a linear source-free material:

aH
VxE=-y-

at

aE
VxH= e-

at

V-E=0 (1)

CIV H=0

Taking the curl of Faraday's law, we expand the double cross
product and then substitute Ampere's law to obtain a simple
vector equation in E alone:

V x (V x E) = V(V -E) - V
2E

a
=- e-(VxH)

at

a"E
a - •e • (2)

Since V- E= 0 from Gauss's law when the charge density is
zero, (2) reduces to the vector wave equation in E:

1 a'E c 1
V 2E = (3)

If we take the curl of Ampere's law and perform similar
operations, we also obtain the vector wave equation in H:

1 82 H
VH = 2

C at

__

¢- dg-
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The solutions for E and H in (3) and (4) are not independent.
If we solve for either E or H, the other field is obtained from
(1). The vector wave equations in (3) and (4) are valid for any
shaped waveguide. In particular, we limit ourselves in this
text to waveguides whose cross-sectional shape is rectangular,
as shown in Figure 8-27.

8-6-2 Transverse Magnetic (TM) Modes

We first consider TM modes where the magnetic field has x
and y components but no z component. It is simplest to solve
(3) for the z component of electric field and then obtain the
other electric and magnetic field components in terms of Ez
directly from Maxwell's equations in (1).

We thus assume solutions of the form

Ez = Re [/E(x, y) ei'"' - kzz ) ] (5)

where an exponential z dependence is assumed because the
cross-sectional area of the waveguide is assumed to be uni-
form in z so that none of the coefficients in (1) depends on z.
Then substituting into (3) yields the Helmholtz equation:

a2
E

z 
a 

/E 2 (
-+-- ka Ez =0 (6)

ax2 ay c2

Figure 8-27 A lossless waveguide with rectangular cross section.



632 Guided Electromagnetic Waves

This equation can be solved by assuming the same product
solution as used for solving Laplace's equation in Section 4-2-1,
of the form

Ez(x, y) = X(x) Y(y) (7)

where X(x) is only a function of the x coordinate and Y(y) is
only a function of y. Substituting this assumed form of solu-
tion into (6) and dividing through by X(x) Y(y) yields

1 d2 X 1 d2Y W2
Sw+- = k2 (8)

X dx2 Ydy2 C2

When solving Laplace's equation in Section 4-2-1 the right-
hand side was zero. Here the reasoning is the same. The first
term on the left-hand side in (8) is only a function of x while
the second term is only a function of y. The only way a
function of x and a function of y can add up to a constant for
all x and y is if each function alone is a constant,

I d2X
S = - k2

(9)
1 d2 Y 2

S-k~
Y dy2 Y

where the separation constants must obey the relation

k + k, + k = k= ,2/C2 (10)

When we solved Laplace's equation in Section 4-2-6, there
was no time dependence so that w = 0. Then we found that at
least one of the wavenumbers was imaginary, yielding decay-
ing solutions. For finite frequencies it is possible for all three
wavenumbers to be real for pure propagation. The values of
these wavenumbers will be determined by the dimensions of
the waveguide through the boundary conditions.

The solutions to (9) are sinusoids so that the transverse
dependence of the axial electric field Ez(x, y) is

E,(x, y) = (A 1 sin kx + A 2 cos klx)(Bi sin ky + B2 cos ky)
(11)

Because the rectangular waveguide in Figure 8-27 is
composed of perfectly conducting walls, the tangential
component of electric field at the walls is zero:

Pz(x, y = 0)= 0, Es(x = 0, y)= 0
(12)

E.(x, y = b)= 0, ,(x = a, y)= 0

These boundary conditions then require that A 2 and B2 are
zero so that (11) simplifies to

E,(x, y)= Eo sin kA sin ky (13)
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where Eo is a field amplitude related to a source strength and
the transverse wavenumbers must obey the equalities

kx = mlr/a, m= 1,2,3, ...
(14)

k, = nor/b, n = 1, 2, 3 ....

Note that if either m or n is zero in (13), the axial electric field
is zero. The waveguide solutions are thus described as TM,,
modes where both m and n are integers greater than zero.

The other electric field components are found from the z
component of Faraday's law, where H, = 0 and the charge-
free Gauss's law in (1):

aE,_ aE
ax Oy

(15)
aEx aE, lEz= 0
ax ay az

By taking /lax of the top equation and alay of the lower
equation, we eliminate Ex to obtain

a'E, a'E, aE,
ax ay - ay az

where the right-hand side is known from (13). The general
solution for Ey must be of the same form as (11), again
requiring the tangential component of electric field to be zero
at the waveguide walls,

Ey(x = 0, y)= 0, E,(x = a, y)= 0 (17)

so that the solution to (16) is

jkykrEo
Ei - k7k sin kx cos kyy (18)k2 + k2

We then solve for Ex using the upper equation in (15):

jkk,Eo
E=k2+kcos kx sin ky (19)

where we see that the boundary conditions

ax(x, y = 0)= 0, x(x, y = b)= 0 (20)

are satisfied.
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The magnetic field is most easily found from Faraday's law

R(x, y)= V-xE(x, y) (21)

to yield

I E1 8aEY
X & A(y az

k+k )Eo sin kx cos ky

Sjwek,

=2+ k2 Eo sin kx cos k,y

SE---- (22)

kk2 Eo
j. k2o 2 cos kx sin k,yjow (k! + AY)

i6Ek,
k + ki- Eo cos kx sin ky

/1,=0

Note the boundary conditions of the normal component of H
being zero at the waveguide walls are automatically satisfied:

H,(x, y = 0)= 0, H,(x, y = b) = 0
(23)

H,(x = 0, y)= 0, I4,(x = a,y)= 0

The surface charge distribution on the waveguide walls is
found from the discontinuity of normal D fields:

(x = 0, y)= ,(x=0, y)= k" Eo sink,y
k +k,2

f(x = a, y) = -e,(x = a, y) = i"-+2 Eo cos mir sin ky
(24)

(x, y =0)== ,(x, y = 0) = - Eo sin kh
k2 + ky

jk,k,e
t(x,y = b) = -eE,(x, y = b)= T- Eo cos nir sin kx

2+y:
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Similarly, the surface currents are found by the discontinuity
in the tangential components of H to be purely z directed:

kkk2Eo sin kxKz(x,y = )=-H(x,y= 0 ) 2 k,0)2

k k 2Eo
K(x, y = b)= .(x, y= b)-= k 2 

2 sin kxxcosn
joCL(kf +k )

(25)
kxk 2Eo

K,(x = 0, y) = ,(x = , y) = sin kyjWo(k2 +k 2 )

kk 2Eo cos mir sin kyy
K/(x = a, y)= -H~,(x = a,y)= - 2 2)k

3owA(kx + ky)

We see that if m or n are even, the surface charges and
surface currents on opposite walls are of opposite sign, while
if m or n are odd, they are of the same sign. This helps us in
plotting the field lines for the various TM,, modes shown in
Figure 8-28. The electric field is always normal and the
magnetic field tangential to the waveguide walls. Where the
surface charge is positive, the electric field points out of the
wall, while it points in where the surface charge is negative.
For higher order modes the field patterns shown in Figure
8-28 repeat within the waveguide.

Slots are often cut in waveguide walls to allow the insertion
of a small sliding probe that measures the electric field. These
slots must be placed at positions of zero surface current so
that the field distributions of a particular mode are only
negligibly disturbed. If a slot is cut along the z direction on
the y = b surface at x = a/2, the surface current given in (25) is
zero for TM modes if sin (ka/2)=0, which is true for the
m = even modes.

8-6-3 Transverse Electric (TE) Modes

When the electric field lies entirely in the xy plane, it is most
convenient to first solve (4) for H,. Then as for TM modes we
assume a solution of the form

H, = Re [I•,(x, y) ei'"'- ~z ] (26)

which when substituted into (4) yields

82•H, 8 2
/, /, w2\

ax Oy c
x2 + y2 - k 2H = 0
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Figure 8-28 The transverse electric and magnetic field lines for the TM,I and TM 2 1 modes. The electric field 
purely z directed where the field lines converge.
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Again this equation is solved by assuming a product solution
and separating to yield a solution of the same form as (11):

Hz(x, y) = (A, sin k/x + A 2 cos khx)(B, sin ky + B2 cos ky) (28)

The boundary conditions of zero normal components of H
at the waveguide walls require that

H,(x = 0, y)= 0, ,(x = a, y)= 0
(29)

H,(x, Y= 0)= 0, H,(x,y = b)= 0

Using identical operations as in (15)-(20) for the TM modes
the magnetic field solutions are

jkk-Ho mrr nir
. = - sin k kcoskAy, kx -m, k,

k +k, a b

1k2+=kkHoossin (30), = k cos kx sin ky

kx + ky

H. = Ho cos k,, cos k,y

The electric field is then most easily obtained from
Ampere's law in (1),

-1
E=- Vx×i (31)

]we

to yield

j) (ay az

Sk,k 2Ho

jwe(k +k ) cos kx sin k,y

k- , Ho cos kx sin k,y

,= 1-/ H (32)

kk'Ho

jowiik.2+
= -i-• Ho sin kxx cos ky

k. +k•

=0

We see in (32) that as required the tangential components
of the electric field at the waveguide walls are zero. The
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surface charge densities on each of the walls are:

-~ Ho
l(x= 0,y) = =(x =,y)= ( sin ky

(x = a, y)= -e(x = a, y)= kYH cos mvr sin ky
iwj(k, +hk,)

k2 H). (33)
Ck2Ho

'&(x, y = 0) = ,(x, y= 0) = k sink
jo(k. + k,)

k.k2Ho
'(x,y= b)= -e4,(x, y= b)= (k +) cos nr sin kAx

For TE modes, the surface currents determined from the
discontinuity of tangential H now flow in closed paths on the
waveguide walls:

K(x = 0, y) = i, x (x = 0,y)

= iH,t(x = 0, y)- i,H,(x = 0, y)

K(x = a,y)= -i,Xi(x = a,y)

= -iH,(x = a,y)+i,H,(x = a,y)
(34)

iK(x, y = 0) i,x I~(x,y = 0)

= -i'/.(x, y = 0) + i/,(x,y = 0)

K(x, y = b) = -i,x l(x,y = b)

= it/,(x,y = b) - i•.,(x,y = b)

Note that for TE modes either n or m (but not both) can be
zero and still yield a nontrivial set of solutions. As shown in
Figure 8-29, when n is zero there is no variation in the fields
in the y direction and the electric field is purely y directed
while the magnetic field has no y component. The TE1l and
TE2 1 field patterns are representative of the higher order
modes.

8-6-4 Cut-Off

The transverse wavenumbers are

m•" nlr
k, k,= (35)

so that the axial variation of the fields is obtained from (10) as

k,,= [!- - 22 (36)k2
oe,_)
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Y

____ ___ 4 -

-E

+ + + + + a
TE,,

Electric field (-)

E,= 2 Ho cos kxk• +kk

E2, -= Ho sin kx 
kA+k,
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(a) The transverse electric and magnetic field lines for various TE modes. The magnetic field is purely z directed 
The TE 0o mode is called the dominant mode since it has the lowest cut-off frequency. (b) Surface current lines 
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a-

x

4 2 4

(b)
Figure 8-29

Thus, although Akand k, are real, k can be either pure real or
pure imaginary. A real value of k. represents power flow
down the waveguide in the z direction. An imaginary value of
k, means exponential decay with no time-average power flow.
The transition from propagating waves (kh real) to evanes-
cence (k, imaginary) occurs for k,= 0. The frequency when k,
is zero is called the cut-off frequency w,:

&= [(=C )2+ (nI)2]1/2 (37)

This frequency varies for each mode with the mode
parameters m and n. If we assume that a is greater than b, the
lowest cut-off frequency occurs for the TE1 0 mode, which is
called the dominant or fundamental mode. No modes can
propagate below this lowest critical frequency woo:

TC c0
o = - ~f = Hz (38)

a 21r 2a

If an air-filled waveguide has a = 1cm, then fro=
1.5xl0' 0 Hz, while if a=10m, then f~o=15MHz. This
explains why we usually cannot hear the radio when driving
through a tunnel. As the frequency is raised above oco,
further modes can propagate.

- 3- - -- .

I

I

IX_ 3_•W X UX
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The phase and group velocity of the waves are

VP k MW2(2 (n .)2] 1/2

do k'c 2 2C2 (39)
Vg = - v=gy = C

2

dk, w vp

At cut-off, v,=0 and vp = o with their product always a
constant.

8-6-5 Waveguide Power Flow

The time-averaged power flow per unit area through the
waveguide is found from the Poynting vector:

<S> = 2 Re (E xHI*) (40)

(a) Power Flow for the TM Modes
Substituting the field solutions found in Section 8-6-2 into

(40) yields

<S> = Re [(xi + i,+ !i) e-ik x (/-*iý+* i))e +i " ]

= I Re [(EI,,/ - E4Hi' )i. + E( i -/4 i,)] ei ' kk

(41)

where we remember that k. may be imaginary for a particular
mode if the frequency is below cut-off. For propagating modes
where k, is real so that k, = k*, there is no z dependence in (41).
For evanescent modes where k, is pure imaginary, the z
dependence of the Poynting vector is a real decaying
exponential of the form e -21' k". For either case we see from (13)
and (22) that the product of E, with fHxand H, is pure
imaginary so that the real parts of the x- and y-directed time
average power flow are zero in (41). Only the z-directed power
flow can have a time average:

<S>=Eo, 2 COS2kýX 2 k'Y

<S> = |2 2) Re [k, e-itk -k*)(k cos2 kX sin2 k,y
2(kx +k, )

+kY sin 2 kx cos 2 kyy)]i. (42)

If k, is imaginary, we have that <S > = 0 while a real k, results
in a nonzero time-average power flow. The total z-directed
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power flow is found by integrating (42) over the cross-
sectional area of the waveguide:

<P>= <S,> dxdy

oekoabE(
8(k+k) (43)

where it is assumed that k, is real, and we used the following
identities:

a i 2 mrx a 1Imrx 1 . 2mrx~ I

a m \2 a 4 an l 0

= a/2, m#O

a 0 =(44)
Cos dx = -( ----+- sin [-

a mor 2 a 4 a o

a/2, m#O

a, m=0

For the TM modes, both m and n must be nonzero.

(b) Power Flow for the TE Modes
The same reasoning is used for the electromagnetic fields

found in Section 8-6-3 substituted into (40):

<S > = Re [(ix + yi,) eik x (• ix+ i,+ fli.) e+ikz

- 2 Re [(•/- - E,/-H^*)i• -Hz/ (Ei - Eyi)] e(k - )z

(45)

Similarly, again we have that the product of H* with E,and
E, is pure imaginary so that there are no x- and y-directed
time average power flows. The z-directed power flow reduces to

<S,>= (•' ,(k cos2 kx sin' k,y

+k' sin2 k, cos 2 ky) Re (k, e-i( ' -k*•) (46)

Again we have nonzero z-directed time average power flow
only if kRis real. Then the total z-directed power is

sk abH(2
+ k2, m, n 0

xabHE (47)
, morn=0

(hk+ k )
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where we again used the identities of (44). Note the factor of
2 differences in (47) for either the TE1 oor TEo, modes. Both
m and n cannot be zero as the TE0o mode reduces to the
trivial spatially constant uncoupled z-directed magnetic field.

8-6-6 Wall Losses

If the waveguide walls have a high but noninfinite Ohmic
conductivity a-,, we can calculate the spatial attenuation rate
using the approximate perturbation approach described in
Section 8-3-4b. The fields decay as e- ' , where

1 <P >a= I (48)
2 <P>

where <PaL>is the time-average dissipated power per unit
length and <P> is the electromagnetic power flow in the
lossless waveguide derived in Section 8-6-5 for each of the
modes.

