
UNIT XII 
Transmission Lines – Transients 

 

A. Common Applications of Transmission Lines with Pulsed or Transient Signals 

 1. Internet LAN 

 2. Telephone land lines 

 3. Audio cables 

 4. Power lines 

 5. Circuit interconnects 

 6. Pulse forming networks (pulse power) 

B.  Two Simple Transmission Line Experiments 

 1.  Lab Experiment 

 2.  PSpice Experiment 

C.  Circuit Model of Transmission Lines 

 Transmission lines generally consist of two or more parallel or concentric wires. For two 

wires, the most common configuration is the twisted pair. Concentric wires form coaxial cables. 

Both configurations are used extensively. Two conductors near one another will have a 

capacitance, inductance, resistance and conductance. Since we wish to characterize transmission 

lines of any length, we will use per unit length values for these parameters. A small length of line 

will have the following circuit configuration. ∆z

R

G

L

C

 
where R r z= ∆ , L l z= ∆ , G g , and z= ∆ C c z= ∆ . r, l, g, and c are the resistance, inductance, 

conductance and capacitance per unit length for the line. Note that for a commercially available 

transmission line (e.g. RG58A/U cable), the values for these per unit length parameters are 

readily available; most catalogs contain this information.  
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C.  Transient Analysis 

Begin with the voltage and current relationships for the four components. V RI= , V L dI
dt

= , 

I GV= , and I C dV
dt

= . Each of these expressions holds for the voltage across the component 

and the current through the component. Also, begin with the simplest case – the lossless 
transmission line with R and G both equal to zero. The circuit diagram for a small section of the 
line of length  becomes ∆z

C

L

 

I1 I2 

+ +
V2 V1 

where the input and output voltages and currents have been labeled. Applying the equations for 

the inductor and capacitor, we see that V V L dI
dt1 2

1− =  and I I C dV
dt1 2

2− = . We should rewrite 

these expressions and re-label the diagram to more generally describe any section of the line 
beginning at some location z. First, begin with the diagram 
 

i z z( )+ ∆i(z) l z∆ 

v(z) 
+ +

v z z( )+ ∆  c z∆

 
where we have also used the per unit length values for the induc
equations above then become 

v z v z z l z di z
dt

( ) ( ) ( )
− + =∆ ∆  

i z i z z c z dv z z
dt

( ) ( ) ( )
− + =

+
∆ ∆

∆

The finite difference spatial derivatives of voltage and current ar
v z z v z

z
l di z

dt
( ) ( ) ( )+ −

= −
∆
∆

 

i z z i z
z

c dv z z
dt

( ) ( ) ( )+ −
= −

+∆
∆

∆

where the minus signs appear because the order of the terms has
, the left hand sides of these expressions become the par

and, since there are now both z and t derivatives, the time deriva
derivative 

∆z → 0

∂
∂

∂
∂

v z
z

l i z
t

( ) ( )
= −  and ∂

∂
∂i z

z
c v( )

= −

2 
 

tance and capacitance. The two 

 

e then 

 

 been reversed. In the limit as 
tial derivatives with respect to z 
tive also becomes a partial 

∂
z
t
( )  



Either v or i can be eliminated by combining the two equations 
∂
∂

∂
∂ ∂

2

2

2v z
z

l i z
z t

( ) ( )
= −  and ∂

∂ ∂
∂
∂

2 2

2

i z
t z

c v z
t

( ) ( )
= −  

or 
∂
∂

∂
∂ ∂

2

2

2v z
z

l i z
z t

( ) ( )
= − = − = +l i z

t z
lc v z

t
∂
∂ ∂

∂
∂

2 2

2

( ) ( )  

∂
∂

∂
∂

2

2

2

2

v z
z

lc v z
t

( ) ( )
=  

or following the same steps 
∂
∂

∂
∂

2

2

2

2

i z
z

lc i z
t

( ) ( )
=  

 
Note: The wave equation is discussed in section 10.7 of Boyce and DiPrima. 
 
