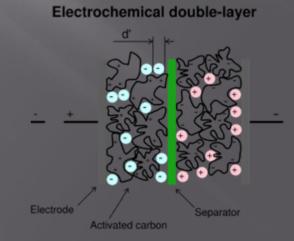
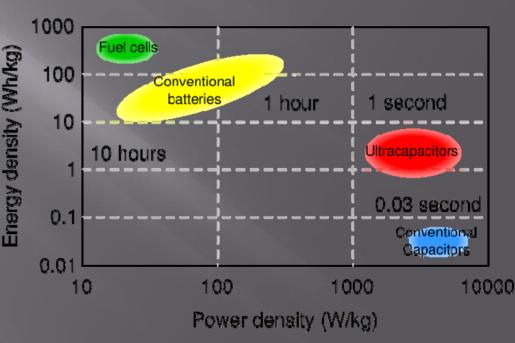
ULTRACAPACITORS


Clark Fedor

Ultracapacitors The basics

- Similar to normal capacitor, but stores charge in porous carbon that has a very high surface area.
- Each layer attracts ions, + or -, and the layers are spaced nanometers apart.

Maxwell PowerCache ultracapacitor 2.7 kF, 2.5 V


Ultracapacitors A brief history

- Effect of porous carbon holding large amounts of charge first discovered in 1957 by GE. They didn't follow up on the discovery.
- Standard Oil re-discovered this when working with fuel cell technology in 1966. They also did not strongly follow up their discovery.
- Nippon (Japan) Electric Company eventually bought the license and commercialized it for use in computer memory.
- It has been a materials problem ever since.
- Also known as Supercapacitor or Double-layer capacitor

Energy Storage Advantages

- Can charge and discharge thousands (millions?) of times before wearing out
- Can charge and discharge quickly
- Highly efficient
- Less heating
- Stackability
- Wide temperature range

$$E_{\text{stored}} = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}VQ$$

Comparison to Current Technologies

Parameters	Electrostatic Capacitor	Ultra-capacitor	Battery
Discharge Time	10 ⁻⁶ ~10 ⁻³ sec	1~30 sec	0.3~3 hrs
Charge Time	10 ⁻⁶ ~10 ⁻³ sec	1~30 sec	1~5 hrs
Energy Density (Wh/kg)	< 0.1	1~10	20~100
Power Density (W/kg)	< 10,000	10,000	50~200
Charge / Discharge Efficiency	~1.0	~10	0.7~0.85
Cycle Life	Infinite	> 500,000	500~2,000

	Ad	va	nta	g	es
--	----	----	-----	---	----

7. Quick charging

Disadvantages

1. Power (20 times better)	1.
2.	2. Energy (10 times less)
3. All-weather, Tough environment	3.
4. Semi-permanent life	4.
5. Energy efficiency	5.
6. No maintenance	6.

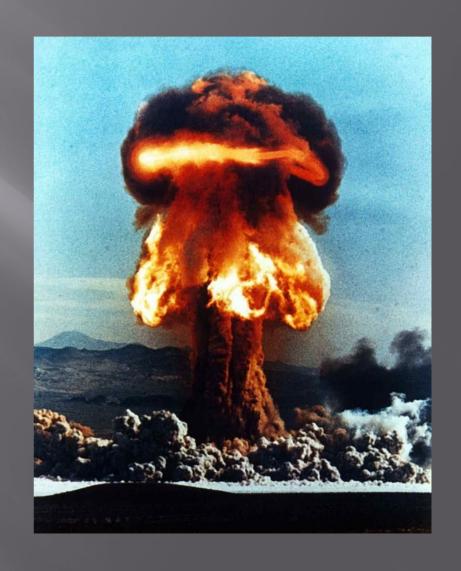
7.

Energy Storage The Problem-Low Voltage Ratings

- Low Voltage, Low Energy Storage
- Ultracapacitors need to be stacked in order to meet voltage requirement.
- Like normal capacitors, overvoltage causes ultracaps to fail

Surge Phenomena Can ultracaps survive a surge?