In particular, we calculate a for the TE 0o mode (k. =
ir/a, ky = 0). The waveguide fields are then

(jka
s=Hao sin -- +cos -aii a a

E=-- a Ho sin -- i (49)Ta

The surface current on each wall is found from (34) as

il(x = 0, y)= kl(x = a, y)= -Hoi,

&TjkIa (50)
i(x,y=0)=-K(x,y= b)= Ho -iL-sin-+i.cos1)-

With lossy walls the electric field component E, within the
walls is in the same direction as the surface current propor-
tional by a surface conductivity o•8, where 8 is the skin depth
as found in Section 8-3-4b. The time-average dissipated power
density per unit area in the walls is then:

<Pa(x = 0, y)> = <Pd(x= a, y)>

-12 Re(Ew.*)I Ho
2 oa8 (51)

<Pd(x, y = 0)> = <Pd(x, y = b)>

1 H• k• 2 . 2 21rX2 ]=- _- ) smin- +cos21
2 o,,,8 ,ir a a

The total time average dissipated power per unit length
<PdL> required in (48) is obtained by integrating each of the
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terms in (51) along the waveguide walls:

<Pa>= [<Pd(x=O,y)>+<Pd(x = a,y)>] dy

+ [<P(x,y=0)>+<Pd(x,y= b)>] dx

Hob Ho k_ 2 .sin = + 2x

,8s 2[ir) j ,8 2 2C2

while the electromagnetic power above cut-off for the TElo
mode is given by (47),

Iphk,abHo<P> = 4(r/a) (53)
4(7r/a)2

so that

S<Pa> 2 2C2
a - (54)

2 <P> wjoabk,So8
where

k= - /; ->- a (55)

8-7 DIELECTRIC WAVEGUIDE

We found in Section 7-10-6 for fiber optics that elec-
tromagnetic waves can also be guided by dielectric structures
if the wave travels from the dielectric to free space at an angle
of incidence greater than the critical angle. Waves prop-
agating along the dielectric of thickness 2d in Figure 8-30 are
still described by the vector wave equations derived in Section
8-6-1.

8-7-1 TM Solutions

We wish to find solutions where the fields are essentially
confined within the dielectric. We neglect variations with y so
that for TM waves propagating in the z direction the z
component of electric field is given in Section 8-6-2 as

Re [A 2 e
- a(x - d) e j(It-kz)], x-d

E,(x,t)= Re [(Al sin k~+B cos k,x) eijt-k-], IxI ld (1)
[Re [As e~(x+d) ej(Wt-kz)], x5 -d

1
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Figure 8-30 TE and TM modes can also propagate along dielectric structures. The
fields can be essentially confined to the dielectric over a frequency range if the speed of
the wave in the dielectric is less than that outside. It is convenient to separate the
solutions into even and odd modes.

where we choose to write the solution outside the dielectric in
the decaying wave form so that the fields are predominantly
localized around the dielectric.

The wavenumbers and decay rate obey the relations

k + k. = o t (2)
(2)-2 2 2-a +kz = (0 Eo01_

The z component of the wavenumber must be the same in all
regions so that the boundary conditions can be met at each
interface. For propagation in the dielectric and evanescence in
free space, we must have that

&o/e0/w0<k, <-to/ l (3)

All the other electric and magnetic field components can be
found from (1) in the same fashion as for metal waveguides in
Section 8-6-2. However, it is convenient to separately consider
each of the solutions for E, within the dielectric.

(a) Odd Solutions
If E, in each half-plane above and

oppositely directed, the field within
solely as sin kx:

A 2 e-a

/F= Al sin kxx,
A ea(x+d)

A,, e"

below the centerline are
the dielectric must vary

x>d

Ixl<-d
xj_-d
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Then because in the absence of volume charge the electric
field has no divergence,

-- jkax i =,ax

jkA2 e-2 (x-), x d

jk- Alcos kxx, I xj -d (5)

kA 3 e(x+d), x -d
ac

while from Faraday's law the magnetic field is

S 1 k aE\

jweoA 2 e-(x-d) x-d

jweAl (6)
H, =cos kx, IxISd

jweoAs e,(x+d) x -d

At the boundaries where x = +d the tangential electric and

magnetic fields are continuous:

E,(x = Ed_)= E,(x = +d+) A, sin kxd = A 2

-A, sin kd = As

-joeAi -joeoA2  (7)H,(x = d-)= H,(x = d+) -jwE cos kd =-
k, a

-jweAI jweoA 3cos k,d
kx a

which when simultaneously solved yields

A 2  a
- = sin kd = cos k•d
A'1  eoko

=a = E a=-k.tan k,d (8)
As e3a e
-= -sin kd -= cos k,d
A I eokx

The allowed values of a and k, are obtained by self-consis-
tently solving (8) and (2), which in general requires a
numerical method. The critical condition for a guided wave
occurs when a = 0, which requires that k~d = n'r and k. =
S2 Eoo. The critical frequency is then obtained from (2) as

2 k (n/d)
2

l= = (9)
e8L -EOo eL -Eo/o

Note that this occurs for real frequencies only if esl > EO00L.

"-t--~ ~



Dielectric Waveguide 647

(b) Even Solutions
If E, is in the same direction above and below the dielectric,

solutions are similarly

B2 
- a ( - d), x d

,= BI cos kx, IxI5d (10)
Bs e(x+d), xs-d

jkzB2 e-a(x-d),

k,

kBs ea ( + >, x -5-d
a

- Be•-Be-a(-d), x-d

,= B sinkx, Ixl -d (12)

SBs ea(x+d ) , X 5 -d
a

Continuity of tangential electric and magnetic fields at x = +d
requires

B 1 cos kd = B2 , B 1 cos kd = Bs

we eo jOjoB 1 joeoBs (13)
BI sin kd = B2, sin kd =

, a k, a

or
B2 ea
-=cos kd =- sin kd

Bl sd o°k• a =-°cot kd (14)
Bsa " e
-=cos kd = - sne kd
B, EAk,

8-7-2 TE Solutions

The same procedure is performed for the TE solutions by
first solving for H,.

(a) Odd Solutions

(A 2 e- a(2-d), X-d

A•,-eAsinkx, Ixj-d (15)
As e a ( x + d ), X 5 -d
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-k'A2 e-~('-d) ~, xd

io
-,=AA coskx,l, Ix d (16)

jk,
As e(x+d), x -- d

a

-a
(
x-d)

, 
x-d

a

E, = A, cos kx, Ixl d (17)

oAs ea(x+d), x-d
a

where continuity of tangential E and H across the boundaries
requires

a = ý k,tan k~d (18)

(b) Even Solutions

B2 e-a(-d), x d
,= B1 coshk•,x, x d (19)

Bs e'a(+d), x s -d

-LB2 e- a ( - d), x -d
a

ikhH,= B-sin k•x, IxJ :d (20)

jk
'Bs3 e

" '+ )), x --d
a

"O 0 G-a(x-d), X d
a
jo04

E,= B--B,sin kx, IxIsd (21)k,.

-]llOBs a (
+d)

, 
x: -d

where a and A, are related as

a =- k,cot khd (22)
JA
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PROBLEMS

Section 8-1
1. Find the inductance and capacitance per unit length and
the characteristic impedance for the wire above plane and two
wire line shown in Figure 8-3. (Hint: See Section 2-6-4c.)

2. The inductance and capacitance per unit length on a
lossless transmission line is a weak function of z as the dis-
tance between electrodes changes slowly with z.

+

Re(Voe"' t
)

0 1

(a) For this case write the transmission line equations as
single equations in voltage and current.

(b) Consider an exponential line, where

L(z) = Lo e"', C(z)= Co e-a

If the voltage and current vary sinusoidally with time as

v(z, t) = Re [i(z) e*"'], i(z, i) = Re [i(z) e""']

find the general form of solution for the spatial distributions
of i~(z) and i(z).

(c) The transmission line is excited by a voltage source
Vo cos wt at z = 0. What are the voltage and current dis-
tributions if the line is short or open circuited at z = 1?

(d) For what range of frequency do the waves strictly
decay with distance? What is the cut-off frequency for wave
propagation?

(e) What are the resonant frequencies of the short
circuited line?

(f) What condition determines the resonant frequencies of
the open circuited line.

3. Two conductors of length I extending over the radial
distance a- r5 b are at a constant angle a apart.

(a) What are the electric and magnetic fields in terms of the
voltage and current?

(b) Find the inductance and capacitance per unit length.
What is the characteristic impedance?
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4. A parallel plate transmission line is filled with a conducting
plasma with constitutive law

J=oPeEat

itj-
Y

0

(a) How are the electric and magnetic fields related?
(b) What are the transmission line equations for the voltage

and current?
(c) For sinusoidal signals of the form ei ( "' ), how are

w and k related? Over what frequency range do we have
propagation or decay?

(d) The transmission line is short circuited at z = 0 and
excited by a voltage source Vo cos wt at z = -1. What are the
voltage and current distributions?

(e) What are the resonant frequencies of the system?

5. An unusual type of distributed system is formed by series
capacitors and shunt inductors.

VIZ - •z, )I
i (z + Az, t)

I I 1 I1
z - Az z z + Az

(a) What are the governing partial differential equations
relating the voltage and current?

GuidedElectromagnetic Waves

b r

a

+

Re(Voe "t)

0Z

''
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(b) What is the dispersion relation between w and k for
signals of the form ei<'-k)?

(c) What are the group and phase velocities of the waves?
Why are such systems called "backward wave"?

(d) A voltage Vocos wt is applied at z = -1 with the z = 0
end short circuited. What are the voltage and current dis-
tributions along the line?

(e) What are the resonant frequencies of the system?

Section 8-2
6. An infinitely long transmission line is excited at its center
by a step voltage Vo turned on at t = 0. The line is initially at
rest.

Zo V(t) Zo

0

(a) Plot the voltage and current distributions at time T.
(b) At this time T the voltage is set to zero. Plot the voltage

and current everywhere at time 2 T.

7. A transmission line of length I excited by a step voltage
source has its ends connected together. Plot the voltage and
current at z = 1/4, 1/2, and 31/4 as a function of time.

0

8. The dc steady state is reached for a transmission line
loaded at z = 1with a resistor RL and excited at z = 0 by a dc
voltage Vo applied through a source resistor R,. The voltage
source is suddenly set to zero at t = 0.

(a) What is the initial voltage and current along the line?

+
V0
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V) R,

"1 Vt) Z R

I

(b) Find the voltage at the z = I end as a function of time.
(Hint: Use difference equations.)

9. A step current source turned on at t= 0 is connected to the
z = 0 end of a transmission line in parallel with a source
resistance R,. A load resistor RL is connected at z = i.

(a) What is the load voltage and current as a function of
time? (Hint: Use a Thevenin equivalent network at z = 0
with the results of Section 8-2-3.)

(b) With R, = co plot versus time the load voltage when
RL = co and the load current when RL = 0.

(c) If R, = co and Rt = co, solve for the load voltage in the
quasi-static limit assuming the transmission line is a capacitor.
Compare with (b).

(d) If R, is finite but RL = 0,what is the time dependence of
the load current?

(e) Repeat (d) in the quasi-static limit where the trans-
mission line behaves as an inductor. When are the results of
(d) and (e) approximately equal?

10. Switched transmission line systems with an initial dc
voltage can be used to generate high voltage pulses of short
time duration. The line shown is charged up to a dc voltage
Vo when at t = 0 the load switch is closed and the source
switch is opened.

Opens at t= 0 Closes at t= 0

= Zo
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(a) What are the initial line voltage and current? What are
V+ and V_?

(b) Sketch the time dependence of the load voltage.

11. For the trapezoidal voltage excitation shown, plot versus
time the current waveforms at z = 0 and z = Lfor RL = 2Zo
and RL = jZo.

Rs =Z 0

I 2Zo
22o

0 i

12. A step voltage is applied to a loaded transmission line
with RL = 2Zo through a matching source resistor.

R, = Z

+R
V(t) Zu, T = C :RL = 2Zo

2Vo

-> T 2T

(a) Sketch the source current i,(t).
(b) Using superposition of delayed step voltages find the

time dependence of i,(t) for the various pulse voltages
shown.

(c) By integrating the appropriate solution of (b), find i,(t)
if the applied voltage is the triangle wave shown.

13. A dc voltage has been applied for a long time to the
.transmission line circuit shown with switches S1 and S2 open

T 3T 4T

v(t)

V0

- VC

T 2T _t
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S2

For each of these cases plot the source current i,(t) versus time.

14. For each of the transmission line circuits shown, the
switch opens at t = 0 after the dc voltage has been applied for
a long time.

Opens at t = 0

0 1

Opens at t = 0

(a) What are the transmission line voltages and currents
right before the switches open? What are V+ and V_ at t = 0?

(b) Plot the voltage and current as a function of time at
z=1/2.

15. A transmission line is connected to another transmission
line with double the characteristic impedance.

(a) With switch S2 open, switch S, is suddenly closed at
t = 0. Plot the voltage and current as a function of time half-
way down each line at points a and b.

(b) Repeat (a) if S2 is closed.

Guided ElctromagnticWaves

when at t = 0:

(a) S2 is suddenly closed with SI kept open;
(b) S, is suddenly closed with S2 kept open;
(c) Both S, and S2 are closed.

_3

I I
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--- 11= cl T, - - 12 
= 

C2T 2 -

Section 8-3
16. A transmission line is excited by a voltage source Vo cos wt
at z = -1. The transmission line is loaded with a purely reac-
tive load with impedance jX at z = 0.

+

Vo cosw,

0 -

(a) Find the voltage and current distribution along the line.
(b) Find an expression for the resonant frequencies of the

system if the load is capacitive or inductive. What is the
solution if IXI = Zo?

(c) Repeat (a) and (b) if the transmission line is excited by a
current source Io cos wt at z = -1.

17. (a) Find the resistance and conductance per unit lengths
for a coaxial cable whose dielectric has a small Ohmic
conductivity o- and walls have a large conductivity o,,
(Hint: The skin depth 8 is much smaller than the radii or
thickness of either conductor.)

(b) What is the decay rate of the fields due to the losses?
(c) If the dielectric is lossless (o = 0) with a fixed value of

g
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outer radius b, what value of inner radius a will minimize the
decay rate? (Hint: 1+1/3.6·-ln 3.6.)

18. A transmission line of length I is loaded by a resistor RL.

RL

-
0

(a) Find the voltage and current distributions along the
line.

(b) Reduce the solutions of (a) when the line is much
shorter than a wavelength.

(c) Find the approximate equivalent circuits in the long
wavelength limit (kl < 1) when RL is very small (RL << Zo) and
when it is very large (RL >> Zo)

Section 8-4
19. For the transmission line shown:

· VOCos • JY jB Zo = 50 Z• = 100(1 -j)

=4

4

(a) Find the values of lumped reactive admittance Y = jB and
non-zero source resistance R, that maximizes the power delivered
by the source. (Hint: Do not use the Smith chart.)

(b) What is the time-average power dissipated in the load?

20. (a) Find the time-average power delivered by the source
for the transmission line system shown when the switch is
open or closed. (Hint: Do not use the Smith chart.)

400 4

Vo cos wr S=100

(b) For each switch position, what is the time average
power dissipated in the load resistor RL?

VOC0 Wa

1

~y\n
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(c) For each switch position what is the VSWR on each
line?

21. (a) Using the Smith chart find the source current
delivered (magnitude and phase) for the transmission line
system shown, for I= A/8, A/4, 3A/8, and A/2.

Vocosw• Zo = 50 L = 50(1 - 2j)

(b) For each value of 1,what are the time-average powers
delivered by the source and dissipated in the load impedance
ZL?

(c) What is the VSWR?

22. (a) Without using the Smith chart find the voltage and
current distributions for the transmission line system shown.

S4

V o coswot ZL = 100

(b) What is the VSWR?
(c) At what positions are the voltages a maximum or a

minimum? What is the voltage magnitude at these positions?

23. The VSWR on a 100-Ohm transmission line is 3. The
distance between successive voltage minima is 50 cm while the
distance from the load to the first minima is 20 cm. What are
the reflection coefficient and load impedance?