This equation has been studied for a very long time, so we know a great deal about it. However, 
before we find the general solution, we will do another experiment to see if we can identify some 
of the characteristics of the solution. Set up the following configuration in PSpice: 

Rp

50
V

0

RL

50

Vp

TD = 0

TF = 0
PW = 1us
PER = 20us

V1 = 0

TR = 0

V2 = 1

T

0  
Specify a characteristic impedance of the transmission line of 50 Ohms and a delay time of 
10µs . Have the pulsed voltage source produce a short (1µs  ) pulse with an amplitude of 1V. 
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           Time

0s 1us 2us 3us 4us 5us 6us 7us 8us 9us 10us
V(Rp:2)

0V

100mV

200mV

300mV

400mV

500mV

 



Note that the source voltage appears to the right of the resistor, since this resistance is the 
internal impedance of the voltage source. Now we will observe the voltage at both the source and 
the load ends of the transmission line. 

           Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us
V(T:B+)

0V

250mV

500mV

SEL>>

V(Rp:2)
0V

250mV

500mV

 

Source 

Load 

Note that the voltage at the load end looks exactly like the voltage at the source end with one 
significant difference – it is delayed in time by 10 microseconds. We can also do this experiment 
with the other model of the transmission line (Tlossy) and be more realistic. If you do this, you 
will observe that the delay is linearly proportional to the length of the line. This means that the 
pulse propagation speed is a constant or is a fundamental characteristic of the line. To  see what 
the velocity is, repeat the pulse experiment using Tlossy and an inductance per unit length of 
0.195 micro Henries and a capacitance per unity length of 78 pico Farads. Try different lengths 
until the delay is 10 microseconds. You should find that the length must be 2564 meters or 2.564 
km and, thus, the velocity of propagation on the line is 2.564 x 108 m/s. Notice how close to the 
speed of light this is. In fact, this is exactly the speed of light c in the material that is used as an 
insulator for the transmission line (which is always a bit less than c). It is also given, in general, 

by the following expression u
lc

=
1 . If the voltage source at the source is written generally as 

, the voltage at the load end is v fsource = ( )t v f t z
uload = −⎛

⎝⎜
⎞
⎠⎟

. In general, v z f t z
u

( ) = −⎛
⎝⎜

⎞
⎠⎟

is the 

voltage anywhere on the line. It will be easier to keep track of things if we change notation just a 

bit and use V V  as the voltage on the line and t z
u

= −⎛
⎝⎜

⎞
⎠⎟

I I t z
u

= −⎛
⎝⎜

⎞
⎠⎟

 as the current on the line. 

This is the way we indicate mathematically that the voltage and current at any point on the 
transmission line looks exactly like the voltage or current at the source but delayed in time by 
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t z
u

= . If our thinking has been correct, these expressions should satisfy the wave equations we 

derived above.  

We begin by evaluating the first and second derivatives of V t z
u

−⎛
⎝⎜

⎞
⎠⎟

 

∂
∂
V
z u

V t z
u

= − −⎛
⎝⎜

⎞
⎠⎟

1 '  and ∂
∂
V
t

V t z
u

= −⎛
⎝⎜

⎞
⎠⎟

'  

∂
∂

2

2 2

1V
z u

V t z
u

= + −⎛
⎝⎜

⎞
⎠⎟

"  and ∂
∂

2

2

V
t

V t z
u

= −⎛
⎝⎜

⎞
⎠⎟

"  

which we can use to see if we have the correct solution to the wave equation. 
∂
∂

∂
∂

2

2 2

2

2

1V
z u

V lc V
t

lcV= + = =" "  

We see that V V t z
u

= −⎛
⎝⎜

⎞
⎠⎟

is a solution as long as u
lc

=
1 . The simple case analyzed with 

PSpice showed that this is the velocity on the line, so we have the correct solution.  
 
One of the first topics discussed in any differential equation text (see section 1.3 of Boyce and 
DiPrima) is the order of the equation, which is the order of the highest derivative that appears in 
the equation. The wave equation is a second order, partial differential equation and, thus, it will 
have two solutions. This information usually appears to be only of academic interest, with little 
real-world relevance. However, for the wave equation, this very important characteristic has a 
beautiful direct connection to reality. To see this, consider the following communications system 
in which box 1 talks to box 2. 
 

