
UNIT XIII 
 

Transmission Lines – Sinusoidal Steady-State 

 

A. Common Applications of Transmission Lines with Steady-State Signals 

a. Telephone land lines 

b. Audio cables 

c. Power lines 

d. Cable TV 

e. Circuit Interconnects 

B. Two Simple Transmission Line Experiments 

a. Lab Experiment 

b. PSpice Experiment 

C. Circuit Model of Transmission Lines 

Transmission lines generally consist of two or more parallel or concentric wires. For 

two wires, the most common configuration is the twisted pair. Concentric wires form 

coaxial cables. Both configurations are used extensively. Two conductors near one 

another will have a capacitance, inductance, resistance and conductance. Since we wish 

to characterize transmission lines of any length, we will use per unit length values for 

these parameters. A small length of line ∆z will have the following circuit configuration. 

R

G

L

C

 
where R r z= ∆ , L l z= ∆ , G g z= ∆ , and C c z= ∆ . r, l, g, and c are the resistance, 

inductance, conductance and capacitance per unit length for the line. Note that for a 

commercially available transmission line (e.g. RG58/U cable), the values for these per 

unit length parameters are readily available; most catalogs contain this information.  

 

D. Steady-State Analysis  
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Begin with the voltage and current relationships for the four components using phasor 
notation. (Assume a time dependence of e .) Vj tω RI= , V j LI= ω , I GV= , and 
I j CV= ω . Each of these expressions holds for the voltage across the component and the 
current through the component. Also, begin with the simplest case – the lossless 
transmission line with R and G both equal to zero. The circuit diagram for a small section 
of the line of length  becomes ∆z

C

L

 

I1 I2 

V1 
+

V2 
+

where the input and output voltages and currents have been labeled. Applying the 
equations for the inductor and capacitor, we see that V V j LI1 2 1− = ω  and 
I I j CV1 2− = 2ω . We should rewrite these expressions and re-label the diagram to more 
generally describe any section of the line beginning at some location z. First, begin with 
the diagram 
 

i z z( )+ ∆i(z) l z∆ 

 

v(z) 
+ +

v z z( )+ ∆  c z∆

 
where we have also used the per unit length values for the induc
The two equations above then become 

v z v z z j l zi z( ) ( ) ( )− + =∆ ∆ω  
i z i z z j c zv z z( ) ( ) ( )− + = +∆ ∆ ∆ω  

The finite difference spatial derivatives of voltage and current ar
v z z v z

z
j li z( ) ( ) ( )+ −

= −
∆
∆

ω  

i z z i z
z

j cv z z( ) ( ) ( )+ −
= − +

∆
∆

∆ω  

where the minus signs appear because the order of the terms has
limit as , the left hand sides of these expressions become
respect to z (which we leave in the form of partial derivatives be
is implied in phasor formalism) 

∆z → 0

∂
∂

ωv z
z

j li z( ) ( )= −  and ∂
∂

ωi z
z

j cv z( ) (= −

Either v or i can be eliminated by combining the two equations 

( )∂
∂

ω ω ω
2

2
2v z

z
j l j c v z lcv z( ) ( ) ( )= − − = −

∂
∂

ω
2

2
2 0v z

z
lcv z( ) ( )+ =  

2 
tance and capacitance. 

e then 

 been reversed. In the 
 the derivatives with 
cause the time derivative 

)  

 



 
or following the same steps 

∂
∂

ω
2

2
2 0i z

z
lci z( ) ( )+ =  

This equation has been studied for a very long time, so we know a great deal about it. 
While it is actually a wave equation, in this form it looks like a harmonic oscillator 
equation, which has the following general solution: 

v z V e V ej z j z( ) = ++
−

−
+β β  

i z I e I ej z j z( ) = ++
−

−
+β β  

As we will see, the first term in each expression characterizes a voltage or current wave 
propagating in the positive z direction while the second term is a wave in the negative z 
direction. It may be useful to recall here that almost every useful analytic solution to a 
practical engineering problem can be written in the form of an exponential, sine or cosine 
with real or imaginary arguments. Thus, it should be no surprise that the solution looks 
like this. We will see below that this expression does indeed give us the kind of a solution 
we expect for signal propagation on a transmission line.  
 
To confirm that the correct solution has been identified, we plug the expressions into the 
appropriate equations.  

( ) ( )∂
∂

β ββ βv z
z

V j e V j ej z j z( )
= − + ++

−
−

+  

( )( ) ( )( )∂
∂

β β β ββ β
2

2

v z
z

V j j e V j j ej z j z( )
= − − + + ++

−
−

+  

( ) ( )∂
∂

β ββ β
2

2
2 2v z β 2

z
V e V e vj z j z( ) ( )= − + − = −+

−
−

+ z  

which verifies the solution as long as . We call β ω2 2= lc β  the propagation constant for 
the wave, which will relate simply to the wavelength. The same analysis confirms the 
solution for the current wave. However, it is more convenient to evaluate the current 
wave from the voltage wave. 