Section 8-5

24. For each of the following load impedances in the single-
stub tuning transmission line system shown, find all values of
the length of the line 11 and stub length 12 necessary to match
the load to the line.

(a) ZL = 100(1-j) (c) ZL=25(2-j)
(b) ZL = 50(1 + 2j) (d) ZL = 2 5(l + 2j)
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25. For each of the following load impedances in the double-
stub tuning transmission line system shown, find stub lengths
1 and 12 to match the load to the line.

8x-"----8

(a) ZL = 100(1-j) (c) ZL =25(2-j)
(b) ZL = 50(l+2j) (d) ZL=25(1+2j)

26. (a) Without using the Smith chart, find the input
impedance Zi, at z = -1= -A/4 for each of the loads shown.

(b) What is the input current i(z = -1, t) for each of the
loads?

658
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4 RL=- Zo

Zo
L =-

.o

I 1 -
--I 0

C= 1

(c) The frequency of the source is doubled to 2wo. The line
length I and loads L and C remain unchanged. Repeat (a) and
(b).

(d) The frequency of the source is halved to fao. Repeat (a)
and (b).

Section 8-6

27. A rectangular metal waveguide is filled with a plasma
with constitutive law

-'i= ow1 E

(a) Find the TE and TM solutions that satisfy the boundary
conditions.

(b) What is the wavenumber k along the axis? What is the
cut-off frequency?

(c) What are the phase and group velocities of the waves?
(d) What is the total electromagnetic power flowing down

the waveguide for each of the modes?
(e) If the walls have a large but finite conductivity, what is

the spatial decay rate for TE1 o propagating waves?

28. (a) Find the power dissipated in the walls of a waveguide
with large but finite conductivity o, for the TM,,, modes
(Hint: Use Equation (25).)

(b) What is the spatial decay rate for propagating waves?

29. (a) Find the equations of the electric and magnetic field
lines in the xy plane for the TE and TM modes.

(b) Find the surface current field lines on each of the

+

Vo0 cosw o

V0 coiwof
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waveguide surfaces for the TEr,modes. Hint:

J tan xdx = -In cos x

J cot xdx = In sin x

(c) For all modes verify the conservation of charge relation
on the x = 0 surface:

V -K+Lt= 0

30. (a) Find the first ten lowest cut-off frequencies if a = b=
1 cm in a free space waveguide.

(b) What are the necessary dimensions for a square free
space waveguide to have a lowest cut-off frequency of 10'0,
108, 106, 10', or 102 Hz?

31. A rectangular waveguide of height b and width a is short
circuited by perfectly conducting planes at z = 0 and z = 1.

(a) Find the general form of the TE and TM electric and
magnetic fields. (Hint: Remember to consider waves travel-
ing in the +z directions.)

(b) What are the natural frequencies of this resonator?
(c) If the walls have a large conductivity a, find the total

time-average power <Pd> dissipated in the TE 1 01 mode.
(d) What is the total time-average electromagnetic energy

< W> stored in the resonator?
(e) Find the Q of the resonator, defined as

Qo< W>
Q=

<Pd>

where wo is the resonant frequency.

Section 8.7
32. (a) Find the critical frequency where the spatial decay
rate a is zero for all the dielectric modes considered.

(b) Find approximate values of a, k,, and k, for a very thin
dielectric, where kd << 1.

(c) For each of the solutions find the time-average power
per unit length in each region.

(d) If the dielectric has a small Ohmic conductivity o,what
is the approximate attenuation rate of the fields.

33. A dielectric waveguide of thickness d is placed upon a
perfect conductor.

(a) Which modes can propagate along the dielectric?
(b) For each of these modes, what are the surface current

and charges on the conductor?
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E0 ,p 0

(c) Verify the conservation of charge relation:

V, - K+ ° -= 0
at

(d) If the conductor has a large but noninfinite Ohmic
conductivity oar, what is the approximate power per unit area
dissipated?

(e) What is the approximate attenuation rate of the fields?
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In low-frequency electric circuits and along transmission
lines, power is guided from a source to a load along highly
conducting wires with the fields predominantly confined to
the region around the wires. At very high frequencies these
wires become antennas as this power can radiate away into
space without the need of any guiding structure.

9-1 THE RETARDED POTENTIALS

9-1-1 Nonhomogeneous Wave Equations

Maxwell's equations in complete generality are

0B
VxE= (1)

at

aD
VxH=J +- (2)at
V B = 0 (3)

V-D=pf (4)

In our development we will use the following vector iden-
tities

Vx (V V) =O (5)

V - (VxA) = 0 (6)

Vx (Vx A) = V(V - A) - V2 A (7)

where A and V can be any functions but in particular will be
the magnetic vector potential and electric scalar potential,
respectively.

Because in (3) the magnetic field has no divergence, the
identity in (6) allows us to again define the vector potential A
as we had for quasi-statics in Section 5-4:

B=VxA (8)

so that Faraday's law in (1) can be rewritten as

/ A\
Vx(E+- =0O

at
\Ot/"
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Then (5) tells us that any curl-free vector can be written as the
gradient of a scalar so that (9) becomes

aA
E+- = -VV (10)

at

where we introduce the negative sign on the right-hand side
so that V becomes the electric potential in a static situation
when A is independent of time. We solve (10) for the electric
field and with (8) rewrite (2) for linear dielectric media (D =
eE, B = H):

1 vaV aA1 1
Vx(VxA)= p•Jt+ 1-Va, c=

- -at- (11)

The vector identity of (7) allows us to reduce (11) to

S 1 Vi 1 a2A

V2V - cA+-•--2jC2 at2--- t (12)

Thus far, we have only specified the curl of A in (8). The
Helmholtz theorem discussed in Section 5-4-1 told us that to
uniquely specify the vector potential we must also specify the
divergence of A. This is called setting the gauge. Examining
(12) we see that if we set

1 av
V 1A=A (13)

c at

the middle term on the left-hand side of (12) becomes zero so
that the resulting relation between A and J, is the non-
homogeneous vector wave equation:

V2A c 2A= -Jrf (14)

The condition of (13) is called the Lorentz gauge. Note that
for static conditions, V A = 0, which is the value also picked
in Section 5-4-2 for the magneto-quasi-static field. With (14)
we can solve for A when the current distribution J1 is given
and then use (13) to solve for V. The scalar potential can also
be found directly by using (10) in Gauss's law of (4) as

VV+ a(VA) = -P (15)
at E

The second term can be put in terms of V by using the
Lorentz gauge condition of (13) to yield the scalar wave
equation:

1 a2 V -p_- a (16)
C at (
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-Note again that for static situations this relation reduces to
Poisson's equation, the governing equation for the quasi-static
electric potential.

9-1-2 Solutions to the Wave Equation

We see that the three scalar equations of (14) (one equation
for each vector component) and that of (16) are in the same
form. If we can thus find the general solution to any one of
these equations, we know the general solution to all of them.

As we had earlier proceeded for quasi-static fields, we will
find the solution to (16) for a point charge source. Then the
solution for any charge distribution is obtained using super-
position by integrating the solution for a point charge over all
incremental charge elements.

In particular, consider a stationary point charge at r = 0
that is an arbitrary function of time Q(t). By symmetry, the
resulting potential can only be a function of r so that (16)
becomes

1 1 a2I9 V

- 4rr - -- y= 0, r>O (17)

where the right-hand side is zero because the charge density
is zero everywhere except at r=O. By multiplying (17)
through by r and realizing that

I a ,aV a'
rr =--- (r V ) (18)

we rewrite (17) as a homogeneous wave equation in the vari-
able (rV):.

a' I a'
(rV)- -;P (rV)= 0 (19)ar c at

which we know from Section 7-3-2 has solutions

rV=f(t- )1+f- _) (20)

We throw out the negatively traveling wave solution as there
are no sources for r >0 so that all waves emanate radially
outward from the point charge at r =0. The arbitrary
function f+. is evaluated by realizing that as r - 0 there can be
no propagation delay effects so that the potential should
approach the quasi-static Coulomb potential of a point
charge:

Q(Q) (2t1lim V= Q( f+(t) (21)r-.o 4irer 41s
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The potential due to a point charge is then obtained from
(20) and (21) replacing time t with the retarded time t- rlc:

Q(t - r/c)
V(r, t) = (22)

4rer

The potential at time t depends not on the present value of
charge but on the charge value a propagation time r/c earlier
when the wave now received was launched.

The potential due to an arbitrary volume distribution of
charge pf(t) is obtained by replacing Q(t) with the differential
charge element p1 (t) dV and integrating over the volume of
charge:

pf(t - rqplc)V(r, t)= chare ( t - rc) dV (23)

where rQp is the distance between the charge as a source at
point Q and the field point at P.

The vector potential in (14) is in the same direction as the
current density Jf.The solution for A can be directly obtained
from (23) realizing that each component of A obeys the same
equation as (16) if we replace pIle by l&J1:

A(r, t) = V (24)
faIl current 41rQp

9-2 RADIATION FROM POINT DIPOLES

9-2-1 The Electric Dipole

The simplest building block for a transmitting antenna is
that of a uniform current flowing along a conductor of
incremental length dl as shown in Figure 9-1. We assume that
this current varies sinusoidally with time as

i(t)=Re (fe j ) (1)

Because the current is discontinuous at the ends, charge must
be deposited there being of opposite sign at each end [q(t)=
Re (Q e•)]:

dq dli(t)= • I= ijoC), z = ±- (2)
dt 2

This forms an electric dipole with moment

p= q dl i, (3)

If we can find the potentials and fields from this simple
element, the solution for any current distribution is easily
found by superposition.
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2
A A
p =Qd~i,

Figure 9-1 A point dipole antenna is composed of a very short uniformly distributed
current-carrying wire. Because the current is discontinuous at the ends, equal magni-
tude but opposite polarity charges accumulate there forming an electric dipole.

By symmetry, the vector potential cannot depend on the
angle 4,

A,= Re [Az(r,0)es ] (4)

and must be in the same direction as the current:

A,(r,t)= Re d 4/2feR dz] (5)
-d/U2 

4 
WQP

Because the dipole is of infinitesimal length, the distance
from the dipole to any field point is just the spherical radial
distance r and is constant for all points on the short wire.
Then the integral in (5) reduces to a pure multiplication to
yield

I= ke-r', Az(r, t)= Re [A.(r) e"" ] (6)
47rr

where we again introduce the wavenumber k = o/c and
neglect writing the sinusoidal time dependence present in all
field and source quantities. The spherical components of A,

'P
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are (i,= i,cos 0- iesin 0):

A,=Az cos 0, A = -A,sin 0, A,=0 (7)

Once the vector potential is known, the electric and

magnetic fields are most easily found from

I= -vx A, H(r, t) = Re [A(r, 0)ed "]

(8)

E= -Vx Ih, E(r, t)= Re [i(r,8) e"']
jWoE

Before we find these fields, let's examine an alternate
approach.

9-2-2 Alternate Derivation Using the Scalar Potential

It was easiest to find the vector potential for the point
electric dipole because the integration in (5) reduced to a
simple multiplication. The scalar potential is due solely to the
opposite point charges at each end of the dipole,

e_e-kr÷ e -jkr

4eirE r, r)

where r+and r_ are the distances from the respective dipole
charges to any field point, as shown in Figure 9-1. Just as we
found for the quasi-static electric dipole in Section 3-1-1, we
cannot let r+and r_ equal r as a zero potential would result.
As we showed in Section 3-1-1, a first-order correction must
be made, where

dl
rT+r--2cos0

(10)

r_- r+- cos 80
2

so that (9) becomes

) ejh(dl/2)cos -jk(dl/2)cos 0

4=r e --(11)4ner dlA~o _/ dl_ ) (11)

2 rcos 2rCs

Because the dipole length dl is assumed much smaller than
the field distance r and the wavelength, the phase factors in
the exponentials are small so they and the I/r dependence in
the denominators can be expanded in a first-order Taylor
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series to result in:

lim c-e-' I+.k+Idcos )(1+-c•os
krdK 41er R 2 2r

dd<dl

- k2 cos 01 2r cos 0)

_- Qdleicos O(l+jkr) (12)
4 rer

When the frequency becomes very low so that the wavenum-
ber also becomes small, (12) reduces to the quasi-static electric
dipole potential found in Section 3-1-1 with dipole moment
f = Q dl. However, we see that the radiation correction terms
in (12) dominate at higher frequencies (large k) far from the
dipole (kr > 1) so that the potential only dies off as 1/r rather
than the quasi-static l/r2 . Using the relationships Q= I/jw
and c = l/vj, (12) could have been obtained immediately
from (6) and (7) with the Lorentz gauge condition of Eq. (13) in
Section 9-1-1:

A=- --- - - (r2-A,) ( sin 0)
] - jo \r ' ar r sin 0 00

p.idlc2•+ jkr) -:4io= 7 e cos 0

Qdl
=v 2(1 +j)e COS 0 (13)

9-2-3 The Electric and Magnetic Fields

Using (6), the fields are directly found from (8) as

i = vxx^

-rar 0

idl 1 (14)
= -i* k sin I +I e- (14)

41 ýikr (jikr)
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iE• VxH

1 1 ( laI
jw(fl sinS)i, - (rHa)iojWE r sin 0 a0 r ar

idlk2 K [2 I1 I3

41 i 2 cos ( jkr)2 (jkr)

+io sin -+ + )3) e (15)
Sjkr (jkr)2 (jkr) (

Note that even this simple source generates a fairly
complicated electromagnetic field. The magnetic field in (14)
points purely in the k direction as expected by the right-hand
rule for a z-directed current. The term that varies as 1/r2 is
called the induction field or near field for it predominates at
distances close to the dipole and exists even at zero frequency.
The new term, which varies as 1/r, is called the radiation field
since it dominates at distances far from the dipole and will be
shown to be responsible for time-average power flow away
from the source. The near field term does not contribute to
power flow but is due to the stored energy in the magnetic field
and thus results in reactive power.

The 1/r3 terms in (15) are just the electric dipole field terms
present even at zero frequency and so are often called the
electrostatic solution. They predominate at distances close to
the dipole and thus are the near fields. The electric field also
has an intermediate field that varies as l/r 2, but more
important is the radiation field term in the i0 component,
which varies as I/r. At large distances (kr>> ) this term
dominates.

In the far field limit (kr >> 1), the electric and magnetic fields
are related to each other in the same way as for plane waves:

limr E = =HEsin Oe-
k, Eo=0 Id~2

r>>1 E jkr 4r E

(16)

The electric and magnetic fields are perpendicular and their
ratio is equal to the wave impedance 71= V/-LIE. This is because
in the far field limit the spherical wavefronts approximate a
plane.

9-2-4 Electric Field Lines

Outside the dipole the volume charge density is zero, which
allows us to define an electric vector potential C:

V-E=O E=VxC
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Because the electric field in (15) only has r and 0 components,
C must only have a 4 component, Co(r, 0):

1 a 1a
E= Vx C= I-(sin OC )i , -  -(rCO)ie (18)r sin 0 8 r ar

We follow the same procedure developed in Section 4-4-3b,
where the electric field lines are given by

-(sin OC( )
dr E, 80

(19)rdB E, asin 0•(rCO)

which can be rewritten as an exact differential,

a(r sin Cs) dr+ (r sin BC,) dO = 0 d(r sin OC,)= 0
ar 80

(20)
so that the field lines are just lines of constant stream-function
r sin OC,. C, is found by equating each vector component in
(18) to the solution in (15):

1 a
rsin 0 sin

Idl k2  
1 1 jkr= [2-2 cos +

r (rC

= 4E=- sin + + e

(21)
which integrates to

, Idl• sin 0 j
4 e r (kr) r

Then assuming I is real, the instantaneous value of C, is

C, = Re (C, ei"w)
dl _ sin sin (_.t - kr)\

-dI , sin 6 cos (at - kr)+ kr (23)
41 rE kr

so that, omitting the constant amplitude factor in (23), the
field lines are

rC6 sin 0 = const• sin 2 0(cos (ot - kr) + sint kr) const
kr

-L1-·-·ILL-·----~---·I~-·-----·-----·--



Figure 

t =O0

(a) dipole field solution

9-2 The electric field lines for a point electric dipole at wt = 0 and ot = 7r/2.
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These field lines are plotted in Figure 9-2 at two values of
time. We can check our result with the static field lines for a
dipole given in Section 3-1-1. Remembering that k = o/c, at
low frequencies,

Scos (wt - kr) 1
lim (25)w~o{ sin (ot - kr) (t-r/c) t

kr r/c r/c

so that, in the low-frequency limit at a fixed time, (24)
approaches the result of Eq. (6) of Section 3-1-1:

lim sin 2 0 = const (26)

Note that the field lines near the dipole are those of a static
dipole field, as drawn in Figure 3-2. In the far field limit

lim sin 2 0 cos (wt - kr) = const (27)
kr >>l

the field lines repeat with period A = 2ir/k.

