## Homework 1

Due Thursday, January 24 at 6:00

## 1) Voltage on a transmission line

As we saw in class, when the load and line are mismatched, the maximum voltage on the transmission line is dependent on position. For a 300 $\Omega$  load and 100 $\Omega$  line, plot the total voltage on a few wavelengths of line for  $t = [0, \frac{T}{8}, \frac{T}{4}, \frac{3T}{8}, \frac{T}{2}, \frac{5T}{8}, \frac{3T}{4}, \frac{7T}{8}, T]$ . Plot the standing wave envelope on the same figure. Use an incident voltage amplitude of 5V and assume that the source and line are matched.

Repeat the plots for a matched load and line.

Repeat the plots for a load that is a short circuit.

All plots should have labels on the axis and the frequency should be indicated.

## 2) Reflection coeficients and input impedance

In the figure on the next page, an oscilloscope is connected to a coaxial transmission line to monitor the signal. Since we are trying to be sneaky, reflections need to be avoided. What is the minimum frequency that would cause a reflected wave with 10% of the incident voltage? Use  $50~\Omega$  coax with propagation velocity of .66c.

Will we see interference effects using the equipment in the classroom?



Figure 1: Problem 2 Geometry