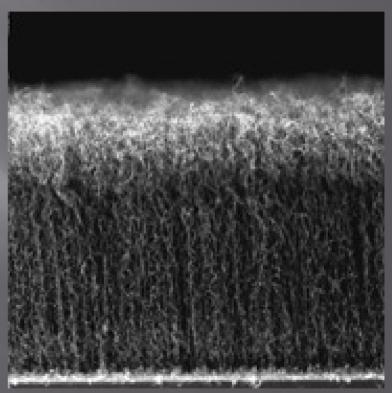
- Most ultracaps have a surge voltage of 1.05-1.2 times larger than rated average voltage.
- According to
 Maxwell, their
 capacitors "will accept
 as much charge as
 they are given."


Energy Storage The Problem

Set of 160 in Series, 16.875 F, 400 V from 2700 F and 2.5 V Ultracapacitors

Surges on Ultracapacitors

- What happens if one of the stacked ultracaps shorts?
- Fuses could be used between capacitors to limit damage.
- Excessive overvoltage will damage an ultracap as it would a normal capacitor



Applications

- In conjunction with batteries in Hybrid/Electric Vehicles (connected with power electronics)
- Storage for wind, solar, fuel cell and other renewable energies
- Use in cell phones, iPods, laptops, any personal device that may need short bursts of power
- Much talk given to ultracapacitors eventually replacing batteries altogether...

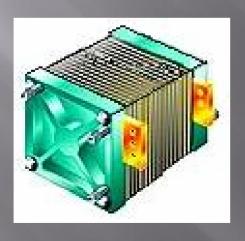
Ultracapacitors Future Developments

- Carbon nanotubes: further increasing surface area of ultracapacitors
- Researchers at MIT have claimed their simulations allow for a carbon nanotube ultracap stores the same amount of energy as a battery of the same size

Carbon Nanotubes like what was produced at RPI

Ultracapacitors Future Developments

EEStor: a company in Texas claiming serious advances in ultracapacitor technology, but it is staying very quiet about it, leaving many skeptical and many hopeful.


It claims 31 F at 3500 V in 336 pounds (yielding

350 Wh/kg)

Manufacturers

- Maxwell Technologies, Inc
- NessCap Co. Ltd.
- Epcos AG.
- And many more outside of the U.S.

References

- Bullard, G.L.; Sierra-Alcazar, H.B.; Lee, H.L. and J.L. Morris, "Operating Principles of the Ultracapacitor." 1/89.
- Hassan, S.M. Nayeem and Iqbal Husain. "Power Electronic Interface with Ultracapacitors and Motor Control for a Fuel Cell Electric Vehicle." © 2005 IEEE.
- "Hype or Radical Shift?", After Gutenburg. http://jcwinnie.biz/wordpress/?p=1465 Accessed 12/13/07.
- Kim, Youngho, "Ultracapacitor Technology Power Electronic Circuits". 10/2003.
- Maxwell Technologies Website, http://www.maxwell.com/index.asp Accessed 12/13/07.
- Metric Mind Engineering. © 1999-2007.
 http://www.metricmind.com/ac_honda/ultracaps.htm Accessed 12/13/0.
- National Renewable Energy Laboratory, "Ultracapacitors". Last updated 4/4/07. http://www.nrel.gov/vehiclesandfuels/energystorage/ultracapacitors.html Accessed 12/13/07.
- Nesscap Turbo-Power. http://www.nesscap.com/index.php Accessed 12/13/07.
- Schindall, Joel. "The Charge of the Ultra-Capacitors". Published 11/07. http://www.spectrum.ieee.org/nov07/5636/4 Accessed 12/13/07.
- Stauffer, Nancy. "Saying Goodbye to Batteries." The MIT Energy Research Council. http://web.mit.edu/erc/spotlights/ultracapacitor.html Accessed 12/13/07.
- Wikipedia, "Capacitor". http://en.wikipedia.org/wiki/Capacitor Accessed 12/13/07.
- Wikipedia, "Supercapacitor". http://en.wikipedia.org/wiki/Ultracapacitor Accessed 12/13/07.

Questions?