9-2-5 Radiation Resistance

Using the electric and magnetic fields of Section 9-2-3, the
time-average power density is

<S > = 2 Re (• x HI* )

2(4 7T)2dl i 71k 7r +k4 r7= Re _____r_ 1 +

+i, sin 20
iin (f.kr)2+T (jkr)

Si/d k I/2 )22 sin2 0
i,

1 I( o2 sin2 0.
2 , (kr)2 7 r (28)

where •o is defined in (16).
Only the far fields contributed to the time-average power

flow. The near and intermediate fields contributed only
imaginary terms in (28) representing reactive power.

The power density varies with the angle 0, being zero along
the electric dipole's axis (0 = 0, rr) and maximum at right
angles to it (0= =r/2), illustrated by the radiation power
pattern in Fig. 9-3. The strength of the power density is
proportional to the length of the vector from the origin t, the

_I _ _ _
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EosinfO- ir
jkr

Figure 9-3 The strength of the electric field and power density due to a z-directed
point dipole as a function of angle 0 is proportional to the length of the vector from
the origin to the radiation pattern.

radiation pattern. These directional properties are useful in
beam steering, where the directions of power flow can be
controlled.

The total time-average power radiated by the electric
dipole is found by integrating the Poynting vector over a
spherical surface at any radius r:

<P>= <S,>r2 sin dOd4d

cpn=d21w sins 0d0

= I Idlj2 J,=0s2
=16d1 t1 [icos O(sin' 0+2)]1"

Ifd1l 2='IQ 71k 2
ir7
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As far as the dipole is concerned, this radiated power is lost
in the same way as if it were dissipated in a resistance R,

<P> = il2R (30)

where this equivalent resistance is called the radiation resis-
tance:

(k d 2 27 dl- (31)
R = ) , k=---

In free space '70-/Lo/EO0 1207r, the radiation resistance is

Ro = 8012() 2 (free space) (32)

These results are only true for point dipoles, where dl is
much less than a wavelength (dl/A << I). This verifies the vali-
dity of the quasi-static approximation for geometries much
smaller than a radiated wavelength, as the radiated power is
then negligible.

If the current on a dipole is not constant but rather varies
with z over the length, the only term that varies with z for the
vector potential in (5) is I(z):

S+d1/2 li(z) e- jkrQp, 1 e-jkrQ' +d1/2

A,(r)= Re 2 dz Re Q (z)dz
Sd/2 ~-QP 4 rrQP -dU2

(33)

where, because the dipole is of infinitesimal length, the dis-
tance rQp from any point on the dipole to any field point far
from the dipole is essentially r, independent of z. Then, all
further results for the electric and magnetic fields are the
same as in Section 9-2-3 if we replace the actual dipole length
dl by its effective length,

1 +dl/2
dleff - I(z) dz (34)

10 di/2

where 0ois the terminal current feeding the center of the
dipole.

Generally the current is zero at the open circuited ends, as
for the linear distribution shown in Figure 9-4,

I(z) = Io(1-2z/dl), - z- dl/2 (35)
Io(l+ 2z/dl), -dl/2-z-0

so that the effective length is half the actual length:

1 r+d/ 2 dl
dle=ff - J-I/ 2 I(z) dz = (36)

10 d/2 2
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7i(z)

-d1/2

7(z) dz

'Jo

dl1f = d12

d!.z
d/12

x

(a) (b)

Figure 9-4 (a) If a point electric dipole has a nonuniform current distribution, the
solutions are of the same form if we replace the actual dipole length dl by an effective
length dl,,. (b) For a triangular current distribution the effective length is half the true
length.

Because the fields are reduced by half, the radiation resis-
tance is then reduced by 1:

:JR( (dleu]'•: 201P\'r ( (37)

In free space the relative permeability /A, and relative
permittivity e, are unity.

Note also that with a spatially dependent current dis-
tribution, a line charge distribution is found over the whole
length of the dipole and not just on the ends:

1 diI=-- (38)
jw dz

For the linear current distribution described by (35), we see
that:

2I/o 0 5 z s dl/2 (39)
(39)

j od I-dl/2 <<z<O

9-2-6 Rayleigh Scattering (orwhy is the sky blue?)

If a plane wave electric field Re [Eo e"' i .] is incident upon an
atom that is much smaller than the wavelength, the induced
dipole moment also contributes to the resultant field, as illus-
trated in Figure 9-5. The scattered power is perpendicular to
the induced dipole moment. Using the dipole model
developed in Section 3-1-4, where a negative spherical electron
cloud of radius Ro with total charge -Q surrounds a fixed



r = Re(Eoe Jiw)

S incent

S wAttered a

iS ri
Sicallel

(b)

Figure 9-5 An incident electric field polarizes dipoles that then re-radiate their
energy primarily perpendicular to the polarizing electric field. The time-average
scattered power increases with the fourth power of frequency so shorter wavelengths
of light are scattered more than longer wavelengths. (a) During the daytime an earth
observer sees more of the blue scattered light so the sky looks blue (short wavelengths).
(b) Near sunset the light reaching the observer lacks blue so the sky appears reddish
(long wavelength).
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positive point nucleus, Newton's law for the charged cloud
with mass m is:

dRx (QEO ,.) 2 2
d + Wox = Re e' " wo - 3 (40)

dt2 m 47rEmRo

The resulting dipole moment is then

Q2 Eo/m
i=Q" 2 2 (41)

wo -to

where we neglect damping effects. This dipole then re-radi-
ates with solutions given in Sections 9-2-1-9-2-5 using the
dipole moment of (41) (Idl-jwfo). The total time-average
power radiated is then found from (29) as

< 4p_4 •l 277 04l(Q2Eo/m)2

<P>7= 2 2 _ 212"n'c2 127rc2 (oj _w2 )2 (42)

To approximately compute wo, we use the approximate
radius of the electron found in Section 3-8-2 by equating the
energy stored in Einstein's relativistic formula relating mass
to energy:

2 3Q2 3Q 2 105
mc 2e Ro 20 .IMCx 10L1.69m (43)

Then from (40)

/5/3 207EImc 3

o = -, ~2.3 x 10'" radian/sec (44)
3Q 2

is much greater than light frequencies (w 1015) so that (42)
becomes approximately

lim <P>ý 12 2 Eow (45)
o>> 127A mcwo

This result was originally derived by Rayleigh to explain the
blueness of the sky. Since the scattered power is proportional
to w 4, shorter wavelength light dominates. However, near
sunset the light is scattered parallel to the earth rather than
towards it. The blue light received by an observer at the earth
is diminished so that the longer wavelengths dominate and
the sky appears reddish.

9-2-7 Radiation from a Point Magnetic Dipole

A closed sinusoidally varying current loop of very small size
flowing in the z = 0 plane also generates radiating waves.
Because the loop is closed, the current has no divergence so
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that there is no charge and the scalar potential is zero. The
vector potential phasor amplitude is then

0) e--jr,-
A(r) = dl (46)

We assume the dipole to be much smaller than a wavelength,
k(rQp-r)<< 1, so that the exponential factor in (46) can be
linearized to

lim e -ikQp = e
- jk r 

e
- j P(rg P - r

T) ,e-ier[l - jk( rQp - r)]
k(rqp-r)<K I

(47)

Then (46) reduces to

A(r) = IerQ +Ijk) di

7 \ TQp

4 eij((l +jkr)f dl j dl) (48)

where all terms that depend on r can be taken outside the
integrals because r is independent of dl. The second integral
is zero because the vector current has constant magnitude
and flows in a closed loop so that its average direction
integrated over the loop is zero. This is most easily seen with a
rectangular loop where opposite sides of the loop contribute
equal magnitude but opposite signs to the integral, which
thus sums to zero. If the loop is circular with radius a,

2w 21i
idl = hi4a d4 > i, d= (-sin i + cos 4i,)di = 0

(49)

the integral is again zero as the average value of the unit
vector i# around the loop is zero.

The remaining integral is the same as for quasi-statics
except that it is multiplied by the factor (1+ jkr) e-i. Using
the results of Section 5-5-1, the quasi-static vector potential is
also multiplied by this quantity:

M= sin 0(1 +jkr) e-k'i,, t = dS (50)47tr-
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The electric and magnetic fields are then

f=lvxA=• jksei, 2cos + 1
u S (jkr)' (jkr)

+i 1 1si 1 (51)
Sjkr (jkr) (jkr)I

Xx = 71e-krsin 0 +
WE 4r (jkr) (jkr)2Y

The magnetic dipole field solutions are the dual to those of
the electric dipole where the electric and magnetic fields
reverse roles if we replace the electric dipole moment with the
magnetic dipole moment:

p q dl I dl
m (52)

9-3 POINT DIPOLE ARRAYS

The power density for a point electric dipole varies with the
broad angular distribution sin 2 0. Often it is desired that the
power pattern be highly directive with certain angles carrying
most of the power with negligible power density at other
angles. It is also necessary that the directions for maximum
power flow be controllable with no mechanical motion of the
antenna. These requirements can be met by using more
dipoles in a periodic array.

9-3-1 A Simple Two Element Array

To illustrate the basic principles of antenna arrays we
consider the two element electric dipole array shown in
Figure 9-6. We assume each element carries uniform currents
IIand i2and has lengths dll and dl2, respectively. The ele-
ments are a distance 2a apart. The fields at any point P are
given by the superposition of fields due to each dipole alone.
Since we are only interested in the far field radiation pattern
where 01 02 0, we use the solutions of Eq. (16) in Section
9-2-3 to write:

EI sin Oe- ' E+
2 sin 0 e- Zk (

jkr, jkr2

where

P, dl k• 21 dl2 k"y
41r 4.7
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Z

Figure 9-6 The field at any point P due to two-point dipoles is just the sum of the
fields due to each dipole alone taking into account the difference in distances to each
dipole.

Remember, we can superpose the fields but we cannot
superpose the power flows.

From the law of cosines the distances r, and r2 are related
as

r 2 
= [r2+ a 2 - 2ar cos (7Tr- 6)]j /2 = [r2+ a 2 + 2ar cos ] 1/2

rl = [r2 + a2- 2 ar cos]12 (2)

where 6 is the angle between the unit radial vector i, and the x
axis:

cos = ir, ix = sin 0 cos 4

Since we are interested in the far field pattern, we linearize (2)
to

r i/a 2  2a 2
rf s r + 2-+--sin 0 cos r + a sin 0 cos •

lim

r, r-- a 2 2ar sin 0 cos r ) - a sin 0 cos 4

In this far field limit, the correction terms have little effect in
the denominators of (1) but can have significant effect in the
exponential phase factors if a is comparable to a wavelength
so that ka is near or greater than unity. In this spirit we
include the first-order correction terms of (3) in the phase

I I_·_

11/2 r + asinOcoso

r a asinOcos0

= sin 0 cos 0
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factors of (1), but not anywhere else, so that (1) is rewritten as

/E = -/H,

=jk- sin Oe- jkr(l dil ejk si'' . +• d12 
e -

'
k - in 

."' ) (4)
4 rr

eltentlt factol array factot

The first factor is called the element factor because it is the
radiation field per unit current element (Idl) due to a single
dipole at the origin. The second factor is called the array
factor because it only depends on the geometry and excita-
tions (magnitude and phase) of each dipole element in the
array.

To examine (4) in greater detail, we assume the two dipoles
are identical in length and that the currents have the same
magnitude but can differ in phase X:

dl = dl2 -dl

i, = ie' xe)Xfi i, ý2 = (e")

so that (4) can be written as

0 = , = e-i sin ejx/2 cos (ka sin 0 cos (6)
jkr 2

Now the far fields also depend on 0. In particular, we focus
attention on the 0 = 7r/ 2 plane. Then the power flow,

I1 2 1Eol 2 2lim S> = (kr) 2 co s ka cos - (7)

depends strongly on the dipole spacing 2a and current phase
difference X.

(a) Broadside Array
Consider the case where the currents are in phase (X= 0)

but the dipole spacing is a half wavelength (2a = A/2). Then,
as illustrated by the radiation pattern in Figure 9-7a, the field
strengths cancel along the x axis while they add along the y
axis. This is because along the y axis r, = r2, so the fields due to
each dipole add, while along the x axis the distances differ by
a half wavelength so that the dipole fields cancel. Wherever
the array factor phase (ka cos 0 -X/ 2 ) is an integer multiple of
nT,the power density is maximum, while wherever it is an odd
integer multiple of 7'/2, the power density is zero. Because
this radiation pattern is maximum in the direction perpendic-
ular to the.array, it is called a broadside pattern.
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<S, >acos2(Tcose), X = 0
2

Broadside
(a)

a

<Sr >cos2( Ecos 0 -  
'), x = 1!

2 8 4

(

<S,>acos2(!cos 0- ), X=

2 4 2

(c)

<S,>a cos2'(2cos0-
3 

1r), X= 32
2 8 4

(d)

<S,>acos2IIcoS -I ), x= r
2 2

Endfire

(e)
2a = X/2

Figure 9-7 The power radiation pattern due to two-point dipoles depends strongly
on the dipole spacing and current phases. With a half wavelength dipole spacing
(2a = A/2), the radiation pattern is drawn for various values of current phase difference
in the 0 = ir/2 plane. The broadside array in (a) with the currents in phase (X = 0) has
the power lobe in the direction perpendicular to the array while the end-fire array in
(e) has out-of-phase currents (X = 7r) with the power lobe in the direction along the
array.

k--x

-
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(b) End-fire Array
If, however, for the same half wavelength spacing the cur-

rents are out of phase (X = 1r), the fields add along the x axis
but cancel along the y axis. Here, even though the path
lengths along the y axis are the same for each dipole, because
the currents are out of phase the fields cancel. Along the x
axis the extra 7r phase because of the half wavelength path
difference is just canceled by the current phase difference of
ir so that the fields due to each dipole add. The radiation
pattern is called end-fire because the power is maximum in
the direction along the array, as shown in Figure 9-7e.

(c) ArbitraryCurrent Phase
For arbitrary current phase angles and dipole spacings, a

great variety of radiation patterns can be obtained, as illus-
trated by the sequences in Figures 9-7 and 9-8. More power
lobes appear as the dipole spacing is increased.

9-3-2 An N Dipole Array

If we have (2N+ 1) equally spaced dipoles, as shown in
Figure 9-9, the nth dipole's distance to the far field point is
approximately,

lim rnr-nasinOcos (8)

so that the array factor of (4) generalizes to
+N

AF= In dle i 'j asin cos 4 (9)
-N

where for symmetry we assume that there are as many dipoles
to the left (negative n) as to the right (positive n) of the z axis,
including one at the origin (n = 0). In the event that a dipole is
not present at a given location, we simply let its current be
zero. The array factor can be varied by changing the current
magnitude or phase in the dipoles. For simplicity here, we
assume that all dipoles have the same length dl, the same
current magnitude 1o, and differ in phase from its neighbors
by a constant angle Xo so that

In= Ioe - "i x , -Nn)sN (10)

and (9) becomes

+N

AF= Iodl Y e "l(a sin cos-
-N
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<S, >a cos
2
(rcos), X= 0 <S. >acos

2
(cos2 )C , X = w/4

(a) (h)

x

<S,>acos
2
(rcos- _), X= 7 <S, >acos

2 (
rcos_-3n), = 3 <S,r>cos2(rcosO'-), X=

4 2 8 42

(c) (d) (e)

Figure 9-8 With a full wavelength dipole spacing (2a = A) there are four main power
lobes.