Box 1 Box 2 
 
 
 
 
Most of the time, we want both boxes to be able to initiate communication. Thus, pulses can go 
from box 1 to box 2 or from box 2 to box 1. If we define the positive z direction from left to 
right, the velocity for the former case is positive  and for the latter case it is negative uu > 0 < 0 . 
There is nothing fundamentally different about communicating in each direction, so the solutions 
must look the same, except for the sign of the velocity. We can write this information as 

V V t z
u+ = −⎛

⎝⎜
⎞
⎠⎟

     V V t z
u− = +⎛

⎝⎜
⎞
⎠⎟

 

I I t z
u+ = −⎛

⎝⎜
⎞
⎠⎟

     I I t z
u− = +⎛

⎝⎜
⎞
⎠⎟

 

or 

V V t z
u± =

⎛
⎝⎜

⎞
⎠⎟

m      I I t z
u± =

⎛
⎝⎜

⎞
⎠⎟

m  
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It is left as an exercise for the reader to plug these expressions into the wave equation to show 
that they indeed do work. The elegance of this description is that we can see that there are two 
essentially identical solutions, one for each of the two directions of communication.  
 
Notice that the solutions to the wave equation are very general. At no point was the pulse shape 
specified. Thus, we should see that essentially any pulse shape should propagate the same way as 
long as the transmission line is lossless. Trying this with PSpice, we see the following: 

          Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us
V(Tg:B+) V(Rpg:2)

0V

250mV

500mV
V(Rp:2) V(T:B+)

0V

250mV

500mV

SEL>>

 
Both a square pulse and a Gaussian pulse are shown. The pulses at the left are as observed at the 
source end and at the right at the load end. These very different pulses clearly propagate at 
exactly the same speed.  
 
Since both pulses can exist on the line at the same time, the most general solution for the voltage 
and current waves must include both.  

V z t V t z
u

V t z
u

( , ) = −⎛
⎝⎜

⎞
⎠⎟
+ +⎛

⎝⎜
⎞
⎠⎟+ −  

I z t I t z
u

I t z
u

( , ) = −⎛
⎝⎜

⎞
⎠⎟
+ +⎛

⎝⎜
⎞
⎠⎟+ −  

It is not necessary to solve for V and I separately since there is a connection between the two. 
Start with one of the relations that couple voltage and current: 

∂
∂

∂
∂

V
z

l I
t

= −  

Try the following solution for the current 

I z t
lu

V t z
u lu

V t z
u

( , ) = −⎛
⎝⎜

⎞
⎠⎟
− +⎛

⎝⎜
⎞
⎠⎟+ −

1 1  

then 
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∂
∂

∂
∂

∂
∂

V
z u

V
u

V l I
t

l
lu

V
lu

V
u

V
u

V V
z

= − + = − = − −⎧
⎨
⎩

⎫
⎬
⎭
= − + =+ − + − + −

1 1 1 1 1 1' ' ' ' ' '  QED 

There is a more convenient way to write the current in terms of impedance, as is discussed 
below. 
 
 
Transmission Line Impedance and the Analysis of Pulse Propagation 
 
For a transmission line with a resistive load RL the ratio of the voltage to the current at the load is 

given by V
I

RL= . At any location on the line, this ratio is given by V z t
I z t

Z z t( , )
( , )

( , )= which we 

can call the generalized impedance. Looking at only the positive traveling pulse, we see that 

Z V z t
I z t

lu l
c+

+

+

= = =
( , )
( , )

. For the negative traveling pulse, Z V z t
I z t

lu l
c−

−

−

= = − = −
( , )
( , )

. Since 

both pulses are have the same ratio (disregarding the sign), we define this as the characteristic 

impedance of the line Z l
co = . For a standard Cable TV coaxial cable, we find that Zo = 75Ω , 

while for the RG58A/U cables we use in the classroom or lab, Zo = 50Ω . The ratio of the total 
voltage (both positive and negative pulses) to the total current on the line is called the total 

impedance and is given by Z
V z t V z t
V z t V z to

+ −

+ −

+
−

( , ) ( , )
( , ) ( , )

. We generically represent transmission lines as 

shown below, giving their characteristic impedance and length. 
 
 

z=0 z=d

Zo 
 

RL  
 
 
 
At the load end, we have a choice of designating the location as z=0 or z=d for a line of length d. 
The choice depends on whether we are more interested in the load or the source. Let us choose 
the latter in this case. Then at z=d,  

Z
V d t V d t
V d t V d t

Ro
+ −

+ −

+
−

=
( , ) ( , )
( , ) ( , ) L . This can be rewritten to determine the ratio of the negative traveling 

voltage to the positive traveling voltage as a result of reflection off of the load V
V

R Z
R Z

L o

L o

−

+

=
−
+

. 

