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Chapter 1

Basic definitions and parameters

In this chapter we learn in what conditions a new state of matter - plasma - appears.

1.1 What is plasma

Plasma is usually said to be a gas of charged particles. Taken as it is, this definition is
not especially useful and, in many cases, proves to be wrong. Yet, two basic necessary
(but not sufficient) properties of the plasma are: a) presence of freely moving charged
particles, and b) large number of these particles. Plasma does not have to consists of
charged particles only, neutrals may be present as well, and their relative number would
affect the features of the system. For the time being, we, however, shall concentrate on
the charged component only.

Large number of charged particles means that we expect that statistical behavior of
the system is essential to warrant assigning it a new name. How large should it be ?
Typical concentrations of ideal gases at normal conditions are n ∼ 1019cm−3. Typical
concentrations of protons in the near Earth space are n ∼ 1 − 10cm−3. Thus, ionizing
only a tiny fraction of the air we should get a charged particle gas, which is more dense
than what we have in space (which is by every lab standard a perfect vacuum). Yet we
say that the whole space in the solar system is filled with a plasma. So how come that
so low density still justifies using a new name, which apparently implies new features ?

A part of the answer is the properties of the interaction. Neutrals as well as charged
particles interact by means of electromagnetic interactions. However, the forces be-
tween neutrals are short-range force, so that in most cases we can consider two neutral
atoms not affecting one another until they collide. On the other hand, each charged par-
ticle produces a long-range field (like Coulomb field), which can affect many particles at
a distance. In order to get a slightly deeper insight into the significance of the long-range
fields, let us consider a gas of immobile (for simplicity) electrons, uniformly distributed
inside an infinite cone, and try to answer the question: which electrons affect more the

1



CHAPTER 1. BASIC DEFINITIONS AND PARAMETERS

one which is in the cone vertex ? Roughly speaking, the Coulomb force acting on the
chosen electron from another one which is at a distance r, is inversely proportional to
the distance squared, fr ∼ 1/r2. Since the number of electrons which are at this dis-
tance, Nr ∝ r2, the total force, Nrfr ∼ r0, is distance independent, which means that
that electrons which are very far away are of equal importance as the electrons which are
very close. In other words, the chosen probe experiences influence from a large number
of particles or the whole system. This brings us to the first hint: collective effects may
be important for a charged particle gas to be able to be called plasma.

1.2 Debye shielding
In order to proceed further we should remember that, in addition to the density n, every
gas has a temperature T , which is the measure of the random motion of the gas particles.
Consider a gas of identical charged particles, each with the charge q. In order that
this gas not disperser immediately we have to compensate the charge density nq with
charges of the opposite sign, thus making the system neutral. More precisely, we have to
neutralize locally, so that the positive charge density should balance the negative charge
density. Now let us add a test charge Q which make slight imbalance. We are interested
to know what would be the electric potential induced by this test charge. In the absence
of plasma the answer is immediate: φ = Q/r, where r is the distance from the charge
Q. Presence of a large number of charged particles, which can move freely, changes
the situation drastically. Indeed, it is immediately clear that the charges of the sign
opposite to Q, are attracted to the test charge, while the charges of the same sign are
repelled, so that there will appear an opposite charge density in the near vicinity of the
test charge, which tends to neutralize this charge in some way. If the plasma particles
were not randomly moving due to the temperature, they would simply stick to the test
particle thus making it "neutral". Thermal motion does not allow them to remain all the
time near Q, so that the neutralization cannot be expected to be complete. Nevertheless,
some neutralization will occur, and we are going to study it quantitatively.

