Calculus Review

Divergence Theorem - For the following geometries and fields, solve both sides of the equation $\int_{V}(\nabla \cdot \vec{A}) d V=\oint_{S} \vec{A} \cdot d \vec{S}$. You should verify that both sides yield equal results for a given vector and geometry.

These problems are just mathematical exercises and don't have a physical representation. They are a useful exercise in vector calculus and solving them would indicate a solid understanding in the methods we will use in the course.

Cartesian coordinates: $\vec{A}=x^{2} \hat{x}+(3 x+2) \hat{y}+y z \hat{z}$
For a cube with sides of length 2 m :

1. The cube is centered at the origin, $(0,0,0)$
2. The cube is centered at $(3,0,0)$
3. The cube is centered at $(1,1,1)$
4. Repeat part 1 for a cube with an arbitrary side length, a

$$
\vec{A}_{1}=r \hat{r}+\sin \phi \hat{\phi}+2 \hat{z} \quad \text { for } r<2,
$$

Cylindrical coordinates:

$$
\vec{A}_{2}=\frac{2}{r} \hat{r}+\sin \phi \hat{\phi}+2 \hat{z} \quad \text { for } 2<r
$$

1. For a cylinder defined by $-5<z<5, r<1$
2. For a cylinder defined by $-5<z<5, r<3$
3. For a hollow cylinder defined by $-5<z<5, l<r<3$

Cylindrical coordinates: $\vec{A}_{1}=r \hat{r}+\sin \phi \hat{\phi}+2 z \hat{z}$

1. Repeat part 1 in the previous problem
2. Repeat part 3 in the previous problem

Spherical coordinates: $\vec{A}_{1}=r^{3} \hat{r}+\cos \theta \hat{\theta}+\sin \phi \hat{\phi}$

1. For a sphere with radius 5
2. For a half sphere with radius $5,0<\theta<\pi / 2$