( ) ( )∂
∂

β ββ βv z ω
z

V j e V j e j li zj z j z( ) ( )= − + + = −+
−

−
+  

( ) ( )V e V e
l

i z
j z j z

+
−

−
++ −

=
β β

ω

β β

( )  

V e V e
l i z

j z j z
+

−
−

+−
=

β β

ω
β

( )  

i z V e V e
l
c

j z j z

( ) = −+
−

−
+β β

 

The ratio of the voltage to the current is the impedance at any point on the line 

Z z v z
i z

V e V e
V e V e

l
c

j z j z

j z j z( ) ( )
( )

= =
+
−

+
−

−
+

+
−

−
+

β β

β β  
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Thus, the term l
c

has the units of impedance (Ohms) so it is called the characteristic 

impedance of the lossless transmission line: Z l
co = . For lossy transmission lines, we 

will see that this has a more general form. The general form of the voltage and current 
solutions is then 

v z V e V ej z j z( ) = ++
−

−
+β β  

i z V e V e
Z

V
Z

e V
Z

e
j z j z

o o

j z

o

j z( ) = −
= −+

−
−

+
+ − − +

β β
β β  

 
So far, we have only found the voltage and current in terms of phasor notation. To better 
understand what these expressions represent, we need to convert them to a space-time 
form in the usual manner for phasors. That is, we multiply the expression by e  and 
take the real part. 

j tω

( ) ( )v z t v z e V e e V e ej t j z j t j z j t( , ) Re ( ) Re= = ++
−

−
+ω β ω β ω  

( )v z t V e e e V e e ej j z j t j j z j t( , ) Re= ++
−

−
++ −θ β ω θ β ω  

Note that, in general, we have to assume that the amplitudes are also complex, although 
this is not always the case.  

( ) ( )v z t V t z V t z( , ) cos cos= − + + + ++ + − −ω β θ ω β θ  
Consider just the first term ( )V t z+ +− +cos ω β θ and choose some realistic values for the 
parameters. For example, for an experiment that can be done easily with a standard set of 
lab equipment (including RG58/U coaxial cables), let f = 10 MHz, l H= 0196. µ , 
c pF= 78 , and V+ V= 1 . Then, , and ω π π= = =2 2 10 6 283 107 7f x x. β ω= =lc 0 245. . 
We are free to choose θ+ to be anything we want since we can pick the time when t = 0. 
Begin by plotting the first term as a function of z at time t = 0. (Generated with Matlab.) 
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We see that this produces a sinusoidal function of position that repeats in a distance a 
little more than 25 meters. (25.641 meters to be exact). Waves vary in space such that 
they repeat every wavelength. Thus, it appears that the wavelength of the voltage 
expression is 25+ meters. Next, plot the expression at three distinct times t = 0, t = 
0.02x10-6s, and t = 0.04x10-6s. 

 

Note that as time 
enough informati
at z = 0. At t = 0.
meters (10.256 m

which is the spee
of the voltage wa
We could also ha
such a peak in the
zero. That is, for 

or 

Plugging the l and
value for the velo
capacitance per u
the insulator mate

given by λ = u
f

u

 
increases, the sine wave moves to the right (toward positive z). This is 
on to figure out the velocity of the wave. At t = 0, the first peak occurs 
04x10-6s, the first peak occurs at a distance slightly greater than 10 
eters). Thus, the voltage wave propagates at a velocity given by 

u
x

x m
s= =−

10 256
0 02 10

2 564 106
8.

.
.  

d of light in the insulator material of the transmission line. The velocity 
ve was found by following one of the sinusoidal peaks as it moves in z. 
ve found this result from the general expression for the voltage since 
 sinusoid occurs when the derivative of the argument is set equal to 

both forms of the argument found in the voltage expression, 

( )∂
∂

ω β θ ω β ∂
∂t

t z z
t

m m+ = + =± 0 0  

u z
t lc

= = ± = ±
∂
∂

ω
β

1  

 c for the transmission line into this expression gives exactly the same 
city u. As we will see when we address finding the inductance and 
nit length for standard cables, this velocity is indeed the speed of light in 
rial. Recall from your Physics courses that the wavelength of light is 

which we can rewrite as λ ω π
βω

π
β

= = =u
f

2 2 . Thus, β  has a 
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relationship to the wavelengthλ  like ω  has to T, the period of the sine wave. For the 

example above, λ π
β

π
= = = = = =u

f
x2 564 10

10 2564 2 2
0 245

2564
8

7
. .

.
.  QED. 

 
Both signs for u are possible because signals can propagate in either direction. In fact, 
signals can simultaneously propagate in both directions. Since the voltage and current 
signals are waves like light and sound waves, they can reflect off of any changes in the 
line. For example, if a Tee connector is placed at the end of the line and the signal split 
into two lines, some of the signal will reflect off of the Tee and some will transmit into 
the two cables, just as light or sound reflects off of a change in materials. We will see 
more about this below. However, it is useful at this point to recognize that the solution 
developed for current and voltage signals will accommodate mismatch conditions since 
waves can propagate in both directions.  
 