Before we proceed further we have to explain what electric field is affected. If we
measure the electric field in the nearest vicinity of any particle, we would recover the
single particle electric field (Coulomb potential for an immobile particle or Lienard-
Viechert potentials for a moving charge), since the influence of other particles is weak.
Moreover, since all particles move randomly, the electric field in any point in space will
vary very rapidly with time. Taking into account that the number of plasma charges
producing the electric field is large, we come to the conclusion that we are interested in
the electric field which is averaged over time interval large enough relative to the typical
time scale of the microscopic field variations, and over volume large enough to include
large number of particles. In other words, we are interested in the statistically averaged,
or self-consistent electric potential.
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Establishing the statistical (or average) nature of the electric field around the test
charge we are able now to use the Poisson equation

∆φ = −4πρ− 4πQδ(r), (1.1)

where the last term describes the test point charge in the coordinate origin, while ρ is
the charge density of the plasma particles,

ρ = q(n− n0). (1.2)

Here n is the density of the freely moving charges in the presence of the test charge,
while n0 is their density in the absence of this charge. Assuming that the plasma is
in thermodynamic equilibrium, we have to conclude that the charged particle are dis-
tributed according to the Boltzmann law

n = n0 exp(−U/T ), (1.3)

where U = qφ. Strictly speaking, the potential in the Boltzmann law should be the local
(non-averaged) potential, and averaging

〈exp(−qφ/T )〉 6= exp(−q〉φ〉/T ).

However, sufficiently far from the test charge, where qφ/T � 1 we may Taylor expand

〈exp(−qφ/T )〉 = 1− 〈qφ
T
〉

so that

ρ = −n0q
2

T
φ, (1.4)

where now φ is the self-consistent potential we are looking for. Substituting into (1.1),
one gets

1

r2
d

dr
r2
d

dr
φ =

4πn0q
2

T
φ (1.5)

for r > 0 and boundary conditions read φ → Q/r when r → 0, and φ → 0 when
r →∞. The above equation can be rewritten as follows:

d2

dr2
(rφ) =

1

r2D
(rφ), (1.6)

where
rD =

√
T/4πn0q2 (1.7)

is called Debye radius. The solution (with the boundary conditions taken into account)
is

φ =
Q

r
exp(−r/rD). (1.8)
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We see that for r � rD the potential is almost not influenced by the plasma particles
and is the Coulomb potential φ ≈ Q/r. However, at r > rD the potential decreases
exponentially, that is, faster than any power. We say that the plasma charges effectively
screen out the electric field of the test charge outside of the Debye sphere r = rD.
The phenomenon is called Debye screening or shielding, and is our first encounter with
the collective features of the plasma. Indeed, the plasma particles act together, in a
coordinated way, to reduce the influence of the externally introduced charge. It is clear
that this effect can be observed only if Debye radius is substantially smaller than the
size of the system, rD � L. This is one of the necessary conditions for a gas of charged
particle to become plasma.

It is worth reminding that the found potential is the potential averaged over spatial
scales much large than the mean distance between the particles, and over times much
larger than the typical time of the microscopic field variations. These variations (called
fluctuations) can be observed and are rather important for plasmas’ life. We won’t
discuss them in our course.

The two examples of the collective behavior of the plasma (Debye shielding and
plasma oscillations) show one more important thing: the plasma particles are "con-
nected" one to another via self-consistent electromagnetic forces. The self-consistent
electromagnetic fields are the "glue" which makes the plasma particles behave in a co-
ordinated way and this is what makes plasma different from other gases.

1.3 Plasma parameter
Since the derived screened potential should be produced in a statistical way by many
charges, we must require that the number of particles inside the Debye sphere be large,
ND ∼ nr3D � 1. The parameter g = 1/ND is often called the plasm parameter. We see
that the condition g � 1 is necessary to ensure that a gas of charged particles behave
collectively, thus becoming plasma.