We call this ratio the reflection coefficient at the load and write it as  

ΓL
L o

L o

V
V

R Z
R Z

= =
−
+

−

+

 

If we are given a positive traveling pulse, we can use this expression to determine the magnitude 
of the negative traveling pulse, if there is one. For example, if there is a 1V pulse traveling in the 
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opositive z direction down the line and if R ZL = , then ΓL
o o

o o

Z Z
Z Z

=
−
+

= 0 . We call this a matched 

load, since the load impedance equals the line impedance. When this is the case, there is no 
reflected pulse and the 1V pulse appears at the load. The reader is encouraged to try this with 
PSpice to see that no reflection occurs when the load is matched.  
 
 
At the source end of the line, we generally find a voltage source with some finite internal 
impedance. 
 Rs 

z=0 z=d

 
 Vs RL  
 
 
To determine the voltage that appears at the input of the line, we have to solve the voltage 

divider expression V Z
Z R

Vin
in

in s
s=

+
 where Zin is the input impedance of the line. If we assume 

that there are no pulses on the line before time t=0, then at this time there will only be a positive 
traveling pulse on the line since it takes a finite time for the pulse to propagate to the load end, 
reflect off of the load, and propagate back. Thus, from the expression for the total impedance of 

the line, Z Z
V z t V z t
V z t V z t

Z
V z t
V z t

Zin o o o=
+
−

=+ −

+ −

+

+

( , ) ( , )
( , ) ( , )

( , )
( , )

= . Thus, the initial input impedance of the 

line is the characteristic impedance. Because of this, Zo is also called the surge impedance since 
it is the impedance seen by any large change in voltage or current. Given this input impedance, 

the initial voltage seen on the line is V V t
Z

Z R
V

Z
Z R

Vin
in

in s
s

o

o s
s= =

+
=

+
( , )0 . From the point of 

view of the source, the transmission line looks like a lumped impedance Zin. 
 

Rs  
 

Vs  Zin
 
 
Recall from Circuits that maximum power transfer occurs when the two resistances in this 
diagram are equal. Thus, the load is matched to the line when Rs=Zin=Zo. We will see below that 
matching adds another benefit. Note that to launch a 1V pulse on the line, the initial pulse 
amplitude has to be 2V for the matched case.  
 
Thus far, we have determined the initial pulse amplitude launched on the line and what happens 
when the pulse reaches the load. If the pulse at least partially reflects from the load (due to a 
mismatch), then a negative traveling pulse will result. When this pulse gets back to the source 
end, it will see the source impedance in the same way as the positive traveling pulse saw the load 



impedance. Thus, another reflection will occur unless the source is matched to the line. The 
reflection coefficient at the source is given by  

Γs
s o

s o

R Z
R Z

=
−
+

 

Here we see the additional benefit of matching the source to the line. Should there be a reflection 
off of the load, resulting in a negative traveling pulse returning to the source, a matched source 
will eliminate any further reflections. Ideally, we want one pulse to be launched on the line and 
nothing returned to the source, but we cannot always achieve this.  
Reviewing, we can determine the magnitude of the initial positive traveling pulse from the 
voltage divider relationship. 

 
This pulse propagates down to the load and can reflect resulting in a negative traveling pulse 
whose magnitude is given by the product of the voltage divider expression and the reflection 
coefficient at the load. 
 
 
 
 
When this pulse reaches the source end, it can reflect again resulting in another positive traveling 
pulse. 

 
This process can go on forever if the source and load are not matched to the line. However, since 
the reflection coefficient is always less than or equal to 1, eventually the pulses become so small 
that we can ignore them. The only exception is when the reflection coefficients have unit 
magnitude and the line is perfectly lossless. Then the pulses go on forever. Fortunately, this 
never happens in the real world.  
 