 
 
 
 
 
Note that the characteristic impedance, velocity, etc. for the sinusoidal waves are the 
same as for transients or pulses on transmission lines, as seen in the previous unit.  This is 
to be expected, since a pulse or transient can be split up into individual frequency 
components (Fourier Transform), each of which propagates like a single frequency wave. 
As long as each frequency propagates at the same velocity (as they do in a lossline line), 
characteristics developed for pulses also work for sine waves and vice versa.  

Incident Transmitted 

Reflected 

 
Given that we should expect two waves propagating on the line (one in each direction), 
we will see the same kind of constructive and destructive interference that is observed 
with any kind of a wave. The locations where the waves add or subtract from one another 
will not propagate, but will be fixed in space. Thus, the net affect of the two waves will 
be a standing wave. We call the propagating waves traveling waves to distinguish them 
from the standing waves. It is much easier to observe standing waves since the sit still 
than it is traveling waves since they propagate at the speed of light.  
 
Since the primary cause of standing waves is some kind of a mismatch between 
transmission lines or lines and loads, we consider what happens when we add a simple 
resistive load at the end of a line. 
 

Zo  u RL 

 
z=0 z=d 

 
Transmission lines are usually shown as two parallel wires, even if they really are coaxial 
cables, with the length, characteristic impedance and velocity indicated. One can also 
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describe the line with length, capacitance and inductance per unit length. Recall that, at 
this point, only lossless lines are being considered. We will generalize our results to lossy 
lines after we have fully described this simpler, ideal case. In the diagram above, the 
input end is labeled as z = 0 while the output end is z = d. We are free to choose either 
end as z = 0 depending on the problem being addressed. A great deal of the analysis of 
waves is done by first finding the most convenient representations. Thus, we will be re-
writing voltage and current expressions in different forms, as we did when we 
represented the current wave in terms of the voltage magnitudes and impedance. The next 
step is to recognize that we will usually know what the positive traveling wave magnitude 
V+ is since it is produced by a known source. Thus, we should write the negative 
traveling wave magnitude V- in terms of what we know.  
 

V VL− += Γ  
 
where is called the reflection coefficient at the load since we will only have a negative 
traveling wave if some or all of the positive traveling wave reflects off of the load. This is 
only useful if is relatively straight forward to determine, which it is. To find it, we 
recognize that the voltage and current at the load end of the line must be the same as the 
voltage and current for the load itself. To assure that this is the case, we can set the 
impedance on the line, evaluated at the load, equal to the load impedance. 

ΓL

ΓL

Z d v d
i d

Z V e V e
V e V e

Ro

j d j d

j d j d L( ) ( )
( )

= =
+
−

=+
−

−
+

+
−

−
+

β β

β β  

( )
( )

Z
V e e

V e e
Ro

j d
L

j d

j d
L

j d L
+

− +

+
− +

+

−
=

β β

β β

Γ

Γ
 

This looks like a complicated expression to address. However, at this point we are only 
concerned with what is happening at the load, so we are free to select the load end as z = 
0 and the source end as z = -d. 
 

Zo  u RL 

 
z=-d z=0 

 
Then, we have 

Z v
i

Z V e V e
V e V e

Ro

j j

j j L( ) ( )
( )

0 0
0

0 0

0 0= =
+
−

=+
−

−
+

+
−

−
+

β β

β β  

( )
( )

Z
V
V

Ro
L

L
L

+

+

+
−

=
1
1

Γ
Γ

 

which can be re-written to solve for ΓL  

ΓL
L o

L o

R Z
R Z

=
−
+
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Also, re-writing the voltage and current expressions 
( )v z V e ej z

L
j z( ) = ++

− +β βΓ  

( )i z V
Z

e e
o

j z
L

j z( ) = −+ − +β βΓ  

 
To analyze a transmission line, specify the frequency f, length d, the characteristic 
impedance Zo, the propagation velocity u, the input magnitude V+, and the load 
impedance RL and then determine the propagation constantβ  and the reflection 
coefficient . The voltage and current waves can then be evaluated. Consider a few 
simple cases.  

ΓL

 
First, assume f = 1MHz, d = 400 meters, Zo = 50  Ohms, u = 2x108 m/s, V+ = 1 V, and RL 
= 0. This is the case for a short circuit load. For such a load, we expect that all of the 
incident wave will reflect, which it does.  

ΓL
L o

L o

R Z
R Z

=
−
+

=
−
+

= −
0 50
0 50

1 

We will also need  

β ω π= = =u
f

u
2 0 0314.  

The standing wave pattern, determined by taking the absolute value of the voltage can be 
easily evaluated using Matlab. 
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We see that the voltage is zero at the load end (z = 0), as it must be at a short circuit. At 
this location, the incident and reflected waves are exactly out of phase and they cancel or 
V- = -V+. 50 meters away from the load, the two waves are exactly in phase and add 
constructively resulting in a total magnitude that is twice the incident magnitude. 
Constructive and destructive interference repeats every 100 meters. For wave 
phenomena, absolute distances are not really of interest. Rather, what matters is distance 
as measured in wavelengths. For this case, λ = = =u

f
x

x
2 10

1 10 200
8

6 . Thus, we see 

that the locations where the standing wave is a maximum are separated by λ 2  as are the 
locations where the standing wave is a minimum.  
 