We can arrive at the same parameter in a different way. The average potential energy
of the interaction between two charges of the plasma is U ∼ q2/r̄, where r̄ is the mean
distance between the particles. The latter can be estimated from the condition that the
there is exactly particle in the sphere with the radius r̄: nr̄3 ∼ 1, so that r̄ ∼ n−1/3. The
average kinetic energy of a plasma particle is nothing but T , so that

U

K
∼ q2n1/3

T
∼ 1

n2/3r2D
= g2/3. (1.9)

If g � 1, as it should be for a plasma, then the average potential energy is substantially
smaller than the average kinetic energy of a particle. In fact, we could expect that since
in order that the charges be able to move freely, the interaction with other particles
should not be too binding. If U/K � 1, the plasma is said to be ideal, otherwise it is
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non-ideal. We see that only ideal plasmas are plasma indeed, otherwise the substance is
more like a charged fluid with typical liquid properties.

1.4 Plasma oscillations

In the analysis of the Debye screening the plasma was assumed to be in the equilibrium,
that is, the plasma charges were not moving (except for the fast random motion which is
averaged out). Thus, the screening is an example of the static collective behavior. Here
we are going to study an example of the dynamic collective behavior.

Let us assume that the plasma consists of freely moving electrons and an immobile
neutralizing background. Let the charge of the electron be q, massm, and density n. Let
us assume that, for some reason, all electrons, which were in the half-space x > 0, move
to the distance d to the right, leaving a layer of the non-neutralized background with the
charge density ρ = −nq and width d. The electric field, produced by this layer on the
electrons on both edges isE = 2πρd = −2πnqd (for the electrons at the right edge) and
E = 2πρd = 2πnqd (for the electrons at the left edge). The force F = qE = −2πnq2d
accelerates the electrons at the right edge to the left, while the electrons at the left edge
experience similar acceleration to the right. The relative acceleration of the electrons at
the right and left edges would be a = 2(qE/m) = −4πnq2d/m. On the other hand,
a = d̈, so that one has

d̈ = −ω2
pd, ω2

p = 4πnq2/m. (1.10)

The derived equation describes oscillations with the plasma frequency ωp. It should be
emphasized that the motion is caused by the coordinated movement of many particles
together and is thus a purely collective effect. In order to be able to observe these
oscillations their period should be much smaller than the typical life time of the system.

1.5 Ionization degree

A plasma does not have to consist only of electrons, or only of electrons and protons.
In other words, neutral particles may well be present. In fact, most laboratory plasmas
are only partially ionized. They are obtained by breaking neutral atoms into positively
charged ions and negatively charged electrons. The relative number of ions and atoms,
ni/na, is called the degree of ionization. In general, it depends very much on what is
making ionization. However, in the simplest case of the thermodynamic equilibrium
the ionization degree should depend only on the temperature. Indeed, the process if
ionization-recombination, a ↔ i + e, is a special case of a chemical reaction (from the
point of view of thermodynamics and statistical mechanics). Let I be the ionization
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potential, that is, the energy needed to separate electron from an atom. Then

ni
na

=
gi+e
ga

exp(−I/T ), (1.11)

where gi+e = gige and ga are the number of possible states for the ion+electron and
atom, respectively. Usually ga ∼ gi ∼ 1. However, ge is large. It can be calculated
precisely but we shall make a simple estimate to illustrate the methods, which are widely
used in plasma physics. The number of available states for an electron ge ∼ ∆V∆3p/h3,
where ∆V is the volume available for one electron, ∆3p is the volume in the momenta
space, and h is the Planck constant. It is obvious that ∆V ∼ 1/ne. The volume in the
momenta space can be estimated if we remember that the typical kinetic energy of a
thermal particle, p2/m ∼ T , from which ∆3p ∼ (Tme)

3/2. Eventually,

ge ∼
(Tme)

3/2

neh3
, (1.12)

and (1.11) takes the following form:

nine
na
∼ (Tme)

3/2

h3
exp(−I/T ). (1.13)

Let us proceed further by assuming that the ions are singly ionized, which gives ni = ne,
and introduce the total density n = na + ni and the ionization degree z = ni/n, then
one has

z2

1− z
∼ (Tme)

3/2

nh3
exp(−I/T ). (1.14)

When the density is low, the pre-exponential in (1.14) is large, and even for T < I the
ionization degree z may be close to unity, 1−z � 1. In this case we say that the plasma
is fully ionized. The expression (1.14) in its precise form is called Saha formula.

