Questions on Thevenin Equivalent Circuits

Fall 2004

2. Thevenin Circuits (25 points)

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B.

a) Find the Thevenin voltage between A and B (7 points)

b) Find the Thevenin resistance between A and B (7 points)

c) Draw the Thevenin equivalent to the circuit shown on the previous page. Include the load resistor RL. (3 points)
d) What would be the voltage from A to B if RL were 2K ohms? (2 points)
e) What would be the voltage from A to B if RL were 10Meg ohms? (2 points)
f) You use the DMM to measure the voltage across the load resistor given in part c (2K ohms) and part d (10Meg ohms). In which circuit would the measured voltage be closer to the voltage you calculated? Why? (4 points)

Fall 2004 solution (none available)

Spring 2004

2) Thevenin circuits (20 points)

In the circuit above, V1=6 volts. R1= 50Ω , R2= 500Ω , R3= 800Ω , R4= 3000Ω

a) Find the Thevenin Voltage (Voc) of the Circuit (8 points)

b) Find the Thevenin Resistance (8 points)

c) If you place a load resistor of 2K between A and B, what would be the voltage at point A? (4 points)

Spring 2004 solution

2) Thevenin circuits (20 points)

A: In the circuit above, V1=6 volts. R1= 50Ω , R2= 500Ω , R3= 800Ω , R4= 3000Ω

a) Find the Thevenin Voltage (Voc) of the Circuit (8 points)

$$VA = [(R2+R3)/(R1+R2+R3)]V1 = (1300/1350)6 = 5.78 V VB = 0$$

$$Vth = VA-VB = 5.78V$$

b) Find the Thevenin Resistance (8 points)

$$Rth = R4 + [(R1*R23)/(R1+R23)] R23=500+800=1300$$

 $Rth=3000+[(50*1300)/(50+1300)]=3048.15 \text{ ohms}$ **Rth=3048 ohms**

c) If you place a load resistor of 2K between A and B, what would be the voltage at point A? (4 points)

$$VA = [RL/(RL+Rth)]Vth = [2K/(2K+3048)]5.78 = 2.29V$$
 $VA = 2.29V$

B: In the circuit above, V1=6 volts. R1= 50Ω , R2= 1000Ω , R3= 500Ω , R4= 2000Ω

a) Find the Thevenin Voltage (Voc) of the Circuit (8 points)

$$VA = [(R2+R3)/(R1+R2+R3)]V1 = (1500/1550)6 = 5.806 V VB = 0$$

$$Vth = VA-VB = 5.806V$$

b) Find the Thevenin Resistance (8 points) [see pictures for A]

$$Rth = R4 + [(R1*R23)/(R1+R23)] R23 = 1000 + 500 = 1500$$

 $Rth = 2000 + [(50*1500)/(50+1500)] = 2048.38 \text{ ohms}$ $Rth = 2048 \text{ ohms}$

c) If you place a load resistor of 2K between A and B, what would be the voltage at point A? (4 points)

$$VA = [RL/(RL+Rth)]Vth = [3K/(3K+2048)]5.81 = 3.45V$$
 $VA = 3.45V$

Fall 2003

2. Thevenin Circuits (20 points)

Let V2=12V, R1=50 ohms, R2=1K ohms, R3=2K ohms, and R4=500 ohms.

c) Find the Thevenin voltage between A and B (8 points)

d) Find the Thevenin resistance (8 points)

e) Draw the Thevenin equivalent circuit with a load of 4K ohms. (4 points)

Fall 2003 solution

2. Thevenin Circuits (20 points)

Let V2=12V, R1=50 ohms, R2=1K ohms, R3=2K ohms, and R4=500 ohms.

f) Find the Thevenin voltage between A and B (8 points)

Test A:
$$Vth = V_{R23} R23 = R2//R3 = 1K*2K/(1K+2K) = 0.66667K$$

 $V_{AB} = 0.66667K/(0.66667K+50)(12V) = 11.16V$
 $V_{AB} = 11.16V$

Test B:
$$Vth = V_{R23} R23 = R2//R3 = 2K*0.5K/(2K+0.5K) = 0.4K$$

 $V_{AB} = 0.4K/(0.4K+50)(12V) = 10.67V$
 $\mathbf{V_{AB}} = \mathbf{10.67V}$

g) Find the Thevenin resistance (8 points)

Test A:
$$Rth = R4 + R123$$

 $R123 = R1/R2/R3 \rightarrow 1/R123 = 1/50 + 1/1K + 1/2K \rightarrow R123 = 46.5 \text{ ohms}$
 $Rth = 500 + 46.5 = 546.5 \text{ ohms}$
 $Rth = 546.5 \text{ ohms}$

Test B:
$$Rth = R4 + R123$$

 $R123 = R1/(R2/(R3)) \Rightarrow 1/(R123) = 1/50 + 1/2K + 1/0.5K) \Rightarrow R123 = 44.4 \text{ ohms}$
 $Rth = 3000 + 44.4 = 3044.4 \text{ ohms}$
 $Rth = 3044.4 \text{ ohms}$

Draw the Thevenin equivalent circuit with a load of 4K ohms. (4 points)

2. Thevenin circuits (20 points)

a) (6 points) Find the Thevenin voltage (Voc) of the circuit assuming the load will be connected between A and B.

b) (6 points) Find the Thevenin resistance.

c) (4 points) Draw the Thevinen equivalent circuit with a load of 1K ohms.

d) (4 points) Find the voltage between A and B for this circuit with a load of 1K ohms.