Second, assume everything is the same except that RL = 25 Ohms. Then the standing 
wave pattern is.  

 
The reflection coefficient in this case is  

ΓL
L o

L o

R Z
R Z

=
−
+

=
−
+

= −
25 50
25 50

1
3

 

Thus, the reflected wave cannot fully cancel out the incident wave since it is too small. 
The locations of the maximas and minimas are the same.  
 
To characterize such patterns in general, we define the Voltage Standing Wave Ratio as 

VSWR S L

L

= =
+
−

1
1

Γ
Γ
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since the maximum constructive interference has to be when the two waves line up 
exactly and the magnitude is (V L+ )+1 Γ  while the maximum destructive interference has 
to be when one of the two waves is positive and one is negative and the magnitude is 

 so the ratio will equal S. For the short circuit load (V L+ −1 Γ ) S → ∞  while for the 25 

Ohm load, S L

L

=
+
−

=
−

+
=

1
1

1 1
3

1 1
3

05
Γ
Γ

.  which is consistent with the figure.  

Third, consider a matched case, where RL = 50 Ohms. Then there is no reflected wave  

ΓL =
−
+

=
50 50
50 50

0  

and the standing wave pattern is very, very simple 

 
or the magnitude is the same everywhere. 
 
Fourth, the pattern will change when the load impedance exceeds the characteristic 
impedance. Consider RL = 100 Ohms. Then, the reflection coefficient will be 

ΓL =
−
+

=
100 50
100 50

1
3

 

This means that the incident and reflected waves have the same sign at the load end, so 
the two waves are in phase and the maximum will occur at the load. The first minimum 
will be a quarter wavelength from the load. 
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Otherwise, this looks very much like the standing wave pattern for a 50 Ohm load, which 
is should since the magnitude of the reflection coefficient is the same. Only the sign is 
different.  
 
Finally, for an open circuit load, RL → ∞ , the reflection coefficient will be 

ΓL =
∞ −
∞ +

→
50
50

1 

which has the same magnitude as for the short circuit. Thus, we expect the standing wave 
pattern to look similar, which it does. The only difference is that the maximum occurs at 
the load. In general, for resistive loads, the voltage maximum occurs at the load when 

while a minimum occurs at the load for R ZL > o oR ZL < . Note that the following plot is 
not generated by setting , since Matlab has no idea what RL → ∞ ∞  is. Rather, 

 was used. Essentially, any really large number will suffice.  RL = 10100

11 



  
Once again, we can re-write some of the information we know about waves to show that 
what we observed with these plots is quite general. Start with the expression for the 
voltage wave 

( )v z V e ej z
L

j z( ) = ++
− +β βΓ  

Factor out the phase term 
( ) ( )( )v z V e e V e zj z

L
j z j z( ) = + = ++

− +
+

−β β β1 12Γ Γ  
where we have now defined the generalized reflection coefficient as 

( )Γ Γz eL
j z= + 2β  

Since and e e ej j j0 2 4 1= = =− −π π + e e ej j j− − −= = = −π π π3 5 1, the first two maximas will 

occur at 2 0βz =  and 2 2β πz = −  which are separated by z = =
π
β

λ
2

as we have seen. 

(The arguments must be negative since z is negative.) The same separation occurs for the 
minimas. With this more general expression, we can generalize things somewhat by 
letting the load impedance be complex (i.e. include an inductor or capacitor). When this 
is the case, the reflection coefficient at the load will also be complex.  

Γ Γ Γ
L

L o

L o
L

jZ Z
Z Z

e=
−
+

= θ  

The generalized reflection coefficient becomes 
( )Γ Γ Γ Γz e e eL

j z
L

j j= =+ +2 2β θ zβ  
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The first minimum occurs atθ β πΓ + = −2 z . Since z is negative, the distance to the first 

minimum is zmin =
− −

= − +⎛
⎝⎜

⎞
⎠⎟
= − −

π θ
β

λ π
π

θ
π

λ λθ
π

Γ Γ

2 4 4 4
Γ

4

j

. The first minimum for a 

resistive load is where we saw it before. The first minimum for a complex load moves 
further away from the load if the phase is positive and closer if the phase is negative.  
 
For another example, let Z L = +50 50 . Then ΓL j= +0 2 0 4. .  and the standing wave 
pattern shows that the first minimum has moved to the left, as expected.  

 
The phase of the reflection coefficient is θ πΓ = 0 3524. so that the first minimum will 

occur at z mmin
. . . . .= − − = − − = − +⎛

⎝⎜
⎞
⎠⎟

= − =
λ λθ

π
λ λ π

π
λ λ

4 4 4
0 3524

4
0 25 0 3524

4
338 67 6Γ  

which is where the minimum does indeed occur. The other minimas are separated by λ
2

. 

