Preparation Assignment Due Oct. 10, 2000

Fields and Waves I

1. Name 3 common devices that rely on Farraday's law for their operation.

2. A current transformer is a toroid with a uniform winding. Assume the major radius is R and the minor radius is a. If there are N turns on the toroid what is the emf if we pass I Amperes through the toroid? Is there an emf due to currents outside the toroid? Explain.

Preparation Assignment - Due October 11, 2000

1. A train is traveling at 100 km/hr along a track whose rails are 2 m apart. The vertical component of the earth's magnetic field is about .5 Gauss. Find the emf across the track.

2. One strategy for maglev trains is to have a large magnet on the train and an aluminum (good conductor) plate under the train. As the train travels along the plate a voltage is induced in the plate and currents flow which lift the train. Why do they lift (push) rather than attract the train?

Homework 5, Fields and Waves I

Due October 12, 2000

1. A coil is formed by winding N=10 turns of wire into a loop of radius $a = 10 \ cm$. The loop is in the x - y plane with center at the origin. The loop is closed with a resistor of value $R = 5 \ \Omega$. There is a magnetic flux density given by $B = 0.2 * (2\hat{a}_y + 3\hat{a}_z) \sin 1000t \ T$.

a) Find the flux linking the winding.

b) Find the EMF of the winding.

c) Find the current in the winding.

2. A rectangular loop of wire is located in the x - y plane. Two sides are parallel to the x axis and are 2 m long. The two sides parallel to the y axis are 0.5 m long. The total resistance of the wire is 5 Ω and we can ignore the inductance. There is a magnetic field given by $B = 0.2e^{-0.1y}\hat{a}_z T$. The loop is moving at velocity $u = 5\hat{a}_y m/s$. At the instant that the 2 sides of the loop are at $y_1 = 2 m$ and y = 2.5 m

- a) Find the flux linkage of the loop
- b) Find the current in the loop.
- c) How much force is required to keep the coil moving?
- d) How much mechanical power is being put into the system.
- e) How much power is dissipated in the resistance?
- f) Comment on the results of parts (d) and (e).

3. A circuit is shown in Figure 3, where a magnetic field $B = 2 \sin 377t$ links the circuit. There is no flux outside the circuit. What are the readings of the 3 ideal voltmeters?

4. In Figure 4, a swinging bar generator has horizontal harmonic motion with velocity $u = \omega r \cos \omega t$. The ac current in the winding produces a uniform magnetic field in the air gap of $B = B_0 \cos \omega t$. Find the induced voltage in the bar.