Spring 2003 solution

2. Thevenin circuits (20 points)

a) (6 points) Find the Thevenin voltage (Vth) of the circuit assuming the load will be connected between A and B.

$$R245 = R2 + R4 + R5 = 1k + 5k + 3k = 9k$$

 $R2345 = R3 // R245 = (9kx4k)/(9k + 4k) = 2.77k$
 $V2345 = V1(R2345)/(R1 + R2345) = 15x2.77/(2 + 2.77) = 8.71 \text{ volts}$
 $V4 = V2345xR4/(R2 + R4 + R5) = (8.71x5k)/9k = 4.84 \text{ volts}$

$Vth = 4.84 \ volts$

b) (6 points) Find the Thevenin resistance.

$$R13 = R1//R3 = (R1xR3)/(R1+R3) = (2kx4k)/(2k+4k) = 1.33k$$

 $R1235 = R13 + R2 + R5 = 1.33K + 1K + 3k = 5.33K$
 $R12345 = R1235//R4 = (5.33x5)/(5.33+5) = 2.58K$ ohms

Rth = 2.58 K ohms

c) (4 points) Draw the Thevinen equivalent circuit with a load of 1K ohms.

d) (4 points) Find the voltage between A and B for this circuit with a load of 1K ohms.

$$VAB = (Vthx1K)/(1K+Rth) = (4.84x1k)/(1K+2.58K) = 1.35 \text{ volts}$$

VAB = 1.35 volts

2. Thevenin circuits (20 points)

Given: V1=12 V; R1=2 k Ω ; R2=4 k Ω ; R3= 8 k Ω ; R4= 4 k Ω

a) Find the Thevenin Voltage (Voc) of the circuit assuming the load will be connected between A and B. (6 points)

b) Find the Thevenin Resistance (6 points)

c) Find the current going from A to B if a 4 $k\Omega$ resistor is connected between A and B. (8 points)

Fall 2002 solution

2. Thevenin circuits (20 points)

Given: V1=12 V; R1=2 k Ω ; R2=4 k Ω ; R3= 8 k Ω ; R4= 4 k Ω

a) Find the Thevenin Voltage (Voc) of the circuit assuming the load will be connected between A and B. (6 points)

$$Vth = VA - VB = V1*R2/(R1+R2) - V1*R4/(R3+R4)$$

 $Vth = 12*4K/6K - 12*4K/(8K+4K) = 8-4 = 4$ volts

b) Find the Thevenin Resistance (6 points)

$$Rth = R1/R2 + R3//R4 = R1*R2/(R1=R2) + R3*R4/(R3+R4)$$

 $Rth = 2K*4K(2K+4K) + (8K*4K)/(8K+4K) = 4/3 + 8/3 = 12/3 = 4$ Kohms

c) Find the current going from A to B if a $4 \text{ k}\Omega$ resistor is connected between A and B. (8 points)

$$V=IR$$
 $Vth = I*(Rth+4K)$ $4 = I*(4K+4K)$ $I = 0.5$ mamps

Spring 2002

2. Thevenin circuits (20 points)

a) Find the Thevenin Voltage (Voc) of the Circuit (8 points)

b) Find the Thevenin Resistance (8 points)

c) Draw the Standard Thevenin Circuit, including a load Resistor (4 points)

Spring 2002 solution

ENGR4300 Test 1A Spring 2002

Name Section

2. Thevenin circuits (20 points)

a) Find the Thevenin Voltage (Voc) of the Circuit (8 points)

$$R_{24} = 4K + 5K = 9K \quad R_{324} = \frac{9K \cdot 11K}{9K + 11K} = 0.9K$$

$$V_C = 10 \left(\frac{0.9 \, \text{K}}{2K + 0.91K}\right) = 3.103V \quad V_A = 3.103 \left(\frac{5K}{4K + 5K}\right) = 1.72$$

$$V_B = 0 \quad V_A = V_{0C} = V_{TH} = 1.724V$$
b) Find the Thevenin Resistance (8 points)

$$R_4 \quad B \quad R_{13} = \frac{2K \cdot 11K}{2K + 11K} = \frac{3}{3}K$$

$$R_{213} = 4K + \frac{3}{3}K = \frac{14}{3}K$$

$$R_{213} = 4K + \frac{3}{3}K = \frac{14}{3}K$$

$$R_{213} = 4K + \frac{3}{3}K = \frac{14}{3}K = \frac{14}{3}K$$
c) Draw the Standard Thevenin Circuit, including a load Resistor (4 points)

$$R_{413} = \frac{5K \cdot \frac{14}{3}K}{5K + \frac{14}{3}K} = 2.41 \, \text{K}.$$

ENGR4300 Test 1A Fall 2001

Name Section

2. Thevenin circuits (20 points)

a) Find the Thevenin Voltage (Voc) (8 points)
$$V_{0} = V_{2} - V_{R_{1}}, \quad V_{R_{2}} = R_{1} I_{1} = 0 \qquad \Rightarrow \qquad V_{0} = V_{2}. \quad \begin{cases} R_{1} R_{3} = 2.22 \text{ ML} \\ R_{1} R_{2} = 2.22 \text{ ML} \end{cases}$$

$$V_{2} = \frac{R_{2} R_{3}}{R_{1} + R_{2} R_{3}} V_{1} = \frac{2.22 \text{ ML}}{1.1 \text{ ML}_{2} R_{2} R_{3}} V_{2} = 6.69 V_{3}. \quad \begin{cases} V_{1} = V_{2} = 6.69 \text{ M} \end{cases}$$

b) Find the Thevenin Resistance (8 points)

$$R_{H} = R_{q+1}(R_{1}||R_{12}) = R_{q+1} \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{q+1} \frac{2 \cdot 2 \cdot 2}{2 \cdot 2} = R_{$$

c) Draw the Standard Thevenin Circuit, inserting the values you have found. (4 points)