I

2a
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Defining the parameter

P = j(ka sin cos #-xo) (12)

the geometric series in (11) can be written as

+N

S= 3n = P-N +p -N+ I -+.+- I+1+3+3+P'+'.
-N +pN- '+pN (13)

If we multiply this series by 3 and subtract from (13), we have

S(1- 3)= p-N- _3N+I (14)

which allows us to write the series sum in closed form as

-_-N_ N+1 - (N+1/2)_P(N+11/2)

1-,3 3-1/23 1/2

sin [(N+ )(ka sin 0 cos 4X-Xo) 1
(15)

sin [-(ka sin 0 cos 0 -Xo)]

In particular, we again focus on the solution in the 0 = w/2
plane so that the array factor is

dl sin [(N+ )(ka cos -Xo)] (16)
sin [2(ka cos 4 - Xo)]

The radiation pattern is proportional to the square of the
array factor. Maxima occur where

kacos - Xo= 2nir n=0, 1,2,... (17)

The principal maximum is for n = 0 as illustrated in Figure
9-10 for various values of ka and Xo. The larger the number
of dipoles N, the narrower the principal maximum with
smaller amplitude side lobes. This allows for a highly direc-
tive beam at angle 4 controlled by the incremental current
phase angle Xo, so that cos 4 = Xo/ka, which allows for elec-
tronic beam steering by simply changing Xo.

9-4 LONG DIPOLE ANTENNAS

The radiated power, proportional to (dl/A)2, is small for
point dipole antennas where the dipole's length dl is. much
less than the wavelength A. More power can be radiated if the
length of the antenna is increased. Then however, the fields
due to each section of the antenna may not add construc-
tively.



688 Radiation

2

x

p

>-Y

Figure 9-9 A linear point dipole array with 2N+ 1 equally spaced dipoles.

9-4-1 Far Field Solution

Consider the long dipole antenna in Figure 9-11 carrying a
current I(z). For simplicity we restrict ourselves to the far
field pattern where r >> L. Then, as we found for dipole
arrays, the differences in radial distance for each incremental
current element of length dz are only important in the
exponential phase factors and not in the 1/r dependences.

From Section 9-2-3, the incremental current element at
position z generates a far electric field:

dE = d•1 , Aj I( sdZin 0 e-jk(r-zcos) (1)
4Tr r

where we again assume that in the far field the angle 0 is the
same for all incremental current elements.

The total far electric field due to the entire current dis-
tribution is obtained by integration over all current elements:

= jk sin 0 e -' k r  I ) ei 
cos dz (2)

If the current distribution is known, the integral in (2) can
be directly evaluated. The practical problem is difficult
because the current distribution along the antenna is deter-
mined by the near fields through the boundary conditions.

~'--C--·-( -I--~ I I-
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N=1 N=2

xo = 0

N= 1

a = 14

N= 3

N=3

· · LX

a = X/2

N= 2

x, = 0

Figure 9-10 The radiation pattern for an N dipole linear array for various values of
N, dipole spacing 2a, and relative current phase xo in the 0 = ir/2 plane.

Since the fields and currents are coupled, an exact solution is
impossible no matter how simple the antenna geometry. In
practice, one guesses a current distribution and calculates the
resultant (near and far) fields. If all boundary conditions
along the antenna are satisfied, then the solution has been
found. Unfortunately, this never happens with the first guess.
Thus based on the field solution obtained from the originally
guessed current, a corrected current distribution is used and

N= 2

N=3
Xo = r/2

N= 1 N= 2

xo = r/2

D
I
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N
=

1N 
= 1

Xo
=

0

N 2

xo 0

N= 2

X0o=

Figure 9-10

the resulting fields are again calculated. This procedure is
numerically iterated until convergence is obtained with self-
consistent fields and currents.

9-4-2 Uniform Current

A particularly simple case is when f(z)= Io is a constant.
Then (2) becomes:

E0= iH= sin 0e-ro ejkz:s dz
4 7rr E/2

jkA ejkz cos r+L/2
47 sin e- jk cos I L/2

4 -7rr ~~I kCO01+L/

071tan 0 e
rtanr e

47Tr

kL
2 sin ( cos 0) (3)

'~------~
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The time-average power density is then

< ls>=1 j^ 22 Eojl 2tan 0 sin 2 [(kL/2)cos 0] (4)
27 2 1(kr)

2(kL/2)2

where

o= f°Lqk2 (5)
4w

This power density is plotted versus angle 0 in Figure 9-12
for various lengths L. The principal maximum always
appears at 0= r/2, becoming sharper as L increases. For
L >A, zero power density occurs at angles

2nr nA
cos 0=., n = 1,2,... (6)

kL L

Secondary maxima then occur at nearby angles but at much
smaller amplitudes compared to the main lobe at 0 = 7r/2.

9-4-3 Radiation Resistance

The total time-average radiated power is obtained by
integrating (4) over all angles:

<P>= <S,>r 2 sin dO dd4

I 2 r sin 2 s 0 dO (7)
k2l(kLI2)2 'ocos 2 0

If we introduce the change of variable,

kL kL
v= - cos 0, dv -- sin 0dO (8)

2 2

the integral of (7) becomes

<P> I ol2 - /2 sin 2 v dv kL sin2v dv

P2(kL/2)2 l2 kL 2 v 2

(9)

The first term is easily integrable as

Jsinfvdv = 4v- sin 2v (10)

The second integral results in a new tabulated function Si(x)
called the sine integral, defined as:

Si(x) = Xsin tdt (I1)
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Figure 9-11 (a) For a long dipole antenna, each incremental current element at
coordinate z is at a slightly different distance to any field point P. (b) The simplest case
study has the current uniformly distributed over the length of the dipole.

which is plotted in Figure 9-13. Then the second integral in
(9) can be expanded and integrated by parts:

sin 2 v  (1 -cos 2v)
2 dv = 2 dv

v 2v2

I _f cos 2dv
S2 2v~

1 cos 2v f sin 2vd(2v)
= -- +•+

2v 2v 2v

1 cos 2v
=- c-+---+ Si(2v)

2v 2v

Then evaluating the integrals of (10) and (12) in (9) at the
upper and lower limits yields the time-average power as:

<P> = 2 -T(sin kL +cos kL - 2 + kLSi(kL)
-k2 (kL/2)2 kLos

where we used the fact that the sine integral is an odd
function Si(x)= -Si(x).

Using (5), the radiation resistance is then

2<P> r/ sin kL
R = + cos kL - 2 +kLSi(L) (14)

1 Io2 2r\ kL

P

-3--~------------- --
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Figure 9-12 The radiation pattern for a long dipole for various values of its length.
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lim Si(x) - x

.2 I x-O
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Figure 9-13 The sine integral Si(x) increases linearly for small arguments and
approaches ir/2 for large arguments oscillating about this value for intermediate
arguments.

21R/17

L

,2 ( L

1 2 3
kL

Figure 9-14 The radiation resistance for a dipole antenna carrying a uniformly
distributed current increases with the square of its length when it is short (L/A << 1) and
only linearly with its length when it is long (L/A > 1). For short lengths, the radiation
resistance approximates that of a point dipole.
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which is plotted versus kL in Fig. 9-14. This result can be
checked in the limit as L becomes very small (kL << 1) since the
radiation resistance should approach that of a point dipole
given in Section 9-2-5. In this short dipole limit the bracketed
terms in (14) are

sin kL (kL)2--- l---

kL 6

lim (kL)2 (15)
)tL• i coS kL 1

2

kLSi(kL) - (kL)"

so that (14) reduces to

lim R (kL)2 23L- 2= 8 0L(2 L 
2 (16)

AL'< 2i 3 3\A A Er

which agrees with the results in Section 9-2-5. Note that for
large dipoles (kL >>1), the sine integral term dominates with
Si(kL) approaching a constant value of 7r/2 so that

lim R -7kL=60 •- r 2 (17)
kL>1 4 Er A

PROBLEMS

Section 9-1
1. We wish to find the properties of waves propagating
within a linear dielectric medium that also has an Ohmic
conductivity or.

(a) What are Maxwell's equations in this medium?
(b) Defining vector and scalar potentials, what gauge

condition decouples these potentials?
(c) A point charge at r = 0 varies sinusoidally with time as

Q(t) = Re (( e'"). What is the scalar potential?
(d) Repeat (a)-(c) for waves in a plasma medium with

constitutive law

-- = w eE
at

2. An infinite current sheet at z = 0 varies as
Re [K 0 e (' - k"-)ix].

(a) Find the vector and scalar potentials.
(b) What are the electric and magnetic fields?
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(c) Repeat (a) and (b) if the current is uniformly dis-
tributed over a planar slab of thickness 2a:

jo eij(9-kXi, , -a<z<a
J 0, Izj >a

3. A sphere of radius R has a uniform surface charge dis-
tribution oy= Re (&o e"•' ) where the time varying surface
charge is due to a purely radial conduction current.

(a) Find the scalar and vector potentials, inside and outside
the sphere. (Hint: rep=r 2 +R 2 -2rR cos 0; rQp drQ=
rR sin 0 dO.)

(b) What are the electric and magnetic fields everywhere?

Section 9.2
4. Find the effective lengths, radiation resistances and line
charge distributions for each of the following current dis-
tributions valid for I zI <dl/2 on a point electric dipole with
short length dl:

(a) I(z) = Io cos az
(b) f(z) = Io e-*1 1

(c) I(z)= Io cosh az

5. What is the time-average power density, total time-average
power, and radiation resistance of a point magnetic dipole?

6. A plane wave electric field Re (Eo ei ') is incident upon a
perfectly conducting spherical particle of radius R that is
much smaller than the wavelength.

(a) What is the induced dipole moment? (Hint: See
Section 4-4-3.)

(b) If the small particle is, instead, a pure lossless dielectric
with permittivity e, what is the induced dipole moment?

(c) For both of these cases, what is the time-average scat-
tered power?

7. A plane wave magnetic field Re (Ho e••) is incident upon a
perfectly conducting particle that is much smaller than the
wavelength.

(a) What is the induced magnetic dipole moment?
(Hint: See Section 5-7-2ii and 5-5-1.)

(b) What. are the re-radiated electric and magnetic fields?
(c) What is the time-average scattered power? How does it

vary with frequency?

8. (a) For the magnetic dipole, how are the magnetic field
lines related to the vector potential A?

(b) What is the equation of these field lines?

Section 9.3
9. Two aligned dipoles if dl and i2 dl are placed along the z
axis a distance 2a apart. The dipoles have the same length

i · I
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while the currents have equal magnitudes but phase
difference X.

(a) What are the far electric and magnetic fields?
(b) What is the time-average power density?
(c) At what angles is the power density zero or maximum?
(d) For 2a = A/2, what values of X give a broadside or

end-fire array?
(e) Repeat (a)-(c) for 2N+ 1 equally spaced aligned dipoles

along the z axis with incremental phase difference Xo.

10. Three dipoles of equal length dl are placed along the z
axis.

(a) Find the far electric and magnetic fields.
(b) What is the time average power density?
(c) For each of the following cases find the angles where

the power density is zero or maximum.

(i) =Io,12= 21o
(ii) 1= I ,Il2= -21o
(iii) Is = -Is = Io, 12 = 2jIo

2ar

'I

I1A di

I dl'

li di

ýp Y
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(a) Find the far fields from this current sheet.
(b) At what angles is the power density minimum or

maximum?

Section 9.4
12. Find the far fields and time-average power density for
each of the following current distributions on a long dipole:

(a) i(z) Io ( 1 - 2z/ L), O<z<L/2

SIo(1+2z/L), -L/2<z<0

Hint:

C e az

Z eaz dz = -(az - 1)
f a

(b) I(z)= Iocos 1z/L, -L/2<z <L/2

Hint:

zi az (a cos pz + p sin pz)
e cos pz dz = e (a2+ p2)

(c) For these cases find the radiation resistance when
kL << 1.

Radiation

11. Many closely spaced point dipoles of length dl placed
along the x axis driven in phase approximate a z-directed
current sheet Re (Ko e'"'i) of length L.

_C_ _ __ __
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SOLUTIONS TO SELECTED PROBLEMS

Chapter 1

1. Area = •a2

3. (a) A + B = 6ix - 2i, -6i,

(b) A.B=6

(c) AxB=-14i + 12i,- 18i,

5. (b) Bi1= 2(-i.x+2i,-iý),B, = 5i + i, - 3i

7. (a) A -B = -75

(b) AxB=-100i,

(c) 0 = 126.870

12. (a) Vf = (az + 3bx2y)i + bx 3i, + axi

14. (a) V A=3

17. (b) ' = 2abc

18. (a) VxA=(x-y 2)ix-yi,-xi.

1 af. + af 1I af.
h. au h,av h, a-w

(c) dV = h/h,h, du dv dw

1 8 a
(d) VA-A= - (h,h.Au)+ (huhA)+ (huhAw)

huhh, au av aw

1 8a(hA4) 8(hA,)
(V x A), = [--a-hAw) a(A

hh, av aw

25. (a) rQp = i, (b) iQ= rQ i - 5i, + 2i
rQP -30

5i. + iy
(c)n -+

Chapter 2

4 wR'pg
3. Eo = 4

3 q

4. Q2=2reod Mg
4. Q•,=

5. (a) o QIQ2 '1/2
L47eRE m
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mlm 27. (a) m -

(b) -qq 2 1 1
(b) v = + 2

2-eom r ro)

r /2/2

(d) t = ro L-- J

qEoL 2
8. h = 2mv

6V3
10. (b) q =- Q

12. (a) q = 2Aoa, (b) q = irpoa , (c) q = 2ooabr

15. 0 = tan - 1 2 EoMg]

AL
16. (a) E,= 2reor

27reo L 2+X2) 2

18. (a) E,= -Xoa
2

7rEo[Z2 +a2]3/2

-- a ++Z2
(b) E - + In

Aoa 2

20. (a) E, - 7ro(a22 23/

21. E = o(a2 23/2
27reo(a +z )

22. (a) QT= 4rEOAR4

23. (c) Po (-d 2 )2 <d

E,,= 2Eod

0 Jxl>d
25. (c) Por 2 r<a

3eoa
E, = 2

poa r>a3eor>a

pod.
26. E = -- 1

2EO 2

27. W=- A
4Eo
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28. (a) vo- ,•Q (b) r = 4R
2rEsoRm'

29. (a) E=-2Axi., pf= -2Aeo

31. (a) Av =oa
5o

Q
32. (a) dq=--dz'

R

33. (c) V oa cos0, (d) r =rosin 0

4reor

qV,
34. (d) q -

V,

36. (a) E,- 2 InrE -
21qeoq

38. (a) xo= q6oEo' (b) vo> Itýq o/4

(c) W=
161reod

43. (e) A= , a =
R 2

2

44. (g) qT= 
- 4 7r oR -

Chapter 3

2. (a) p = AoL2 , (e) p. =QR

3Q
4. (a) po= R-

41rvoR Eo
7. (a) d= Q

Q
8. (b) -=2 rEoEo

L

RS

10. (a) Pind=PD

Vo sinhx/ld
12. (a) V(x) = 2 sinhl/ld

2 sinhl/1d

mmRAo"
15. (b) Q = q
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A
17. (a) Dr -

27rr

A(e 2-E1) 2E2A19. (a) A'=-A " = (e - E l) , A'= 12E
el+e2 e1+82

23. (a) Por r<R
EoR

E,=

0 r>R

02
s In-

26. (a) R =
ID(o 2 - l)

31. C= 2rl(e2a -elb)
e£a

(b -a) In 82
elb

33. oa(r=al)=-a( 1 -e ); T= Ie/
3a,

35. pf=po e-ar/(3sA)

