Review Homework
 Fields and Waves I
 Due December 7, 2000

1. A long line charge is placed on the x axis of $6 \times 10^{-6} \mathrm{C} / \mathrm{m}$. Find the total flux of the electric field through a sphere centered at the origin and having a radius of 2 m .
2. An infinite current sheet is located on the $\mathrm{y}=0$ plane. The surface current density is $10 \mathrm{~A} / \mathrm{m}^{2}$. Find the magnetic flux density at the point $(1,1,1)$.
3. In a Cartesian coordinate system, the plane $\mathrm{z}=2$ has applied potential $\mathrm{V}=-30$. The plane $\mathrm{z}=1$ has applied potential $\mathrm{V}=100$. Solve Laplace's equation in the region between the planes.
4. A sphere made of a particular material which occupies the region $r<1$ has a flux density $D=2 \times 10^{-8} r \vec{a}_{r}$. There is a surface charge on the sphere $\rho_{s}=10^{-8} \mathrm{C} / \mathrm{m}^{2}$. The sphere is surrounded by material 2. Find the normal flux density at the surface of the sphere in material 2.
5. A transformer core has a cross sectional area of $5 \mathrm{~cm}^{2}$. We apply 60 Hertz voltage of 120 Volts RMS. The core material saturates at 1.8 Tesla. How many turns are required to keep the flux density under this value?
6. A coax cable has $\varepsilon_{r}=4$ and inner conductor radius of 1.0 mm and outer conductor radius of 5.0 mm . We apply a voltage of $V=100 \cos \left(12 \pi \times 10^{6} t\right)$. Find the displacement current per meter of length.
