Questions about Transformers
These should help prepare you for question 4 of quiz 1.

Spring 2004

d. The original inductor is now used as the primary of a transformer. The secondary is formed by wrapping an additional winding around the primary, as was done in a recent experiment. Note: the smaller resistances shown are for the inductors. Also, note that a very large resistor has been used to connect the primary to the secondary. This is because PSpice requires everything to be referenced to ground. This resistance is so large that it acts like an open circuit.

i) Assuming an ideal transformer, what inductance must the secondary have to produce the plot above (the AC line voltage is stepped down from 120Volts to 12Volts. (3 points)
ii) Again assuming an ideal transformer, what would the equation [in the form $\mathrm{i}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t})$] be for the current through the load resistor, R2? (Assume R4 is negligible) (4 points)

Spring 2004 solution

d. The original inductor is now used as the primary of a transformer. The secondary is formed by wrapping an additional winding around the primary, as was done in a recent experiment. Note: the smaller resistances shown are for the inductors. Also, note that a very large resistor has been used to connect the primary to the secondary. This is because PSpice requires everything to be referenced to ground. This resistance is so large that it acts like an open circuit. [Note: we know that L1 is 0.1 mH from a previous part.]

i) Assuming an ideal transformer, what inductance must the secondary have to produce the plot above (the AC line voltage is stepped down from 120Volts to 12Volts. (3 points)

The inductor we tested has an inductance of about 0.1 mH . From the general transformer equations, we know that $a=\frac{V_{2}}{V_{1}}=\sqrt{\frac{L_{2}}{L_{1}}}$. My voltage ratio, a, is 12/120 or 0.1. Therefore my inductance must be :

$$
L 2=L 1(a)^{2}=(0.1 \mathrm{~m})(0.1)^{2} . \quad \text { Therefore } \mathbf{L} 2=\mathbf{0 . 0 0 1} \mathbf{m H}
$$

ii) Again assuming an ideal transformer, what would the equation [in the form $i(t)=A \sin (\omega t)]$ be for the current through the load resistor, R2? (Assume R4 is negligible) (4 points)
The voltage through the load loop can be taken from the plot. It is $v(t)=12 V \sin \left(2 \pi^{*} 60 t\right)$. Since $v(t)=i(t) R$ and the load resistance is 10 K ohms, we can simply divide $v(t)$ by 10 K to get an equation for the current. $\quad i(t)=1.2 m A \sin (120 \pi t)=1.2 m A \sin (377 t)$

Spring 2003

4. Transformer (20 pts)

a) In the circuit above, the transformer is ideal. If $\mathrm{R} 1=1 \mathrm{~K} \Omega$, find the equivalent impedance, Z_{AB}, seen from points A and B . (6 pts)
b) We have connected the above circuit to an AC source with a resistor of $\mathrm{R} 2=1 \mathrm{~K} \Omega$.

If the input voltage has an amplitude of 10 V , find the voltage at point A . (8 pts)
c) What is the value of the voltage across R1? (6 pts)

Spring 2003 solution

4. Transformer (20 pts)

d) In the circuit above, the transformer is ideal. If $\mathrm{R} 1=1 \mathrm{~K} \Omega$, find the equivalent impedance, Z_{AB}, seen from points A and B . (6 pts)

$$
Z_{A B}=R 1 / a^{2} \quad a=N 2 / N 1=4 \quad Z_{A B}=1 K / 16 \quad Z_{A B}=62.5 o h m s
$$

e) We have connected the above circuit to an AC source with a resistor of $\mathrm{R} 2=1 \mathrm{~K} \Omega$.

If the input voltage has an amplitude of 10 V , find the voltage at point A . (8 pts)

$$
V_{A}=[(62.5) /(1062.5)] 10 \mathrm{~V}=.588 \mathrm{~V} \quad V_{A}=588 \mathrm{mV}
$$

f) What is the value of the voltage across R1? (6 pts)

$$
V 2 / V 1=a \quad V_{A}=V 1 \quad V 2=.588(4)=2.35 V \quad V_{R 1}=2.35 V
$$

Fall 2002
5. Transformer (20 points)

In the circuit, the Vs is $100 \mathrm{mV}, \mathrm{R}_{\mathrm{s}}$ has negligible amount of resistance, the R_{L} is 500 ohms.

a) Assuming a perfect matching and coil L_{s} has 50 turns, how many turns L_{l} has to have in order to obtain voltage of 1 volt across the load R_{L} ? (6 points)
b) What is the impedance Zin of Ls? (6 points)
c) What is the current in the loop containing the load? (4 points)
d) Assuming a non-ideal transformer, list two transfer design methods (only) that would increase the voltage output at the load. (4 points)

Fall 2002 Solution
(none available)

Fall 2001 solution

EI TEST 3A Fall 2001 Name_.... Sect Please show all work on all questions for full credit, some explanation of your answer is required.
5) Transformer

a) If the Ll coil has 100 tums, and L 2 coil has 400 turns what is the voltage across R 1 ? (4 pt)

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}=\frac{400}{100} \Rightarrow \quad V_{2}=v_{R_{1}}=4 V_{1}
$$

b) In terms of V1, what is the current in the loop containing L2, and R1?(4pt)

$$
I_{2}=\frac{V_{2}}{R_{1}}=\frac{4 V_{1}}{200} \rightarrow I_{2}=20 \mathrm{ra}
$$

c) What is the Impedance Zin of L 17 (4 pt)

$$
Z_{i n}=\frac{R_{i}}{\alpha^{2}}=\frac{200-n}{4^{2}}=\quad \text { Un }=12.5
$$

d) In the inductors that make up this transformer, which would increase the inductance most? (4 pt)
a.) air core
b) wood core

e) Which would be the best voltage source to use in this circuit (Apt)
a) 100 mv DC
b) $5 \mathrm{~V} D \mathrm{C}$

$30+n$
coned
correct