Vo sinh V2RG(z - 1)
38. (a) v(z)=

sinh NRl

41. (b) 2e[E() - E 2(O)] + ed = J(t)l
2 dt

Vo/l 212
(c) E(1)) T 21(1-e - 2)

It Vo' Vo
1 212

Vo \P I
42. (c) E?= Vo = I

Ro-R) 2reel

43. (a) W=- p2- E
2P

44. W = 12ER

47. (a) W=
8weoR

48. (a) Wi.i,= 2C V o,  (b) W 4na= 0CVo

49. (b) W=-pE(cos0-1)

50. h = 2(e - Eo) 2
P.Ks

_I
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1 roA +Pod 2
52. (b) f =- (s+ d V• o •

2 (s+d)Lso
TV 054. (b) f = -- ( - eo)
In -

a

1 Eod v
55. V

2 s

1 ,2 dC -NVTR'eo
56. (c) T = -v -d

2 dO s

o'Uwt57. (a) v(t)=-
41reoR

58. (a) p,= Po e-o'lU

1 2 nCi 1 3 nCi
59. (a) nCi>--+-- (c) > -, wo -

R RL 2 R 2 C

Chapter 4

2. (a) (oo _ >
cos aye x> 0

2Ea
V=

2-- cos aye x <O
2ea

s nry nr(I -x)
sin sinh

4. (a) V = 1 d
"r n=1 .HTI

n odd n sinh
d

Po
7. (a) V,= 2 sin ax

e 0a

12. P2 -P Ercos 0-5
2eo

V(r', )= [_-Eor_+ cos4 r>a
2eor

13. (a) E= Eo 1+ L) cos + t) -Eo -) sin i
S( ar 21er r r

A (t)
(b) cos 4 < taE (c) Amax=47reaEo

41TeaEo'



V In r

I In a

15. (a) V(r, z) a
Voz

17. (b) Eo - 8p R

27E

22. V(2, 2) = V(3, 2) = V(2, 3) = V(3, 3) = -4.

23. (a) V(2, 2)= -1.0000, V(3, 2)= -. 5000, V(2, 3)

= -. 5000, V(3, 3) = .0000

(b) V(2, 2) = 1.2500, V(3, 2) = -. 2500, V(2, 3)

=.2500, V(3, 3)= -1.2500

Chapter 5

2. (b) B >2mVes (e)
-mg

3. Bo= -mg
qvo

eE_
4. (d) e= E, 2

m RBo

8. (c) J = o(E+vx B)

2lAol(a2 + b)1/2
10. (a) B. = b

Mrab

B2> 8b2mVo

e(b - a 2 )2

(c) B. = tan -
2va n

PoKolr
12. (a) B. -

4

clolL13. (a) B# I

/olod15. (b) B,= jod
2

,-o-a • a) lyl <a
17. (b) B=. 2a0

0 lyl>Yo

18. (d) y = at x = -o

21. (a) m, = qwaa
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23. oo=vSyBo

27. (a) I'= I,(O2- )

(pC1 + 2)

-Mo.

2
34. (a) H= 2

Moa
---- [COS ir+sin #i,]

2r

I
35. (a) H.(x) =--(x -d),

Dd

36. (a) f, = (( - 0o)HoDs,

Chapter 6

1. (a) M = Ao[D - JiD-],

1 I2s
(b) f, = 2Do-

(b) f, = jioMoDs[Ho+ Mo]

3.(d) v(t)=vo120singlt+cosPt e-'"/2;0 = wo- 2
2

i(t)= mvowo sin f3t e- 2

Bobp

Bobs

p.oNs a
4. (a) M=-" In, M= oN[R-d -]

27 b

3po(IdS)2
7. (c)f, 32d32 rd4

8. (a) H.= K(t),

rod dB
9. (a) i =- dr,

2 dt

(b) K(t)=Ko X

So-da4(dB2
8 ddt1

10. L = oN2 [b - ]

14.(a)v2 N2 2 2N,
14. (a)

vl 2N,' i, N 2

2 2

16. (a) V,,=JBd. (n+- n-)
q(.+n,++p._n) 2

705

,,= 2s1 I

(e) fr = oli[D- 1
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olVOI R 217. (b),(c) EMF=-= InR
2,r R1

(M -.uo)IVo R2(d) EMF= - In R2
27rr R,

wB, 2 2
18. (a) H=0,B=A oMoii, (b) voc=ýB-(b -a )

2

1
20. (b) V >--

Aoo-ND

(RT + Rf)
21. (a) ( >

G

4Lf
(b) Ccrit- = G 2; C > Ccrit(dC), C < Ccr,i,(ac)

S1 [R,+Rf-Go]2 2

(C w [LC 2Lf

2Io nxrx
22. (b) H,(x,t)= 2 sin- e

, niD d
n odd

S4Ho . n'Tx
23. (c) H,(x,t)= Ho- - sin - e-'-

n=l •fn d
n odd

(-1)"4Ko (2n + 1)ry ,
25. (b) Hj(y, t)= -Ko+ ( cos I 2 -e

=0 7r(2n +1) 2D

r [e(l+
i )y/ 8  e(l+i)ye/8

(d) / (y) = Ko L[e(+i)D/-8 +e +IS

26. (a) Hz(x)-= -1 R• [2eR• i/ -(1 +e R)]1-e

27. (a) e4,(x)=Koe- x eR";P= - 1

28. (a)

x>s

II _I ~ _ _

s)(iý-ji.4

2Ko e~-'(.-,[i. iri.]



cosh k(x -d/2)
29. (a) H,= Ho0 

° shkd
cosh kd/2

Io Ji[(r/3)(1 -j)]
32. (b) Ho(r)= 2-a J[(a/)(1-

2ira J1[(a/8)(1-j)]

33. (a) T=-L1 0cos2 wot sin 20

34. (c) T = M0 1o1 2 COs 0,

(f) 0(t)= Oo[cost+ a sin 3t] ea " 2

MM=00L 20 t]

/.Lox b
35. (a) L(x) =-lIn-,

2r a
Poi2 b(b) f. = In -
41r a

I - o) In -
a

37. h = 47 g(b 2-a 2 )

Chapter 7

4. (b) W=4[PEc+goMHj]

jw[oJo sin kd e-'js"'d)

9. (b)(z)nosin kd -i dos kd]
9.(b)E,(z)= J <-d

Joi coshz
n COSk< dwe [no sin kd -jj cos kd]

10. (b) E=Eoei(oree ;/ ) z< = W•e --
z<0 4

11. (a) tl - t = Y(Z2-Z1),
co

(b) t -t'2=y(tl-t2), (c)z2-z' =yL

12. (a) u,= 2,-VUx.,= -uI--
S-vu2 co 1 -vujco

2

15. (b) e(w)= s I+ 20
(0.D0 --&J J

2 2

16. (c) k 1-
c 0w(w F wo)J

20. (a)E=Eo cosW t-cCOS 1-X-c

22. a2-k 2 = -w2, k =1
8
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26. (a) L 1+L 2 =Si sin O6+s, sin ,=hA tan Oe+h2 tan 0,

31. 0,e41.7 0

33. (a) (n - 2 ;, n 2

aR
(b) R'=

[4n -)(1-, '- +a 2]

Chapter 8

Vo sin P(z -1) e "/

2. (c) 6i(z) - sin - (Short circuited end)
sin Bl

Vo sin kz cos at
4. (c) w2 = ,+k 2c2 , (d) v(z, t)= sin

sin ki
1

5. (b) k

VoZo
14. (a) V+=-V- -

2R,

16. (b) tan kl = -XYo

1+4
21. (c) VSWR =5.83

22. (b) VSWR = 2

23. ZL = 170.08 - 133.29j

nA mA
24. (a) ll = .137A +-, 12 = .089A +-

2 2

A mA
11= .279A +-, 12= .411A +-

2 2

ni mA
25. (a) 11=.166A+-, 12

= .411A +-
2 2
nA mA

11= .077A +-, 12 = .043A +-
2 2

2(w•/a)[b + (a/2)(o.2 a /lI cg)]
27. (e) a = wjbko

2oe(bk• +ak )
28. (b) +k)oa,8kzab(k.2+k )



29. (a) TE mode:

electric field: cos k7x cos ky = const

sin (k;)*~A' 5
magnetic field: sin const

sin k,y

31. (b) + iT)( T)2 iT)2

32. (a) w • =
e8L -sEoto

Chapter 9

1. (c) V = Q e-ivl ' *c-"',

2 sin (adl/2) loa
4. (a) dlAt) , !(z) =- sin az

a jo

6. (a) ,= 4"reoRS3 o

(c) (P)= 12rc2
12 7rc

7. (a) mid= 27rHORs

8. (b) sin2cos (t - kr)in ( -kr) = const

9. (a) •. sin oe(r-x os kacos
jkr - kr 1 2)]

S 2jKodl7 e-ik' kL11. 4E=cos e sin -Lsin 0 cos

12. (a) Fe = c• sin O se[(j -C
jrkrL cos 2 0 cos cos
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INDEX

Addition, vector, 9-10
Admittance, characteristic, 579
A field, 336. See also Vector potential
Amber, 50
Ampere, unit, 55
Ampere's circuital law, 334

displacement current correction to, 488
Ampere's experiments, 322
Amperian currents, 348
Analyzer, 518
Angular momentum, 350
Anisotropic media, 516-520
Antennas:

long dipole, 687-695
N element array, 685-687
point electric dipole, 667-677
point magnetic dipole, 679-681
two element array, 681-685

Array:
broadside, 683
endfire, 685
factor, 683, 685, 687
N element, 685-687
two element, 681-685

Atmosphere, as leaky spherical capacitor,
195-197

Atom, binding energy of, 211-212
Attenuation constant:

dielectric waveguide, 646-648
lossy transmission line, 602-606
lossy rectangular waveguide, 644
non-uniform plane waves, 531-532

Autotransformer, 474
Avogadro's number, 136
Axisymmetric solutions to Laplace's

equation, 286-288

Backward wave distributed system, 651
Barium titanate, 150
Base units, 55
Batteries due to lightning, 197
Bessel's equation, 280, 482

functions, 281
Betatron, 402-404

oscillations, 404
Bewley, L. V., 433, 475
B field, see Magnetic field
Binding energy, of atom, 211-212

of crystal, 205-206
Biot-Savart law, 322-323
Birefringence, 518-520
Bohr atomic model, 111-112

Bohr magneton, 350
Bohr radius, 63
Boltzmann constant, 155
Boltzmann distribution, 156
Boundary conditions:

normal component of:
current density J, 168-169
displacement field D, 163-164
magnetic field B, 366
polarization P, 165-166
e0 E, 165-166

tangential component of:
electric field E, 162-163
magnetic field H, 359-360
magnetization M, 360

Breakdown, electric strength, 93, 223
'electromechanical, 252

Brewster's angle, 540-543
and polarization by reflection, 547

Broadside array, 683

Capacitance:
as approximation to short transmission

line, 589-592, 601
coaxial cylindrical electrodes, 176-177
concentric spherical electrodes, 176-

177
energy stored in, 212-213
force on, 219-223
any geometry, 172
isolated sphere, 178, 213
parallel plate electrodes, 173-177
per unit length on transmission line,

570, 572
power flow in, 491-493
reflections from at end of transmission

line, 593-594
and resistance, 177
in series or parallel, 242-243
slanted conducting planes, 273
two contacting spheres, 178-181
two wire line, 101-103

Cartesian coordinates, 29-30
Cauchy's equation, 563
Cauchy-Riemann equations, 305
Chalmers, J. A., 293
Characteristic admittance, 579
Characteristic impedance, 579
Charge:

by contact, 50
differential elements, 60
distributions, 59-63

711
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and electric field, 56-57
force between two electrons, 56
forces on, 51-52
and Gauss's law, 74-76
polarization, 140-142, 149

Charge relaxation, series lossy capacitor,
184-189

time, 182-184
transient, 182
uniformly charged sphere, 183-184

Child-Langmuir law, 200
Circuit theory as quasi-static approxima-

tion, 490
Circular polarization, 515-516
Circulation, 29

differential sized contour, 30
and Stokes' theorem, 35

Coaxial cable, capacitance, 176-177
inductance, 456-458
resistance, 172

Coefficient of coupling, 415
Coercive electric field, 151
Coercive magnetic field, 356-357
Cole-Cole plot, 234
Collision frequency, 154
Commutator, 429
Complex permittivity, 509, 524
Complex Poynting's theorem, 494-496
Complex propagation constant, 530-532
Conductance per unit length, 190
Conduction, 51

drift-diffusion, 156-159
Ohmic, 159-160
superconductors, 160-161

Conductivity, 159-160
of earth's atmosphere, 195
and resistance, 170

Conjugate functions, 305
Conservation of charge, 152-154

boundary condition, 168-169
inconsistency with Ampere's law, 488-

489
on perfect conductor with time varying

surface charge, 537
Conservation of energy, 199
Constitutive laws:

linear dielectrics, 143-146
linear magnetic materials, 352, 356
Ohm's law, 159-160
superconductors, 160-161

Convection currents, 182, 194-195
Coordinate systems, 2-7

Cartesian (rectangular), 2-4
circular cylindrical, 4-7
inertial, 417

spherical, 4-7
Coulomb's force law, 54-55
Critical angle, 541-544
Cross (Vector) product, 13-16

and curl operation, 30
Crystal binding energy, 205-206
Curl:

Cartesian (rectangular) coordinates,
29-30

circulation, 29-31
curvilinear coordinates, 31
cylindrical coordinates, 31-33
of electric field, 86
of gradient, 38-39
of magnetic field, 333
spherical coordinates, 33-35
and Stokes' theorem, 35-38

Current, 152-154
boundary condition, 168-169
density, 153-154
over earth, 196
between electrodes, 169-170
through lossless capacitor, 178
through series lossy capacitor, 187-189
sheet, as source of non-uniform plane

waves, 532-534
as source of uniform plane waves,

500-503
Curvilinear coordinates, general, 46
Cut-off in rectangular waveguides, 638-

641
Cyclotron, 319-321

frequency, 316
Cylinder:

magnetically permeable, 357-359
and method of images, 97-103
permanently polarized, 166-168
surface charged, 80-82
with surface current, 335-336
in uniform electric field, 273-277

perfectly conducting, 278
perfectly insulating, 279

volume charged, 72, 82
with volume current, 336

Cylindrical coordinates, curl, 31
divergence, 24-26
gradient, 17

Debye length, 157-159
Debye unit, 139
Dees, 319
Del operator, 16

and complex propagation vector, 531
and curl, 30
and divergence, 24

___
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and gradient, 16
Delta function, 187
Diamagnetism, 349-352
Dichroism, 517
Dielectric, 143

coating, 525-528
constant, 146-147
linear, 146-147
modeled as dilute suspension of con-

ducting spheres, 293
and point charge, 164-165
waveguide, 644-648

Difference equations:
capacitance of two contacting spheres,

179-181
distributed circuits, 47-48
self-excited electrostatic induction

machines, 227-230
transient transmission line waves, 586-

587
Differential:

charge elements, 60
current elements, 323
cylindrical charge element, 81-82
lengths and del operator, 16-17
line, surface, and volume elements, 4
planar charge element, 68
spherical charge element, 79-80

Diffusion, coefficient, 156
equation, 191

Diode, vacuum tube, 198-201
Dipole electric field:

far from permanently polarized cylin-
der, 168

far from two oppositely charged elec-
trodes, 169, 172

along symmetry axis, 58-59
two dimensional, 231, 274

Dipole moment, electric, 137
magnetic, 345

Directional cosines, 41
Dispersion, complex waves, 531

light, 563
Displacement current, 154, 178

as correction to Ampere's law, 488-489
Displacement field, 143

boundary condition, 163-164
parallel plate capacitor, 175
permanently polarized cylinder, 166-

