Fields and Waves I - Fall 2000

Preparation Assignment - Due Oct. 30, 2000

An FM radio signal is traveling in free space. It has a form

 $H(y) = 3 \times 10^{-3} e^{-j0.68\pi y} \hat{a}_x \; A/m$

Find the frequency Find the time domain expression

Preparation Assignment - Due Nov.1, 2000

An electric field in free space is given by

$$E = 50\cos(10^3t + \beta x)\hat{a}_y$$

Find the direction of propagation. Find the β and the time to travel a distance λ Sketch the wave at t = 0, T/4, T/2.

Homework - Due November 2, 2000

1. A lossless transmission line in air has a characteristic impedance of $Z_0 = 70 \ \Omega$ and phase constant of $\beta = 3$ radians/meter at 100 Mhz. Find the inductance and capacitance per meter.

2. The one dimensional wave equation is

$$\frac{\partial^2 E}{\partial x^2} = \frac{1}{U^2} \frac{\partial^2 E}{\partial t^2}$$

where U is the velocity. Show that any function of (x-Ut) is a solution. Suggestion - plug in E = f(x - Ut). Be careful about evaluating the derivatives.

3. A telephone line has $R = 30 \ \Omega/km$ $L = 100 \ mH/km$, G = 0, and $C = 20 \ \mu F/km$. At 1 kHz find the characteristic impedance, the propagation constant and the phase velocity.

4. A transmission line has $\omega = 10^6$, $\alpha = 0.921 Np/m$, $\beta = 1 rad/m$, and $Z_0 = 60 + j40 \Omega$. The source end is connected to a voltage of $10\angle 0^\circ$ and $Z_g = 40 \Omega$. The line is 2m long and the load end is terminated by $Z_l = 20 + j50 \Omega$. Find the input impedance, the sending end current and the current at the middle of the line.