1. For a vector $\bar{A}=x^{2} \hat{a}_{x}+y \hat{a}_{y}+(5 z-y) \hat{a}_{z}$. Find the divergence $(\nabla \cdot \bar{A})$
2. Is the divergence a measure of the flux of the vector? Is it a measure of the circulation of the vector?

Preparation Assignment Due 9/6/2000

1. Sketch the vector field $F(x, y)=x \hat{a}_{x}$.
2. A scalar field is given by $V=\frac{Q \cos \theta}{r^{2}}$ for $r \neq 0$. Find the gradient in the appropriate coordinate system. Find the value of θ at which the r and θ components of the gradient are equal.

Fields and Waves I, HW 1

Due 9/7/2000

1. For a vector $F=x \hat{a}_{x}-2 y \hat{a}_{z}$, find the total flux leaving the box with vertices $(2,1,0),(2,1,1),(2,0,1),(2,0,0),(0,1,0),(0,1,1),(0,0,0)$ and $(0,0,1)$ by evaluating $\oint \bar{F} \cdot d \bar{S}$ and then also find the flux by using the divergence theorem.
2. The work done to move a charge from point a to point b is equal to the line integral of the dot product of the force and path length, $\oint F \cdot d \ell$. If the force on a unit charge is given by $F(x, y, z)=3 x \hat{a}_{x}+4 z \hat{a}_{y}-4 \hat{a}_{z}$, how much work is done to move the charge from $(0,0,1)$ to $(0,0,-3)$?
3. Use rectangular coordinates to show that for any scalar function f, the curl of the gradient is zero $(\nabla \times \nabla f=0)$