168
in series capacitor, 185

Distortionless transmission line, 603
Distributed circuits:

backward wave, 650
inductive-capacitive, 47-48

resistive-capacitive, 189-194
transmission line model, 575-576

Divergence:
Cartesian (rectangular) coordinates, 23-

24
of curl, 39
curvilinear coordinates, 24
cylindrical coordinates, 24-26
of electric field, 83
of magnetic field, 333
spherical coordinates, 26
theorem, 26-28

and Gauss's law, 82-83
relating curl over volume to surface

integral, 44
relating gradient over volume to sur-

face integral, 43
Domains, ferroelectric, 50

ferromagnetic, 356-357
Dominant waveguide mode, 640
Doppler frequency shifts, 507-508
Dot (scalar) product, 11-13

and divergence operation, 24
and gradient operation, 16

Double refraction, 518-520
Double stub matching, 625-629
Drift-diffusion conduction, 156-159

Earth, fair weather electric field, 195
magnetic field, 424-425

Eddy currents, 401
Effective length of radiating electric di-

pole, 676-677
Einstein's relation, 156
Einstein's theory of relativity, 207
Electrets, 151

force on, 218
measurement of polarization, 239-240

Electric breakdown, 93, 223-224
mechanical, 252

Electric dipole, 136
electric field, 139
moment, 137-140, 231
potential, 136-137
radiating, 667-671
units, 139

Electric field, 56-57
boundary conditions, normal compo-

nent, 83, 165-166
tangential component, 162-163

of charge distribution, 63-64
of charged particle precipitation onto

sphere, 293
of cylinder with, surface charge, 71,

80-82
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volume charge, 72, 82
in conducting box, 269
discontinuity across surface charge, 83
of disk with surface charge, 69-71
due to lossy charged sphere, 183
due to spatially periodic potential sheet,

266
due to superposition of point charges,

57-58
energy density, 208-209
and Faraday's law, 395
of finite length line charge, 89
and gradient of potential, 86
around high voltage insulator bushing,

284
of hoop with line charge, 69
between hyperbolic electrodes, 262
of infinitely long line charge, 64-65
of infinite sheets of surface charge, 65-

69
line integral, 85-86
local field around electric dipole, 145-

146
around lossy cylinder, 276
around lossy sphere, 289
numerical method, 298
around permanently polarized cylinder,

166-168
of permanently polarized cylinder, 166-

168
of point charge above dielectric bound-

ary, 165
of point charge near grounded plane,

107
of point charge near grounded sphere,

106
of radiating electric dipole, 671
in resistive box, 263
in resistor, coaxial cylinder, 172

concentric sphere, 173
parallel plate, 171

of sphere with, surface charge, 76-79
volume charge, 79-80

transformation, 417
between two cones, 286
of two infinitely long opposite polarity

line charges, 94
of two point charges, 58-59
of uniformly charged volume, 68-69

Electric field lines:
around charged sphere in uniform field,

297
around cylinder in uniform field, 276-

277
due to spatially periodic potential

sheet, 267
of electric dipole, 139
around high voltage insulator bushing,

284
between hyperbolic electrodes, 262
of radiating electric dipole, 671-673
within rectangular waveguide, 636, 639
around two infinitely long opposite

polarity line charges, 95-96
around uncharged sphere in uniform

field, 290-291
Electric potential, 86-87

of charge distribution, 87
within closed conducting box, 268, 300
due to spatially periodic potential sheet,

266
and electric field, 86-87
of finite length line charge, 88-89
around high voltage insulator bushing,

282-284
between hyperbolic electrodes, 262
of infinitely long line charge, 94
inside square conducting box, 299-301
of isolated sphere with charge, 109
around lossy cylinder in uniform elec-

tric field, 274
around lossy sphere in uniform electric

field, 288
within open resistive box, 263
of point charge, 87
of point charge above dielectric bound-

ary, 165
of point charge and grounded plane,

107
of point charge and grounded sphere,

103
of sphere with, surface charge, 90-91

volume charge, 90-91
between two cones, 286
of two infinitely long line charges, 94
between upper atmosphere and earth's

surface, 196-197
and zero potential reference, ground,

87
Electric susceptibility, 146
Electromechanical breakdown, 252
Electromotive force (EMF), 395

due to switching, 433
due to time varying number of coil

turns, 433-435
in magnetic circuits, 406

Electron, beam injection into dielectrics,
201

charge and mass of, 56
radius of, 207

I
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Electronic polarization, 136
Electron volts, 206
Electroscope, 53-54
Electrostatic generators, and Faraday's

ice pail experiment, 53-54
induction machines, 224-230
Van de Graaff, 223-224

Electrostatic induction, 51-53
Faraday's ice pail experiment, 53-54
machines, 224-230

Electrostatic precipitation, 293, 307
Electrostatic radiating field, 671
Electrostriction, 151
Elliptical polarization, 515
Element factor, 683
Endfire array, 685
Energy:

binding, of atom, 211-212
of crystal, 205-206

and capacitance, 212-213, 220
and charge distributions, 204-208
conservation theorem, 199
and current distributions, 454
density, electric field, 208-209

magnetic field, 441-455
and inductance, 454
stored in charged spheres, 210

Equipotential, 84-85
Euerle, W. C., 227
Exponential transmission line, 649
External inductance, 456-457

Fair weather electric field, 195
Farad, 175
Faraday, M., 394

cage, 78
disk, 420-422
ice pail experiment, 53-54

Faraday's law of induction, 394-397,
489

and betatron, 403
for moving media, 417
and paradoxes, 430-435
and resistive loop, 412
and Stokes'theorem, 404

Far field radiation, 671
Fermat's principle, 562
Ferroelectrics, 149-151
Ferromagnetism, 357
Fiber optics, 550-552
Field emission, 109
Field lines, see Electric field lines;

Magnetic field lines
Flux, 22

and divergence, 21-26

and divergence theorem, 26-28
and Gauss's law, 74-75
and magnetic field, 338
magnetic through square loop, 342-343
and sources, 21-22
and vector potential, 338

Force:
on capacitor, 219-223
Coulomb's law, 54-56
on current carrying slab, 441, 444
between current sheets, 329
due to pressure gradient, 155
on electric dipole, 216
gravitational, 56
on inductor, 461
interfacial, 264
on linear induction machine, 449-450
between line charge and cylinder, 99
between line charge and plane, 97
between line current and perfect con-

ductor or infinitely permeable
medium, 363

between line currents, 314-315
on magnetically permeable medium,

363
on magnetic block, 465
on magnetic dipole, 352, 368-370
on magnetizable current loop, 370-375
on MHD machine, 430
on moving charge, 314-315
on one turn loop, 464
between point charge and dielectric

boundary, 165
between point charge and grounded

plane, 108
between point charge and grounded

sphere, 105
between point charges, 51-56
between point charge and sphere of

constant charge, 109
between point charge and sphere of

constant potential, 110
on polarizable medium, 215-219
on relay, 463
on surface charge, 213-215
between two contacting spheres, 181
between two cylinders, 100

Fourier series, 267
Frequency, 505-506
Fringing fields, 173-175
Fundamental waveguide mode, 640

Galilean coordinate transformation, 505
Galilean electric field transformation, 417
Garton, C. G., 252
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Gas conduction model, 154-155
Gauge, setting, 665
Gauss's law, 75, 489

and boundary conditions:
normal component of current density,

168
normal component of displacement

field, 163-164
normal component of polarization,

165-166
normal component of e0 E, 83, 165-

166
and charge distributions, 75
and charge injection into dielectrics,

201-202
and conservation of charge, 154
and cylinders of charge, 80-82
and displacement field, 143
and divergence theorem, 82-83
and lossy charged spheres, 183-184
for magnetic field, 333
and point charge inside or outside vol-

ume, 74-75
and polarization field, 142
and resistors, coaxial cylinder, 172

parallel plate, 171
spherical, 173

and spheres of charge, 76-80
Generalized reflection coefficient, 607-

608
Generators, 427-429
Geometric relations between coordinate

systems, 7
Gibbs phenomenon, 269
Gradient:

in Cartesian (rectangular) coordinates,
16-17

in cylindrical coordinates, 17
and del operator, 16
and electric potential, 86
and line integral, 18-21
of reciprocal distance, 73
in spherical coordinates, 17-18
theorem, 43-44, 334, 370

Gravitational force, 56
Green's reciprocity theorem, 124
Green's theorem, 44
Ground, 87
Group velocity, 513

on distortionless transmission line, 603
in waveguide, 641

Guard ring, 173-174
Gyromagnetic ratio, 385

Half wave plate, 519

Hall effect, 321-322
Hall voltage, 322
Harmonics, 267-269
Helix, 317
Helmholtz coil, 331
Helmholtz equation, 631
Helmholtz theorem, 337-338, 665
H field, see Magnetic field
High voltage bushing, 282-284
Holes, 154, 321
Homopolar generator, 420-422

periodic speed reversals, 426-427
self-excited, 422-424
self-excited ac operation, 424-425

Horenstein, M. N., 282
Hyperbolic electrodes, 261-262
Hyperbolic functions, 264-265
Hysteresis, ferroelectric, 150-151

magnetic, 356-357
and Poynting's theorem, 553

Identities, vector, 38-39, 46-47
Images, see Method of Images
Impedance, characteristic, 579

of free space, 498
wave, 498

Impulse current, 187
Index of refraction, 540
Inductance:

of coaxial cable, 456-458, 575
external, 456-457
and ideal transformer, 414-415
internal, 457-458
and magnetic circuits, 407-411
mutual, 398
as quasi-static approximations to trans-

mission lines, 589-592, 601
reflections from at end of transmission

line, 594-595
and resistance and capacitance, 458-

459
self, 407
of solenoid, 408
of square loop, 343
of toroid, 409
per unit length on transmission line,

570, 572
Induction, electromagnetic, 394-395

electrostatic, 51-54, 224-230
machine, 446-450

Inertial coordinate system, 417
Internal inductance, 457-458
International system of units, 55
Ionic crystal energy, 205-206
Ionic polarization, 136-137

_·



Index 717

Ionosphere plane wave propagation, 511-
512, 557

Isotopes, 318-319

Kelvin's dynamo, 227
Kerr effect, 520, 558
Kinetic energy, 199
Kirchoff's current law, 154, 490
Kirchoff's laws on transmission lines,

569-570
Kirchoff's voltage law, 86, 490

Laminations, 401-402, 470-471
Lange's Handbook of Chemistry, 147
Langevin equation, 251

for magnetic dipoles, 355
Langmuir- Child law, 200
Laplace's equation, 93, 258

Cartesian (rectangular) coordinates,
260

cylindrical coordinates, 271
and magnetic scalar potential, 365
spherical coordinates, 284

Laplacian of reciprocal distance, 73-74
Larmor angular velocity, 316
Laser, 517
Law of sines and cosines, 41
Leakage flux, 415
Left circular polarization, 516
Legendre's equation, 287
Legendre's polynomials, 287-288
Lenz's law, 395-397

and betatron, 403
Leyden jar, 227
L'H8pital's rule, 589
Lightning producing atmospheric charge,

197
Light pipe, 550-552, 565
Light velocity, 56, 497
Linear dielectrics, 143-147
Linear induction machine, 446-450
Linear magnetic material, 352, 356
Linear polarization, 515
Line charge:

distributions, 60
finite length, 88-89
hoop, 69
infinitely long, 64-65
method of images, 96-103
near conducting plane, 96-97
near cylinder, 97-99
two parallel, 93-96
two wire line, 99-103

Line current, 324
Line integral, 18-21

of electric field, 85
of gradient, 19-20
and Stokes' theorem, 36
and work, 18-19

Local electric field, 145-146
Lord Kelvin's dynamo, 227
Lorentz field, 238
Lorentz force law, 314-316
Lorentz gauge, 665
Lorentz transformation, 417, 505
Lossy capacitor, 184-189

Madelung, electrostatic energy, 205
Magnesium isotopes, 319
Magnetic charge, 489
Magnetic circuits, 405-407
Magnetic diffusion, 435

with convection, 444-446
equation, 437
Reynold's number, 446
skin depth, 442-443
transient, 438-441

Magnetic dipole, 344
field of, 346
radiation from, 679-681
vector potential, 345, 680

Magnetic energy:
density, 455
and electrical work, 452
and forces, 460-461
and inductance, 454
and mechanical work, 453, 460-461
stored in current distribution, 454

Magnetic field, 314, 322-323
and Ampere's circuital law, 333-334
boundary conditions, 359-360
due to cylinder of volume current, 336
due to finite length line current, 341
due to finite width surface current,

342
due to hollow cylinder of surface cur-

rent, 332, 336
due to hoop of line current, 330
due to infinitely long line current, 324-

325
due to magnetization, 348-349
due to single current sheet, 327
due to slab of volume current, 327
due to two hoops of line current

(Helmholtz coil), 331
due to two parallel current sheets, 328
in Helmholtz coil, 331
and Gauss's law, 332-333
of line current above perfect conductor

or infinitely permeable medium, 363
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of line current in permeable cylinder,
358

in magnetic circuits, 405-407, 411
of magnetic dipole, 346
in magnetic slab within uniform field,

361
of radiating electric dipole, 670
of radiating magnetic dipole, 681
in solenoid, 408
of sphere in uniform field, 364-367
in toroid, 409
and vector potential, 336-338

Magnetic field lines, 342, 366-367
Magnetic flux, 333, 343

in magnetic circuits, 406-411
Magnetic flux density, 349
Magnetic scalar potential, 365
Magnetic susceptibility, 350, 352
Magnetite, 343
Magnetization, 343

currents, 346-348
Magnetohydrodynamics (MHD), 430
Magnetomotive force (mmf), 409
Magnetron, 375-376
Mahajan, S., 206
Malus, law of, 518
Mass spectrogr--.h, 318-319
Matched tran.,1ission line, 582, 584
Maxwell's equations, 489, 664
Meissner effect, 451
Melcher, J. R., 227, 264, 420, 435
Method of images, 96

line charge near conducting plane, 96-
97

line charge near cylinder, 97-99
line charge near dielectric cylinder,

238-239
line current above perfect conductor or

infinitely permeable material, 361-
363

point charge near grounded plane,
106-107

point charge near grounded sphere,
103-106

point charge near sphere of constant
charge, 109

point charge near sphere of constant
potential, 110

two contacting spheres, 178-181
two parallel line charges, 93-96
two wire line, 99-103

M field, 343
MHD, 430
Michelson-Morley experiment, 503
Millikan oil drop experiment, 110-111

Mirror, 547
MKSA System of units, 55
Mobility, 156, 201, 293
Modulus of elasticity, 252
Momentum, angular, 350
Motors, 427-429
Mutual inductance, 398

Near radiation field, 671
Newton's force law, 155
Nondispersive waves, 503
Nonuniform plane waves, 529, 532-533

and critical angle, 542
Normal component boundary conditions:

current density, 168
displacement field, 163-164
magnetic field, 360
polarization and e0 E, 165-166

Normal vector:
and boundary condition on displace-

ment field, 163-164
and contour (line) integral, 29
and divergence theorem, 27
and flux, 22
integrated over closed surface, 44
and surface integral, 22

Numerical method of solution to Poisson's
equation, 297-301

Oblique incidence of plane waves, onto
dielectric, 538-543

onto perfect conductor, 534-537
Oersted, 314
Ohmic losses, of plane waves, 508-511

in transmission lines, 602-606
in waveguides, 643-644

Ohm's law, 159-160
with convection currents, 182
in moving conductors, 418

Open circuited transmission lines, 585,
589-590, 599-600

Optical fibers, 550-552
Orientational polarization, 136-137
Orthogonal vectors and cross product, 14
Orthogonal vectors and dot product, 11-

12

Paddle wheel model for circulation, 30-31
Parallelogram, and cross (vector) product,