We saw above that the impedance anywhere on the line can be written as 

Z z v z
i z

Z V e V e
V e V eo

j z j z

j z j z( ) ( )
( )

= =
+
−

+
−

−
+

+
−

−
+

β β

β β  

which can now be written in a more compact form using the generalized reflection 
coefficient 

( )( )
( )( )

( )
( )

Z z Z
V e z
V e z

Z
z
zo

j z

j z o( ) =
+

−
=

+
−

+
−

+
−

β

β

1
1

1
1

Γ

Γ

Γ
Γ
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To avoid having to separately evaluate the reflection coefficient, this expression can be 
written more conveniently.  

Z z Z e e
e e

Z
e Z Z

Z Z
e

e Z Z
Z Z

e
o

j z
L

j z

j z
L

j z o

j z L o

L o

j z

j z L o

L o

j z
( ) = +

−
=

+
−
+

−
−
+

− +

− +

− +

− +

β β

β β

β β

β β

Γ
Γ

 

( ) ( )
( ) ( )

Z z Z
Z Z e Z Z e
Z Z e Z Z eo

L o
j z

L o
j z

L o
j z

L o
j z( ) =

+ + −
+ − −

− +

− +

β β

β β  

( ) ( )
( ) ( )

Z z Z
Z e e Z e e

Z e e Z e eo
L

j z j z
o

j z j z

o
j z j z

L
j z j z

( ) =
+ + −

+ + −

− + − +

− + − +

β β β β

β β β β
 

( )
( )

Z z Z
Z z Z j
Z z Z jo

L o

o L

( )
cos sin
cos sin

=
+ −
+ −

2 2
2 2

β β
β β

z
z

 

Z z Z Z jZ
Z jZo

L o

o L

( ) tan
tan

=
z
z

−
−

β
β

 

 
The form of the general reflection coefficient assumes that we have chosen z = 0 at the 
load end for simplicity. With this expression, we can now address the input impedance of 
the transmission line, which only requires that we evaluate it at z = -d. 

 

Z Z d Z Z jZ
Z jZ din o

L o

o L

= − =
d+

+
( ) tan

tan
β
β

 

 
This is the impedance seen by the source that drives the line. 
 
 Rs 
 
 Vs Zin 
 
 
One of the more profound differences between transmission lines and low frequency 
circuits is that a simple combination of resistors and cables can produce almost any 
impedance. This occurs because of mismatches between the line and the load. When the 
load is not equal to the line impedance, the voltage wave incident on the load will at least 
partially reflect, returning to the source end and interfering either constructively or 
destructively with the source voltage. It is this combination of incident and reflected 
voltage waves that produces the amazing variety of impedances at the input end of the 
line. Let us consider several simple cases to see what can happen.  
 
Example 1: Matched Line ( Z R ZL L= o= ) of arbitrary length. Propagation velocity = u. 
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Z Z Z jZ d
Z jZ d

Zin o
o

o o
o=

+
+

=0 tan
tan

β
β

 

This is the ideal situation where the input impedance is the characteristic impedance no 
matter how long the line is. Clearly this is the best possible circumstance and the reason 
why standard function generators are built to drive 50 Ohm loads since RG58/U cables 
have . Maximum power is transferred to the line and no reflections exist as 
long as all impedances are the same. 

Zo = 50Ω

 
Example 2: Short Circuit Load ( Z RL L= = 0 ), line length d, other conditions the same. 

Z Z jZ d
Z j d

jZ din o
o

o
o=

+
+

=
0

0
tan
tan

tanβ
β

β  

The input impedance of a short circuited line is completely imaginary and can have any 
value from  to , depending on the length of the line. Using Matlab, we can plot 

for line lengths up to three wavelengths.  
− ∞ + ∞

Zin

 

Imaginary 

Real 

Note that the impedance can indeed achieve any imaginary value and that it repeats every 
half wavelength, just like the standing wave pattern.  
 
Example 2: Open Circuit Line ( Z RL L= → ∞ ), line length d, other conditions the same. 

Z Z jZ d
Z j d jZ d

jZ din o
o

o o
o=

∞ +
+ ∞

= = −
tan
tan tan

cotβ
β β

β1  

Again, plotting this for line lengths up to three wavelengths 
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Imaginary 

Real 

Note that  for this case looks exactly like that of the short circuit except that it is 
shifted to the right by a quarter wavelength.  

Zin

 
Example 3: Mismatched Load Smaller than Zo  ( Z RL L= = 25Ω ), line length d, other 
conditions the same. 