1.6 Coulomb collisions
Let us consider a binary collision of two particles (electron-electron, ion-ion, electron-
electron). It can be considered as a scattering of a particle with a reduced mass µ =
m1m2/(m1 + m2) at the potential U = q1q2/r

2. The reduced mass is me/2 ∼ me,
mi/2 ∼ mi, and me for e − e, i − i, and e − i collisions, respectively, while |q1q2| =
e2. The scattered particle comes from the infinity with the velocity v = |v1 − v2|.
Let b be the impact parameter (the smallest distance from the center in the absence of
interaction). If the scattering angle is small one can estimate it as θ ∼ ∆p⊥/mv, where

∆p⊥ ≈ F∆ ≈ q1q2
b2

(b/v) ∼ q1q2
bv

(1.15)
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so that
θ ∼ q1q2mbv

2 (1.16)

The differential cross-section of the scattering is

dσ

dθ
= 2πbdb, b = b(θ) (1.17)

The approximation of the small angle scattering is valid when |θ| . 1 (or, equivalently,
|q1q2|/b . mv2), so that

b > bmin =
|q1q1|
mv2

(1.18)

On the other hand, Debye screening limits the impact parameter from above so that
bmax = rD. Since bmax/bmin � 1 (compare with the plasma parameter !), the ratio
of the total-cross section of the scattering to small angles σ(|θ| . 1) to the total-cross
section of the scattering to large angles σ(|θ| & 1) is

σ(|θ| . 1)

σ(|θ| & 1)
=

(
bmax
bmin

)2

� 1 (1.19)

Thus, almost all collisions on a single center are small angle collisions.
A charged particle in a plasma is being multiply scattered by a number of randomly

distributed centers. The total deflection is ∆θ =
∑

i ∆θi, where ∆θi is the deflection
during the collision at i-th center. Since the centers are distributed randomly, the average
< ∆θ >= 0. However, the variance

< ∆θ >2=
∑
i

(∆θi)
2 6= 0 (1.20)

This average can be calculated by multiplying

(∆θi)
2 =

(
e2

mbv2

)
(1.21)

by the number of collisions 2πnLbdb for each b and integrating over b:

(∆θ)2M ≡< ∆θ >2=

∫ bmax

bmin

2πnLbdb

(
e2

mbv2

)2

(1.22)

(∆θ)2M = 2πnL

(
e2

mv2

)2

Λ (1.23)

Λ = ln
bmax
bmin

� 1 (1.24)
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Putting (∆θ)2M ∼ 1 one finds the distance on which the angular deflection is large:

LM(|∆θ| & 1) = [2πn

(
e2

mv2

)2

Λ]−1 (1.25)

The cross section for the multiple scattering to a large angle is

σM(θ & 1) = 1/nLM(|∆θ| & 1)

therefore
σM(θ & 1)

σ(θ & 1)
∼ Λ� 1 (1.26)

which means that Coulomb scattering is determined by multiple small angle deflections.
The collision frequency is ν = nvσ. Substituting v ∼ (Te/me)

1/2 for e−e and e− i
collisions, and v ∼ (Ti/mi)

1/2 for i− i collisions, one gets

νee ∼ n

(
e2

Te

)2

(Te/me)Λe (1.27)

νei ∼ n

(
e2

Te

)2

(Te/me)Λe ∼ νee (1.28)

νii ∼ n

(
e2

Ti

)2

(Ti/mi)Λi ∼ νee(me/mi)
1/2 (1.29)

In each collision of identical particles (ee or ii) the energy exchange is of the order of the
particle energy. In each ei collision the energy exchange is (me/mi) of the particle en-
ergy. Therefore, the time scale of the electron thermalization τee, the ion thermalization
τii and electron-ion temperature equilibration τei is

τee : τii : τei = 1 : (mi/me)
1/2 : (mi/me) (1.30)

The electron thermalization is the fastest, the temperature equilibration is the slowest.