We need one more piece of information to fully characterize the pulses on the line – the time it 

takes to propagate from one end of the line to the other T d
u

= . This tells us when a pulse 

launched at time t=0 will appear at the load. However, we don’t yet have a simple method for 
systematically incorporating and representing all of the pulses, reflection events, etc. Such a 
method must allow us to show both spatial and temporal information simultaneously since what 
we observe on the line depends on both where we look and when. The most popular diagram for 
this purpose goes by several names, but we will call it a bounce diagram. It is shown below. 
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z=dz=0

tt

3T

2T

T

3T

2T

T

 
 
 
 
 Path of the pulse 
 
 
 
 
 
 
 
 
 
 
In this diagram, the path in space and time followed by the pulse, or any part of the pulse, is 
shown by the dashed line. Note that the diagram clearly shows that an observer (the ‘scope) at 
the load will not see a pulse until a time T later than it is launched on the line at the source end. 
Also, since pulses are of finite length, the lead end of the pulse will have already reflected before 
the trailing end. Thus, an observer at the load will simultaneously see the sum of both the 
incident (positive traveling) and reflected (negative traveling) pulses and not the individual 
pulses.  
 
The step-by-step procedure for using the bounce diagram: 

1. Draw the basic bounce diagram shown above and label it with the value of T d
u

=  

determined from the line length and velocity.  
2. Determine the initial pulse amplitude using the voltage divider relationship and label the 

first leg of the path with this value. 

V Z
Z R

Vin
o

o s
s=

+
 

3. Determine the reflection coefficient at the load 

ΓL
L o

L o

R Z
R Z

=
−
+

 

 and label the second leg of the path with ΓL inV . 
4. Determine the reflection coefficient at the source 

Γs
s o

s o

R Z
R Z

=
−
+

 

 and label the remaining legs of the path (a fully labeled diagram is shown below). 
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Γ Γs L inV2

Γ Γs L inV

ΓL inV

Vin

z=dz=0

tt

3T

2T

T

3T

2T

T
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From this diagram, we can see that the pulse amplitude observed at the load will be equal to 

and, thus, can be larger or smaller than the initial pulse, depending on the sign of (Vin L1+ Γ ΓL . 
 
Example 1. Matched Line (Rs=RL=Zo) Length = d and velocity = u. 
 
 

V V
in

s=
2

z=dz=0

tt

3T

2T

T

3T

2T

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. T d
u

=  

2. V Z
Z R

V Z
Z Z

V V
in

o

o s
s

o

o o
s

s=
+

=
+

=
2

 



3. ΓL
L o

L o

o o

o o

R Z
R Z

Z Z
Z Z

=
−
+

=
−
+

= 0  so analysis stops here. 

 
 
Example 2. Matched Source (Rs=Zo), Short Circuit Load (RL=0) Length = d and velocity = u. 
 

1. T d
u

=  

2. V Z
Z R

V Z
Z Z

V V
in

o

o s
s

o

o o
s

s=
+

=
+

=
2

which is the amplitude on the first leg of the path. 

3. ΓL
L o

L o

o

o

R Z
R Z

Z
Z

=
−
+

=
−
+

= −
0
0

1 so the amplitude on the second leg of the path will be 

 ΓL in inV V= −

4. Γs
s o

s o

o o

o o

R Z
R Z

Z Z
Z Z

=
−
+

=
−
+

= 0 so analysis stops here. 

 
 

V V
in

s=
2

ΓL in
sV V

= −
2

z=dz=0

tt

3T

2T

T

3T

2T

T
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Example 3. Matched Source (Rs=Zo), Open Circuit Load ( RL = ∞ ) Length = d and velocity = u. 
This is left as an exercise for the reader. 
 
 
Example 4. 50  Source and Load (RΩ s=RL=50Ω ), 75ΩLine ( Zo = 75Ω ) Length = d and 
velocity = u. 
 

1. T d
u

=  

2. V Z
Z R

V V V Vin
o

o s
s s

s
s=

+
=

+
= =

75
75 50

3
5

0 6.  which is the amplitude on the first leg of the 

path. 

3. ΓL
L o

L o

R Z
R Z

=
−
+

=
−
+

= −
50 75
50 75

0 2.  so the amplitude on the second leg of the path will be 

 ΓL in s sV V= − = −( . )( . ) .0 2 0 6 012V

4. Γs
s o

s o

R Z
R Z

=
−
+

=
−
+

= −
50 75
50 75

0 2.  so the amplitude on the third leg of the path will be 

Γ Γs L in s sV V V= − − = +( . )( . )( . ) .0 2 0 2 0 6 0 024

V

 
5. On the fourth leg of the path, the amplitude will be sufficiently small to end our analysis 

for now  Γ Γs L in s sV V2 0 2 0 2 0 2 0 6 0 0048= − − − = −( . )( . )( . )( . ) .