Z j d
j din =

+
+

50 25 50
50 25

tan
tan

β
β

 

For this case,  will have both a real and imaginary part at most line lengths. There are 
a couple of conditions that produce totally real input impedances. First, for 

Zin

d = 0
2

3
2

2, , , , ,...λ λ λ λ Z Zin L= =25 . Thus, for line length equal to any integer multiple 

of a half wavelength, . We can see that this is a general result by setting Z Zin L= d n
=

λ
2

 

Z Z
Z jZ n

Z jZ n
Z

Z jZ n

Z jZ nin o

L o

o L

o

L o

o L

=
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟
=

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

tan

tan

tan

tan

β λ

β λ

π
λ

λ

π
λ

λ
2

2

2
2

2
2

 

( )
( )

Z Z
Z jZ n
Z jZ n

Z Z jZ
Z jZ

Z Z
Z

Zin o
L o

o L
o

L o

o L
o

L

o
L=

+
+

=
+
+

= =
tan
tan

π
π

0
0
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Second, for d =

λ λ λ
4

3
4

5
4

, , ,... Zin = 100 . To show the general form of this result, set 

d n
=

λ
4

, for n odd.  

Z Z
Z jZ n

Z jZ n
Z

Z jZ n

Z jZ nin o

L o

o L

o

L o

o L

=
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟
=

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

tan

tan

tan

tan

β λ

β λ

π
λ

λ

π
λ

λ
4

4

2
4

2
4

 

Z Z
Z jZ n

Z jZ n
Z Z jZ

Z jZ
Z Z

Z
Z
Zin o

L o

o L

o
L o

o L
o

o

L

o

L

=
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟
=

+ ∞
+ ∞

= =
tan

tan

π

π
2

2

2

 

For the specific case considered here, Z Z
Zin

o

L

= = =
2 250

25
100 , as expected.  

 
Since it is possible to obtain real Z  for these two sets of line lengths, designers can 
achieve optimal power transfer conditions even when transmission lines and loads do not 
match. We will return to this issue later.  

in
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Power Delivered to the Load Impedance 
 
Our primary goal is to deliver the maximum possible power to the load. Recall from 
circuits, that Phasor notation provides us with a simple way to determine average power. 

P VI VV
Z

V
Z

II Z I Z
ave =

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟Re Re Re Re Re

* *

* *

*

2 2 2 2 2

2 2

 

The power delivered to the transmission line is, thus 

P
V I V

Zave
in in in

in

=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟Re Re

*

*2 2

2

 

Once we know , we can easily determine the power delivered to the line. Thus far, we 
have only considered lossless lines, so the power delivered to the line will equal the 
power delivered to the load (no power is dissipated in the line). Therefore 

Zin

P
V
Z

V
Zave

in

in

L

L

=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟Re Re* *

2 2

2 2
 

For lossy lines, things will not be so simple. 
 
For the three examples we have considered above, the average power is 
 

Examples 1 & 2: Z is imaginary in both cases. in P V
Z

V
j Zave

in

in

in

in

=
⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟ =Re Re*

2 2

2 2
0  

since V is real. Neither an open nor short circuit can dissipate any power, so this is the 
expected answer. 

in
2

 
Example 3: To determine the input voltage, we also need to specify the source impedance 
and voltage. Assume we have set up for matched conditions to the line, if not the load. 
That is V V , .  Note that the maximum power is transferred when the 
input impedance is equal to the load impedance. Power is transferred no matter what the 
length of cable is, but the best conditions occur for particular lengths. The power 
delivered also depends on the frequency, since the length of the line in wavelengths 
varies with frequency. This topic is left for the reader to investigate and will addressed in 
a design project.  

s = 2 R Zs o= = 50Ω
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Lossy Transmission Lines 
 
Another major advantage of using Phasors to analyze transmission lines is that we can 
simply extend the results obtained for lossless lines. Return to the circuit representation 
of a small piece of a transmission line. 

R

G

L

C

 
The series resistance comes from losses in the transmission line conductors while the 
parallel conductance comes from losses in the transmission line insulator. For lossless 
lines, the series impedance per unit length was given by j lω and the parallel admittance 
was j cω . For lossy lines, we only need to replace these terms by r j l+ ω and g j c+ ω , 
respectively. Thus, we should be able to take all of the results obtained so far, replace 
j lω by r j l+ ω and j cω by g j c+ ω  and we will have a complete characterization of 

lossy lines. To do this properly, we have to generalize some of our results first. Listed 
below are the basic building blocks for transmission line analysis for both lossless and 
lossy transmission lines. The terms in the left column are the results obtained thus far 
while the terms in the right column are the corresponding lossy expressions. 
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Expression Lossless Line Lossy Line 
Series Impedance j lω  r j l+ ω  

Parallel Admittance j cω  g j c+ ω  
Zo j l

j c
l
c

ω
ω

=  r j l
g j c
+
+

ω
ω

 

Propagation Constant j j lj c jβ ω ω ω= = lc  γ α β ω ω= + = + +j r j l g j( )( c)
Zin  

Z Z jZ
Z jZ do

L o

o L

d+
+

tan
tan

β
β

 Z Z Z d
Z Z do

L o

o L

+
+

tanh
tanh

γ
γ

 