13
rule for vector addition and subtraction,

9-10
Parallelpiped volume and scalar triple

product, 42
Paramagnetism, 352-356

I _·
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Perfect conductor, 159-160
Period, 506
Permeability, of free space, 322

magnetic, 352, 356
Permeance, 411
Permittivity:

complex, 509, 524
dielectric, 146-147
of free space, 56
frequency dependent, 511

P field, 140, 165-166. See also Polariza-
tion

Phase velocity, 513
on distortionless transmission line, 603
in waveguide, 641

Photoelastic stress, 520
Piezoelectricity, 151
Planck's constant, 350
Plane waves, 496-497

losses, 508-511
non-uniform, 530-533
normal incidence onto lossless dielec-

tric, 522-523
normal incidence onto lossy dielectric,

524-525
normal incidence onto perfect conduc-

tor, 520-522
oblique incidence onto dielectrics, 538-

544
oblique incidence onto perfect conduc-

tors, 534-537
power flow, 498, 532
uniform, 529-530

Plasma, conduction model, 154-155
frequency, 161, 511
wave propagation, 5i1-512

Pleines,J., 206
Point charge:

above dielectric boundary, 164-165
within dielectric sphere, 147-149
force on, 55-58
near plane, 106-108
in plasma, 158-159
radiation from, 666-667
near sphere, 103-110

Poisson equation, 93, 258
and Helmholtz theorem, 338
and radiating waves, 665-666
within vacuum tube diode, 199

Poisson-Boltzmann equation, 157
Polariscope, 518-520
Polarizability, 143-144

and dielectric constant, 147
Polarization:

boundary conditions, 165-166

charge, 140-142, 149
cylinder, 166-168
and displacement field, 146-147
electronic, 136
force density, 215-219
ionic, 136
orientational, 136
in parallel plate capacitor, 176-177
by reflection, 546-547
spontaneous, 149-151
of waves, 514-516

Polarizers, 517-520
Polarizing angle, 547
Polar molecule, 136-137
Polar solutions to Laplace's equation,

271-272
Potential:

energy, 199
retarded, 664-667
scalar electric, 86-93, 664-667
scalar magnetic, 365-367
vector, 336, 664-667
see also Electric potential; Vector

potential
Power:

in capacitor, 220
on distributed transmission line, 576-

578
in electric circuits, 493-494
electromagnetic, 491
flow into dielectric by plane waves, 524
in ideal transformer, 415
in inductor, 461
from long dipole antenna, 692
in lossy capacitor, 492
from radiating electric dipole, 675-676
time average, 495
in waveguide, 641

Poynting's theorem, 490-491
complex, 494-496
for high frequency wave propagation,

512
and hysteresis, 553

Poynting's vector, 491
complex, 495
and complex propagation constant, 532
through dielectric coating, 528
due to current sheet, 503
of long dipole antenna, 691
for oblique incidence onto perfect con-

ductor, 536-537
through polarizer, 518
and radiation resistance, 674
in rectangular waveguide, 641-

642
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reflected and transmitted through loss-
less dielectric, 524

time average, 495
of two element array, 683
and vector wavenumber, 530

Precipitator, electrostatic, 293-297, 307
Pressure, 154

force due to, 155
radiation, 522

Primary transformer winding, 415
Prisms, 549-550
Product, cross, 13-16

dot, 11-13
vector, 13-16

Product solutions:
to Helmholtz equation, 632
to Laplace's equation:

Cartesian (rectangular) coordinates,
260

cylindrical coordinates, 271-272
spherical coordinates, 284-288

Pyroelectricity, 151

Q of resonator, 660
Quadrapole, 233
Quarter wave long dielectric coating, 528
Quarter wave long transmission line,

608-610
Quarter wave plate, 520
Quasi-static circuit theory approximation,

490
Quasi-static inductors and capacitors as

approximation to transmission
lines, 589-592

Quasi-static power, 493-494

Radiation:
from electric dipole, 667-677
field, 671
from magnetic dipole, 679-681
pressure, 522
resistance, 674-677, 691-694

Radius of electron, 207
Rationalized units, 55
Rayleigh scattering, 677-679
Reactive circuit elements as short trans-

mission line approximation, 601-
602

Reciprocal distance, 72
and Gauss's law, 74-75
gradient of, 73
laplacian of, 73-74

Reciprocity theorem, 124
Rectangular (Cartesian) coordinate sys-

tem, 2-4

curl, 29-30
divergence, 23-24
gradient, 16-17

Rectangular waveguide, 629-644. See also
Waveguide

Reference potential, 86-87
Reflected wave, plane waves, 520, 522,

535-536, 538, 542
transmission line, 581-582, 586-587,

592-595
Reflection, from mirror, 545

polarization by, 546-548
Reflection coefficient:

arbitrary terminations, 592-593
generalized, 607-608
of plane waves, 523
of resistive transmission line termina-

tions, 581-582
Refractive index, 540
Relative dielectric constant, 146
Relative magnetic permeability, 356
Relativity, 503-505
Relaxation, numerical method, 297-301
Relaxation time, 182

of lossy cylinder in uniform electric
field, 275

of two series lossy dielectrics, 186-187
Reluctance, 409

motor, 482-483
in parallel, 411
in series, 410

Resistance:
between electrodes, 169-170
between coaxial cylindrical electrodes,

172
in open box, 262-264
between parallel plate electrodes, 170-

171
in series and parallel, 186-187
between spherical electrodes, 173

Resistivity, 159
Remanent magnetization, 356-357
Remanent polarization, 151
Resonator, 660
Retarded potentials, 664-667
Reynold's number, magnetic, 446
Right circular polarization, 516
Right handed coordinates, 3-5
Right hand rule:

and circulation, 29-30
and cross products, 13-14
and Faraday's law, 395
and induced current on perfectly con-

ducting sphere, 367
and line integral, 29
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and magnetic dipole moment, 344-345
and magnetic field, 324

Saturation, magnetic, 356-357
polarization, 150-151

Saturation charge, 295
Scalar electric potential, 86-87
Scalar magnetic potential, 365
Scalar potential and radiating waves, 664-

667, 669-670
Scalar (dot) product, 11-13
Scalars, 7-8
Scalar triple product, 42
Schneider, J. M., 201
Seawater skin depth, 443
Secondary transformer winding, 415
Self-excited machines, electrostatic,

224-230
homopolar generator, 422-427

Self-inductance, see Inductance
Separation constants, to Helmholtz equa-

tion, 632
to Laplace's equation, 260-261, 271,

278-280, 286-287
Separation of variables:

in Helmholtz equation, 632
in Laplace's equation:

Cartesian, 260-261, 264-265, 270
cylindrical, 271, 277-282
spherical, 284-288

Short circuited transmission line, 585,
590, 596-599

Sidelobes, 688
Sine integral, 691, 694
SI units, 55-56, 322

capacitance, 175
resistance, 171

Skin depth, 442-443
with plane waves, 511, 525
and surface resistivity, 604-606, 643

Slip, 448
Single stub tuning, 623-625
Sinusoidal steady state:

and complex Poynting's theorem, 494-
495

and linear induction machine, 446-450
and magnetic diffusion, 442-444
and Maxwell's equations, 530-532
and radiating waves, 667-671
and series lossy capacitor, 188-189
and TEM waves, 505-507

Slot in waveguide, 635
Smith chart, 611-615

admittance calculations, 620-621
stub tuning, 623-629

Snell's law, 540
Sohon, H., 431
Solenoid self-inductance, 407-408
Space charge limited conduction, in di-

electrics, 201-203
in vacuum tube diode, 198-201

Speed coefficient, 421
Sphere:

capacitance of isolated, 178
of charge, 61-63, 76-80, 91
charge relaxation in, 183-184
earth as leaky capacitor, 195-197
as electrostatic precipitator, 293-297
lossy in uniform electric field, 288-293
method of images with point charge,

103-110
point charge within dielectric, 147-149
two charged, 92
two contacting, 178-181
in uniform magnetic field, 363-368

Spherical coordinates, 4-6
curl, 33-37
divergence, 26
gradient, 17

Spherical waves, 671
Spin, electron and nucleus, 344
Standing wave, 521-522
Standing wave parameters, 616-620
Stark, K. H., 252
Stewart, T. D., 237
Stokes' theorem, 35-38

and Ampere's law, 349
and electric field, 85-86
and identity of curl of gradient, 38-39
and magnetic flux, 338

Stream function:
of charged particle precipitation onto

sphere, 297
cylindrical coordinates, 276-277
of radiating electric dipole, 672
spherical coordinates, 290-291

Stub tuning, 620-629
Successive relaxation numerical method,

297-301
Superconductors, 160-161

and magnetic fields, 450-451
Surface charge distribution, 60

and boundary condition on current
density, 168

and boundary condition on displace-
ment field, 163-164

and boundary condition on E0 E, 83,
166

on cylinder in uniform electric field,
273-275
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of differential sheets, 68-69
disk, 69-71
electric field due to, 65-67
force on, 213-215
hollow cylinder, 71
induced by line charge near plane, 97
induced by point charge near plane,

107-108
induced by point charge near sphere,

106
and parallel plate capacitor, 175
on slanted conducting planes, 273
on spatially periodic potential sheet,

266
on sphere in uniform electric field, 289
between two lossy dielectrics, 186-187
two parallel opposite polarity sheets,

67-68
Surface conductivity, 435, 601
Susceptibility, electric, 146

magnetic, 350, 352

Tangential component boundary condi-
tions, electric field, 162-163

magnetic field, 359-360
Taylor, G. I., 264
Taylor series expansion, 298

of logarithm, 205
Temperature, ideal gas law, 154-155
TEM waves, see Transverse electromag-

netic waves
TE waves, see Transverse electric waves
Tesla, 314
Test charge, 57
Thermal voltage, 156, 158
Thermionic emission, 108-109

in vacuum tube diode, 198
Thomson, J. J., 377
Till, H. R., 201
Time constant:

charged particle precipitation onto
sphere, 296

charging of lossy cylinder, 273
discharge of earth's atmosphere, 197
distributed lossy cable, 192-194
magnetic diffusion, 440
ohmic charge relaxation, 182-184
resistor-inductor, 436
for self-excited electrostatic induction

machine, 226
series lossy capacitor, 186-188

Time dilation, 505
TM waves, see Transverse magnetic waves
Tolman, R. C., 237
Torque, on electric dipole, 215

on homopolar machine, 422
on magnetic dipole, 353

Toroid, 408-409
Tourmaline, 517
Transformer:

action, 411
autotransformer, 474
ideal, 413-416
impedance, 415-416
real, 416-417
twisted, 473-474

Transient charge relaxation, see Charge
relaxation

Transmission coefficient, 523
Transmission line:

approach to dc steady state, 585-589
equations, 568-576
losses, 602-603
sinusoidal steady state, 595-596
transient waves, 579-595

Transverse electric (TE) waves, in dielec-
tric waveguide, 647-648

in rectangular waveguide, 635-638
power flow, 642-643

Transverse electromagnetic (TEM) waves,
496-497

power flow, 532
transmission lines, 569-574

Transverse magnetic (TM) waves: in di-
electric waveguide, 644-647

power flow, 641-642
in rectangular waveguide, 631-635

Traveling waves, 497-500
Triple product, scalar, 42

vector, 42
Two wire line, 99-103

Uman, M. A., 195
Uniform plane waves, 529-530
Uniqueness, theorem, 258-259

of vector potential, 336-338
Unit:

capacitance, 175
rationalized MKSA, 55-56
resistance, 171
SI, 55-56

Unit vectors, 3-5
divergence and curl of, 45

Unpolarized waves, 546-547

Vacuum tube diode, 198-201
Van de Graaff generator, 223-224
Vector, 8-16

addition and subtraction, 9-11
cross(vector) product, 13-16
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distance between two points, 72
dot(scalar) product, 11-13
identities, 46-47

curl of gradient, 38-39
divergence of curl, 39
triple product, 42

magnitude, 8
multiplication by scalar, 8-9
product, 11-16
scalar (dot) product, 11-13

Vector potential, 336
of current distribution, 338
of finite length line current, 339
of finite width surface current, 341
of line current above perfect conductor

or infinitely permeable medium,
363

of magnetic dipole, 345
and magnetic field lines, 342
and magnetic flux, 338
of radiating electric dipole, 668-669
of radiating waves, 667
uniqueness, 336-338

Velocity:
conduction charge, 156
electromagnetic waves, 500
group, 513
light, 56, 500
phase, 513

Virtual work, 460-461
VSWR, 616-620
Voltage, 86

nonuniqueness, 412
standing wave ratio, 616-620

Volume charge distributions, 60
cylinder, 72-82
slab, 68-69
sphere, 79-80

Von Hippel, A. R., 147

Water, light propagation in, 548-549
Watson, P. K., 201

Wave:
backward, 651
dispersive, 512-514
equation, 496-497
high frequency, 511-512
nondispersive, 503
plane, 496-497
properties, 499-500
radiating, 666-667
solutions, 497-499
sources, 500-503
standing, 521-522
transmission line, 578-579
traveling, 499-500

Waveguide:
dielectric, 644-648
equations, 630
power flow, 641-644
rectangular, 629-644
TE modes, 635-638
TM modes, 631-635
wall losses, 643-644

Wave impedance, 498
Wavelength, 506
Wavenumber, 505-506

on lossy transmission line, 604
as vector, 530

Wheelon, A. D., 181
Whipple, F. J. W., 293
White, H.J., 293
White light, 563
Wimshurst machine, 227
Woodson, H. H., 420, 435
Work:

to assemble charge distribution, 204-208
and dot product, 11
mechanical, 453
to move point charge, 84-85
to overcome electromagnetic forces, 452

Zeeman effect, 378
Zero potential reference, 87





VECTOR IDENTITIES

(AxB). C= A. (B xC)= (CxA). B

Ax(BxC)=B(A C)-C(A - B)

V* (VxA)=O

Vx(Vf)=o

V(fg) = fVg + gVf

V(A B) =(A * V)B + (B -V)A

+Ax(VxB)+Bx(VxA)

V. (fA)= fV. A+(A - V)f

V *(A x B)= B (V x A)-A -(V x B)

v x (A x B) = A(V B) - B(V - A)

+(B . V)A-(A - V)B

Vx(fA)= VfxA+fVxA

(V x A) x A = (A V)A - 'V(A . A)

Vx (Vx A) = V(V - A) - V A

INTEGRAL THEOREMS

Line Integral of a Gradient

Vf dlI =f(b) -f(a)

Divergence Theorem:

f V-AdV= sA dS

Corollaries

t VfdV=f dS

V VxAdV=-s AxdS

Stokes' Theorem:

fA dl= (Vx A) dS

Corollary

ffdl= -fVfxdS

I



MAXWELL'S EQUATIONS

Integral Differential Boundary Conditions

Faraday's Law

E'*dl=-d B-dS VxE=- aB nx(E2'-E')=0.
dtJI at

Ampere's Law with Maxwell's Displacement Current Correction

H.dI=s J,.dS VxH=Jjf+a- nx (H2 -HI) =Kf

+ D dS
dtiJs

Gauss's Law

sD-dS= pfdV

B dS=0

Conservation of Charge

V D=p

V*B=0

n *(D 2 -D 1 ) = of

JdS+ d pfdV = O V J,+f=0 n (J2-JI)+ = 0
s dt at at

Usual Linear Constitutive Laws
D=eE

B=LH

Jf = o(E + vx B) =0E'[Ohm's law for moving media with velocity v]

PHYSICAL CONSTANTS

Constant Symbol

Speed of light in vacuum c
Elementary electron charge e
Electron rest mass m,

eElectron charge to mass ratio e

Proton rest mass mn
Boltzmann constant k
Gravitation constant G
Acceleration of gravity g

Permittivity of free space 60

Permeability of free space Al0
Planck's constant h

Impedance of free space 110=

Avogadro's number

Value

2.9979 x 108 =3 x 108
1.602 x 10 - '9
9.11 x 10- s3 '

1.76 x 10"

1.67 x 10- 27
1.38 x 10-23
6.67 x 10- "
9.807

10-

8.854x 10- 12= 36
36?r

4Tr x 10- 7

6.6256 x 10-
3

4

376.73 - 120ir

6.023 x 1023

units

m/sec
coul
kg

coul/kg

kg
joule/OK
nt-m2/(kg)2

m/(sec)2

farad/m

henry/m
joule-sec

ohms

atoms/mole