1.7 Summary
• Plasma is a gas of ionized particles.

• Debye length (single species): rD = (T/4πnq2)1/2.

• Debye screening of a test particle: φ = Q exp(−r/rD)/r.

• Plasma parameter: g = 1/nr3D � 1.

• Plasma frequency (single species): ωp = (4πnq2/m)1/2.

8
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1.8 Problems

PROBLEM 1.1. Calculate the Debye length for a multi-species plasma: ns, qs, Ts. The plasma
is quasi-neutral:

∑
s nsqs = 0.

PROBLEM 1.2. Calculate the plasma frequency for a multi-species plasma: ns, qs, ms. The
plasma is quasi-neutral:

∑
s nsqs = 0.

PROBLEM 1.3. Calculate rD, g and ωp for the plasmas in Table A.

PROBLEM 1.4. A parallel plate capacitor charged to ±σ is immersed into an electron plasma
(immobile ions). What is the potential distribution inside the capacitor ? What is its capacity ?

9
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Chapter 2

Plasma description

In this chapter we learn about possible methods of plasma description, and derive the
powerful but limited MHD.

2.1 Hierarchy of descriptions

In order to deal with plasma we have to choose some method of description. The most
straightforward and most complete would seem to use the motion equations for all par-
ticles together with the Maxwell equations for the electromagnetic fields. However, it is
impossible as well as unreasonable for a many-particle system with a collective behav-
ior. A less precise but much more efficient description would be to describe all particles
of the same species as a fluid in the phase space (r,p). This would correspond to the
assumption that on average behavior of each particle is the same and independent of
other particles, following only the prescriptions of the self-consistent fields. In this ap-
proach we forget about the possible influence of the deviations of the fields from the
self-consistent values (fluctuations) and direct (albeit weak) dependence of a particle on
its neighbors (correlations). This is the so-called kinetic description.

The further step toward even greater simplification of the plasma description would
be to average over momenta for each species, so that only average values remain. In
this case each species s is described by the local density ns, local fluid velocity vs, local
temperature Ts or pressure ps. This is the so-called multi-fluid description.

Finally, we can even forget that there are different species and describe the plasma
as one fluid with the mass density ρm, velocity V , and pressure p. It is clear that
electromagnetic field should be added in some way. The rest of the chapter devoted
to the description of plasma as a single fluid. The description is known as magneto-
hydrodynamics (MHD) for the reasons which become clear later.

11
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2.2 Fluid description
In order to describe a fluid we choose a physically infinitesimal volume dV surrounding
the point r in the moment t. The physically infinitesimal volume should be large enough
to contain a large number or particles, so that statistical averaging is possible. On the
other hand, it should be small enough to not make the averaging too coarse. With-
out coming into details we shall assume that qualitative meaning of this "infinitesimal"
volume is sufficiently clear and we can make such choice.

The fluid mass ρm density is simply the sum of the masses of all particles inside
this volume divided by the volume itself, ρ =

∑
mi/dV . Since the result may be

different for volumes chosen in different places or at different times, the density can, in
general, depend on r and t. The hydrodynamical velocity of this infinitesimal volume
is simply the velocity of its center of mass: V =

∑
mivi/ρdV . Again, V = V (r, t).

Pressure is produced by the random thermal motion of particles (relative to the center-
of-mass) in the infinitesimal volume. In order to avoid unnecessary complications we
shall assume that the pressure is isotropic, that is, described by a single scalar function
p(r, t). In what follows we shall consider plasma as an ideal gas, that is, p = nT ,
where n(r, t) is the concentration and T (r, t) is the temperature. Thus, we have four
fields: ρm(r, t), V (r, t), p(r, t), and T (r, t), for which we have to find the appropriate
evolution equations, connecting the spatial and temporal variations. For brevity we do
not write the dependence (r, t) in what follows.