 
Note that the terms in the lossy column reduce to those in the lossless column when r and 
g are both zero. Given these expressions, we can write the solutions for voltage and 
current, etc. for lossy lines. The basic solution becomes 

v z V e V ez z( ) = ++
−

−
+γ γ  

i z I e I ez z( ) = ++
−

−
+γ γ  

which, when re-written in the several useful ways we found for lossless lines, become 
 

v z V e V ez z( ) = ++
−

−
+γ γ  

i z V
Z

e V
Z

e
o

z

o

z( ) = −+ − − +γ γ  

and 
( )v z V e ez

L
z( ) = ++

− +γ γΓ  

( )i z V
Z

e e
o

z
L

z( ) = −+ − +γ γΓ  

It is left to the reader to check each expression to confirm that they reduce correctly for 
lossless lines. We will consider what these expressions look like in real space and time. 
Consider first just the positive traveling wave V e . Multiplying by and 
taking the real part, one obtains 

V ez z
+

−
+

− −=γ α j zβ e j tω

( ) ( ) ( )Re Re cosV e e V e e e V e t zz j z j t j z j z j t z
+

− −
+

− −
+

−
+= =+α β ω θ α β ω α ω β θ− +  

which looks almost exactly like the expressions we saw for lossless lines except for the 
exponential decay term. This makes intuitive sense because the wave should get smaller 
as it propagates in a lossy line. Thus, the power input at the source end will not equal the 
power delivered to the load end, since some of the wave energy is dissipated in the line. 
If one looks at practical transmission lines (e.g. the RG58/U commonly used in a lab or 
cable TV lines like RG59/U), it is seen that loss is significant.  
 
Low Loss Transmission Lines 
 
Practical transmission lines are not lossless. However, they are generally considered to be 
low loss. That is, the lines generally behave as if they are lossless, except that there is a 
small amount of attenuation. To see more precisely what is meant by low loss, we need 
only return to the basic circuit diagram for a small element of line. 
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R

G

L

C

 
First, we note that the insulators used for transmission lines are very, very good so that g 
is always very much less than j cω . Thus, we simplify our diagram by removing G. 

R

G

L

C

 
For a low loss line, then, we will only consider the effects of the wire resistance as given 
by r. Low loss conditions occur when r j l<< ω . This does not seem like a very precise 
definition, but we will see below that there are several functional conditions under which 
we can consider this to be satisfied. That is, we will be able to use some simplifying 
approximations when this is the case.  
 
Recall that we can fully describe the voltage and current waves if we know γ α β= + j  
and Zo. For the latter 

Z r j l
g j c

r j l
j c

j l
j c

r
j l

l
c

j r
lo =

+
+

≈
+

≈ + ≈ −⎛
⎝⎜

⎞
⎠⎟

ω
ω

ω
ω

ω
ω ω

1 1
2ω

 

where we have used the approximation that 1 1
2

+ ≈ +x x  for x << 1. (The Binomial 

Theorem) Usually, for Zo the small correction term is not very important since it is only 
used to find the magnitude of currents, etc. On the other hand, the correction for 
γ α β= + j  will always be significant since, for some length, any α will eventually 
absorb all wave energy.  

γ α β ω ω ω ω ω ω
ω

= + = + + ≈ + ≈ +j r j l g j c r j l j c j l j c r
j l

( )( ) ( )( ) ( )( ) 1  

γ α β ω
ω

= + ≈ −⎛
⎝⎜

⎞
⎠⎟

j j lc j r
l

1
2

 

or 
j j lβ ω≈ c  

α ω
ω

≈ ⎛
⎝⎜

⎞
⎠⎟
= =lc r

l
r

l
c

r
Zo2

2
2

 

An example or two will demonstrate that this approximation works quite well for a wide 
variety of conditions. Assume the following: f = 1MHz, l H m=. /25µ , . 
For 

c pF m= 100 /
r m= 01. /Ω , the wave is seen to attenuate markedly in 2000 meters. 
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Both the exact and approximate voltages are plotted for this case. Note that they overlap 
exceedingly well. If we lower the frequency by a factor of 5 and increase the resistance 
per unit length by the same amount, we begin to see differences between the two 
expressions. The low loss approximation is the smaller of the two since it over estimates 
the attenuation. However, even here the approximation is not too bad. Checking to see 
the difference between the impedance terms for these cases: 

Case 1: ( )( )r j l j x x= << = =−01 2 10 0 25 10
2

6 6. .ω π j π  

Case 2: ( )( )r j l j x x j= << = =−. . .5 2 0 2 10 25 10
10

6 6ω π π  

so the second case is clearly not satisfied. The voltage plotted as a function of distance 
shows the differences between the exact and approximate expressions. The wavelength is 
about correct, but the attenuation is quite a bit too large.  However, if one only wishes to 
know that the voltage is a lot smaller, then the approximation can be used to get a 
ballpark estimate even when it is not particularly accurate.  
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Distortionless Lines 
 
Note that, in general, the propa
will vary with frequency. Thus
different frequencies that make
be distorted. A simple PSpice 

For a transmission line with r
length d , square an
input and output ends of the lin
characteristic impedance. is

m= 10 000,

Zo
R1

50

V1
TD = 3.5us

TF = .5us

PW = 2us

PER = 500us

V1 = 0

TR = .5us

V2 = 1
Low Loss Approximatio
 

gation constant  γ α β ω ω= + = + +j r j l g j( )( c)  
, when a pulse is launched on a transmission line, the 
 up the pulse will propagate differently and the pulse will 

experiment shows that such distortion does indeed occur. 

m= 0 025. Ω , l H
m= 0195. µ , c pF

m= 78  , g S
m= 0  and 

d Gaussian pulses appear somewhat distorted at both the 
e. The distortion at the input is caused by the non-ideal 
 not purely resistive when there is some loss on the line.  

