
Gauss’s Law 
 
In differential form . Since this equation is applied to an arbitrary point in 
space, we can use it to determine the charge density once we know the field.  
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(We can use this equation to solve for the field if we know the charge density.  There 
must be some symmetry so that we can eliminate two of the vector components of 

r
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However, during this course, we don’t utilize this technique.) 
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In integral form ∫ ∫=•
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. This equation is used to determine the total field 

(flux) passing through a surface due to the charge enclosed. We can apply this integral if 
we know the charge distribution and we can make assumptions about the behavior of 

r
. 
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Note, the vector  and  are related by the permittivity, ε. D E
 
In this course, we limit our field distributions and geometries to the following symmetric 
problems: 

1. Planar charge density – the charge is an infinite sheet or slab and has a constant 
density on a plane. By symmetry, the electric field on any plane parallel to the 
plane of the charge density will be constant and perpendicular to that plane. 

 
Example:  Slab of charge 

 
 
 
 
 

                              ρv                             ← plane parallel to charge density 
  charge density → 
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      The field will point in the   (or - ) direction for this geometry. For symmetry to 
apply, the charge density can only be a function of x. 

x̂ x̂

 
 
 



2. Cylindrical charge density – the charge is a cylindrical column or shell and has a 
constant density on a surface r = constant. Note, on that surface the charge is 
constant but that does not imply it is a surface charge. By symmetry the electrical 
field will only point in the radial direction, E → Er 

 
Example: Cylindrical volume charge 
 

 
      The field will point in the r   (or - ) direction for this geometry. For symmetry to 
apply, the charge density can only be a function of r. 

ˆ r̂

 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Spherical charge density – the charge is a spherical volume or shell and has a 
constant density on a surface r = constant. Note, on that surface the charge is 
constant but that does not imply it is a surface charge. By symmetry the electrical 
field will only point in the radial direction, E → Er 

 
 

Example: Spherical volume charge 
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 Surface r = constant 
 
 
 
 
      The field will point in the r   (or - ) direction for this geometry. For symmetry to 
apply, the charge density can only be a function of r. 

ˆ r̂

 
An important point to recognize is that these types of problems are presented since they 
are simple geometries that we are capable of solving in class. These symmetric problems 
provide us with a simplification of the left side of the Gauss’s Law equation, which is 
very difficult to achieve in practice. It is rare that an interesting problem will have an 
exact analytic solution. Occasionally, we may be able to simplify the approach when 
considering a solution in a given region, but that solution may not be valid outside of that 
domain. 
 
To solve an integral form of Gauss’s Law, we need to perform the following steps 

1.) Recognize the coordinate system 
2.) Using symmetry, determine which components of the field exist 
3.) Create a Gaussian surface such that the sides of the surface are either parallel or 

perpendicular to the direction of the field in step 2 – remember, the Gaussian 
surface is arbitrary in size 

4.) Determine the total charge inside that surface. The charge distribution can be a 
volume, surface, line and/or point charge. 

5.) Evaluate the flux passing through that surface. If the field is parallel to the 
surface, then 

rr
. If the field is perpendicular to the surface, 

then
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0=• SdE

∫→
S

i dSE∫ •
S

SdE i is the field in the component direction. Again, 

it is important to recognize that this simplification only exists for the symmetric 
problems we use in class. Real problems are much more complex. 

6.) You can now equate the results from step 4 and step 5 to determine the field in the 
region you define the Gaussian surface. 



 
 
As an example, consider a sheet of charge that is located on the plane y = 0 and has a 
charge density ρso. A sheet of charge is a surface charge density. In order for symmetry to 
apply, the sheet must have a uniform charge density. The coordinates are given in the 
lower left. The sheet is infinite in the z-direction (perpendicular to the paper) and in the 
x-direction. 
 
 Gaussian surface 
 
 
 
 
 ρs = ρso 
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The Gaussian surface is drawn as an overhead view. In actuality, it has six sides: 
 
 
 
 S6 – back, z = constant 
 S3 – top, y = constant 
 
  
  y 

S2 
S4 right, x = constant 

left, x = constant  x 
 
  z 
 S1 – bottom, y = constant 
  
 S5 – front, z = constant 
 
 



 
 
Step 1) The geometry is Cartesian 
 
Step 2) By symmetry, the field is in the y direction. It is important to note that the field is 
positive for y > 0 and negative for y < 0 since the charge distribution is positive. The 
direction of the field lines indicates positive or negative field. 
 
 
 Ey 
 
 
 
 ρs = ρsp 
 Ey  
 
 
 
 
 
Step 3) The Gaussian surface is in the previous figures. The box has sides of length, l. 
Also, the box is symmetric about the surface charge distribution. We know that the field 
on a plane parallel to the surface charge is constant, so the magnitude of the field at some 
location y=C must be the same as that at the location y=− C. However, we do not know 
how the field behaves as a function of y. 
 
Step 4) To determine the total charge inside the box, we must integrate across the section 
of surface charge enclosed by our Gaussian surface. 
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The limits of integration indicate that the charge enclosed is independent of the origin. 
Again, a uniform charge distribution is necessary for this assumption. Now, 
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The total charge enclosed is dependent on the dimensions of the Gaussian surface. 
 
Step 5) To determine the total flux passing through the Gaussian surface, we must 
integrate across all six sides that make up that surface, 
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This equation can be simplified by noticing that the flux passing through sides 2, 4, 5, 
and 6 is zero. The field is parallel to those surfaces and therefore the dot product between 
the field and the unit vector normal to the surface is zero, 

rr
. In other words, the 

flux passing through those surfaces is zero. Now, 
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On side 1, d  and the field ‘points’ in the negative y direction. ydxdzS ˆ−→
r

r
On side 3, d  and the field ‘points’ in the positive y direction. ydxdzS ˆ→
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For both sides  dxdzESdE y=•
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The 2 indicates that both integrals yield the same results. Again, the limits of integration 
indicate an arbitrary sized box. 
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Step 6) Equate sides to find the field. 
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We have the magnitude of the field. Note, the magnitude of the field is independent of y 
and that the dimensions of the Gaussian surface vanish from the solution. We still need to 
include the direction, so a complete solution would look like. 
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