2.3 Continuity equation
We start with the derivation of the continuity equation which is nothing but the mass
conservation. Let us consider some volume. The total mass inside the volume is

M =

∫
V

ρmdV ρm (2.1)

This mass can change only due to the flow of particles into and out of the volume. If
we consider a small surface element, dS = n̂dS, then the mass flow across this surface
during time dt will be dM = ρmV dt ·dS. The total flow across the surface S enclosing
the volume V from inside to outside would be

dJ =

∮
S

ρmV · dSdt =

∫
V

div(ρmV )dV dt (2.2)

Since the flow outward results in the mass decrease, we write

d

dt

∫
V

ρmdV = −
∫
V

div(ρmV )dV ⇒ (2.3)

12
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∫
V

[
∂ρm
∂t

+ div(ρmV )

]
dV = 0⇒ (2.4)

∂ρm
∂t

+ div(ρmV ) = 0. (2.5)

The last relation follows from the fact that the previous should be valid for any arbitrary
(including infinitesimal) volume at any time. Equation (2.5) is the continuity equation.

2.4 Motion (Euler) equation
The single particle motion equation is nothing but the equation for the change of its
momentum. We shall derive the equation of motion for the fluid considering the change
of the momentum of the fluid in some volume V . The total momentum at any time
would be

P =

∫
V

ρmV dV (2.6)

The momentum changes due to the flow of the fluid across the boundary and due to the
forces acting from the other fluid at the boundary. Let us start with the momentum flow.
The fluid volume which flows across the surface dS during time dt is V dt · dS. This
flowing volume takes with it the momentum dP = (ρmV )(V dt · dS). Thus, the total
flow of the momentum outward is

dP =

∮
S

(ρmV )(V · dS)dt (2.7)

The total force which acts on the boundaries of the volume from the outside fluid is

F = −
∮
S

pdS (2.8)

Combining (2.6)-(2.8) we get

d

dt

∫
V

ρmV dV = −
∮
S

(ρmV )(V · dS)−
∮
S

pdS (2.9)

Further derivation is simpler if we write (2.9) in the component (index) representation:∫
V

∂

∂t
(ρmVi)dV = −

∮
S

(ρmViVj)dSj −
∮
S

pδijdSj (2.10)

and use the vector analysis theorem:∮
S

AijdSj =

∫
V

∂

∂xj
AijdV (2.11)

13
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Now we get the motion equation in the following form:

∂

∂t
(ρmVi) +

∂

∂xj
(ρmViVj) = − ∂

∂xj
p (2.12)

If we recall that the continuity equation can be written as

∂

∂t
ρm

∂

∂xj
(ρmVj) = 0 (2.13)

we can rewrite (2.12) in the following widely used form:

ρm

(
∂

∂t
V + (V ·∇)V

)
= − grad p (2.14)

One has to be cautious with the form of the equation since (V · ∇)V is not a good
vector form and cannot be easily written in curvilinear coordinates. Instead one has to
use the proper vector representation

(V ·∇)V = grad

(
V 2

2

)
− V × rotV (2.15)

It is worth noting that the force − grad p the volume force, that is, the forth per unit
volume. If other volume forces exist we should simply add them to the right hand side
of (2.14).

2.5 State equation
We have derived 4 equations (one for the scalar and three for the vector equation) for
5 variables: ρm, three components of V , and p. Therefore, we need another equation
for the pressure p. Either we have to derive it from the first principles, as we did for the
continuity equation and the motion equation, or to use some sort of approximate closure.
For this course we just assume that the pressure is a function of density, p = p(ρ).