0 6. Vs

− 012. Vs

0 024. Vs

− 0 0048. Vs

z=dz=0

tt

3T

2T

T

3T

2T

T
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Our real goal here is to predict the voltages that will be observed at the input (source) and output 
(load) ends of the lines, since these are the only accessible locations. Using PSpice to generate 
the observed voltages, we have for example 1 

          Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us
V(T:B+)

0V

250mV

500mV
V(Rp:2)

0V

250mV

500mV

SEL>>

 

Source 

Load 

The same pulse appears at both ends, separated by the time T which, in this case, is 10 
microseconds.  
 
For example 2, we expect to see no voltage at the load, since it is a short circuit. The initial pulse 
reappears at the source after a time 2T but inverted since the reflection coefficient is -1. 

14 
          Time

0s 5us 10us 15us 20us 25us 30us
V(T:B+)

-500mV

0V

500mV

SEL>>

V(Rp:2)
-500mV

0V

500mV

 

Source 

Load 



For example 3, the pulses go on for some time, but get small quickly.  

          Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us 50us
V(T:B+)

-400mV

0V

400mV

800mV

SEL>>

V(Rp:2)
-400mV

0V

400mV

800mV

 

Source 

Load 

Note that the voltages observed include the contributions from two pulses at each point since the 
incident and reflected pulses are observed simultaneously.  
 
Up to this point, we have not considered non-resistive loads (e.g. capacitors or inductors), nor 
have we addressed lossy lines (e.g. with r or g not equal to zero). We will address these issues 
more thoroughly when we consider time-harmonic (single frequency) analysis. For now, we will 
include only a few more examples using PSpice to show what can happen. 
Example 5 50  Source and Line Matched (RΩ s=Zo=50Ω ), Capacitive Load (C=0.1 microfarad).  
Length = 2564meters and velocity = 2.564x108 meters per second. 

15 
          Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us 50us
V(CL:1)

-500mV

0V

500mV

SEL>>

V(Tl:A+)
-500mV

0V

500mV

 

Source 

Load 



Note that the pulse mostly reflects from the capacitor. This is because it is unable to charge up 
quickly enough to store all of the energy in the pulse. Since the pulse is fully absorbed in the 
matched source, once it returns to the source, only one pulse is observed at the load. Since the 
load takes some time to discharge through the line, an identical decaying voltage is also observed 
at the source with the usual delay of the transmission line propagation time.  
 
Example 6 Matched Lossy Line (Rs=RL=Zo) Length = 2564m and velocity = 2.564x108m/s. The 
line is lossy with a distributed resistance of 0.1 ohms per meter. 
 
Even with this small loss, the pulse that appears at the load is much smaller than for the lossless 
line. Also, the addition of the resistive term slightly mismatches the line, so there will now be a 
small amount of reflection at each end. Finally, notice that the resistance of the line means that it 
cannot charge and discharge instantaneously and, thus, finite rise and fall times are observed in 
the signals. We will return to this effect after we have considered time harmonic analysis of 
transmission lines. Recall that a finite length pulse contains a broad spectrum of frequencies and, 
thus, the analysis of pulses can also be done using the results from signal frequency sine wave 
excitation of the line. One only needs to take the Fourier transform of the initial pulse, determine 
what happens to each of the frequencies in the pulse and then take the inverse transform of the 
result.  
 
The line analyzed here is about 2.5 km long (like in a cable TV system). Most practical lines 
have much more loss than is assumed here. Thus, one can appreciate the necessity for re-
amplifying the signal from time-to-time if a useful voltage level is to be obtained at the load. In 
general, the signal is also distorted, as is the case here. 
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The reader is encouraged to try other configurations using PSpice. This is certainly much quicker 
than setting up actual lab experiments. The results from some real 100 meter cables are shown 
below. We will discuss these also after steady state analysis. 
 

 

 
 
 
Extra Bounce Diagram 
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