C1

13pF

R2

50

0

R3

1Meg

LOSSY
T1
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0

R21

50

R23

1Meg

LOSSY
T2

V2

gaussian1u.txt

R22

50 C21

13pF

 

           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us 50us
V(R22:1) V(T1:B+) V(R1:2) V(R21:2)

0V

100mV

200mV

300mV

400mV

500mV

600mV

 
The distortion of the pulse at the input can be somewhat separated from that produced by 
propagation by looking at the two square pulses. The output pulse has been scaled up to 
display with the same scale as the input pulse. Note that it is further distorted. 
 

          Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(R1:2)

0V

200mV

400mV

600mV

Input Pulse

V(R2:1)*11
0V

200mV

400mV

600mV

SEL>>

Output Pulse
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One can also do a modified simulation with a capacitance added to the voltage source to 
compensate for the distortion at the input end due to the characteristic impedance. In this 
case the input pulse now looks reasonably square but the output pulse still has the 
characteristic distortion observed above. This is not perfect compensation, but it does 
show the effect. 

R41

50
LOSSY

T4

0

V4
TD = 3.5us

TF = .5us

PW = 2us

PER = 500us

V1 = 0

TR = .5us

V2 = 1
C41

13pF

R42

50

C42

350n

R43

1Meg

 
 

          Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C42:2)

200mV

400mV

-50mV

550mV

SEL>>

Input Pulse

V(T4:B+)*11

0V

200mV

400mV

550mV

Output Pulse

 
 
A really remarkable result can be obtained by adding some loss to the line. To see this, 
note that γ α β ω ω= + = + +j r j l g j( )( c) significantly simplifies if we can select 

r
l

g
c

= . Then (γ α β ω ω ω= + = + + = +j r j l rc
l

j c c
l

r j l( )( ) ) . We see then that 

α = r c
l

 and β ω= lc . Since our line has no conductance g per unit length, we can set 

it equal to g rc
l

= rather than changing any of the other 3 parameters. When we do this, 

we find g rc
l

S
m

= = 10 µ . This results in more attenuation, since the loss is greater. The 

input pulses are now, however, undistorted. 
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           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us 50us
V(T1:B+) V(R22:1) V(R1:2) V(R21:2)

0V

100mV

200mV

300mV

400mV

500mV

600mV

 
and the output pulses are also undistorted, if quite a bit smaller.  

           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us 50us
V(T1:B+) V(R22:1) V(R1:2) V(R21:2)

0V

2mV

4mV

6mV

8mV

10mV

 
This has a huge practical advantage for long distance communication, since amplifiers 
can be used to restore the original signal. If the signal is distorted by the line, no amount 

of amplification will reproduce the signal. The condition  r
l

g
c

=  also simplifies the 

characteristic impedance Z r j l
g j c

r j l
rc
l

j c

l
c

r
l

j

r
l

j

l
co =

+
+

=
+

+
=

+

+
=

ω
ω

ω

ω

ω

ω
. Thus, if we 

can achieve these conditions, then signals will propagate undistorted and amplifiers can 
be used to give them a useful level when necessary.  
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Some interesting links discussing distortionless lines: 
 
http://www.hep.princeton.edu/~mcdonald/examples/distortionless.pdf
 
http://www.du.edu/~jcalvert/tech/cable.htm
 
In particular, the latter reference discusses how to add lumped resistances across lines to 
achieve a reasonable approximation to a distortionless line.  This technique was used in 
the early days of telephony so that customers in New York could talk to Chicago. This is 
maybe the very best example of why a solid, math-based education can produce some 
non-intuitive results in engineering. To add resistance and make the signal better is hard 
to accept without some serious theoretical basis.  
 
Possibly the following sections should be appendices.  
 
Propagation of pulses on lossy transmission lines 
 
To be written -- this should include the experimental work alluded to at the end of unit 
XII. Thus, some experimental work must be done first. 
 
Combining Transmission Lines and Loads 
 
To be written – what happens when one wishes to combine transmission lines or add 
arbitrary loads to lines? This is background for the channel blocker project.  
 
Matching Transmission Lines and Loads 
 
 
To be written – how to match sources, loads and transmission lines. Some notes on stubs 
exist.  
 
 
The Smith Chart 
 
To be written – how to use a Smith Chart and why they are useful. Some short slides 
exist.  
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