2.6 MHD
So far we have been treating a single fluid, without any relation to plasma. What makes
the fluid plasma is its ability to carry currents. If the current density in the plasma
is j then it experiences the Ampere force (1/c)j × B, once the magnetic field B is
present. In principle, electric volume force ρqE may be also present. However, in the
non-relativistic MHD approximation the plasma is quasi-neutral and this term is absent,
and for the rest of the chapter we do not write the index m for ρ - it is always the mass

14
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density. (If you ever wish to learn relativistic MHD do not forget the electric force.)
Thus, the motion equation takes the following form:

ρ

(
∂

∂t
V + (V ·∇)V

)
= − grad p+

1

c
j ×B (2.16)

However, now we have two more vector variables: j and B. It is time to add the
Maxwell equations:

divB = 0, (2.17)

rotB =
4π

c
j +

1

c

∂

∂t
E, (2.18)

rotE = −1

c

∂

∂t
B. (2.19)

We do not need the divE = 4πρq equation since quasi-neutrality is assumed and this
equation does not add to the dynamic evolution equations, but rather allows to check
the assumption in the end of calculations. Eq. (2.17) is a constraint, not an evolution
equation since it does not include time derivative. It is also redundant since (2.19) shows
that once (∂ divB/∂t) = 0, and once (2.17) is satisfied initially it will be satisfied
forever.

It can be shown (we shall see that later in the course) that non-relativistic MHD is
the limit of slow motions and large scale spatial derivatives, so that the displacement
current is always negligible, and (2.18) becomes a relation between the magnetic field
and current density

j =
c

4π
rotB. (2.20)

The only evolution equation which remains is the induction equation (2.19). However,
it includes now the new variable E which does not seem to be otherwise related to
any other variable. Ohm’s law comes to help. The local Ohm’s law for a immobile
conductor is written as j = σE. Plasma is a moving conductor and the Ohm’s law
should be written in the plasma rest frame, j ′ = σE′. For non-relativistic flows the rest
frame electric field E′ = E + V ×B/c, while j ′ = j because of the quasi-neutrality
condition. Thus, the Ohm’s law should be written in our case as

j = σ(E + V ×B/c). (2.21)

This relation is used to express the electric field in terms of the magnetic field:

E = −1

c
V ×B +

c

4πσ
rotB, (2.22)

and substitute this in (2.19):

∂

∂t
B = rot(V ×B) +

c2

4πσ
∆B, (2.23)
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thus getting an equation containing onlyB and V .
Now, substituting (2.20) into (2.16) we get the equation of motion free of the current:

ρ

(
∂

∂t
V + (V ·∇)V

)
= − grad p+

1

4π
rotB ×B. (2.24)

2.7 Order-of-magnitude estimates
LetL be the typical inhomogeneity length, which means that when we move by ∆x, y, z ∼
L the variable under consideration, say B changes by ∆B ∼ B. Now substitute
(∂B/∂x) ∼ ∆B/∆x ∼ B/L, that is ∇ ∼ 1/L. Similarly, if T is the typical vari-
ation time, we have (∂/∂t) ∼ 1/T . Typical velocity then is estimated as V ∼ L/T .
Using these definitions we can estimate from the induction equation E ∼ (V/c)B. Re-
spectively, the ratio of the displacement current to rotB term will be

|1
c

∂E

∂t
|/| rotB| ∼ LE

cTB
∼
(
V

c

)2

and is very small for nonrelativistic velocities. This is the reason, why it is usually
neglected.

For the charge density we have ρq = divE/4π ∼ E/4πL. Thus, the ratio of the
electric and magnetic forces

|ρqE|
|(1/c)j ×B|

∼ 1

4π

(
V

c

)2

and is also negligible.

2.8 Summary
Let us write down again the complete set of the MHD equations:

∂

∂t
ρ+ div(ρV ) = 0, (2.25)

ρ
d

dt
V = − grad p+

1

4π
rotB ×B, (2.26)

∂

∂t
B = rot(V ×B) +

c2

4πσ
∆B, (2.27)

where we introduced the substantial derivative

d

dt
=

∂

∂t
+ (V ·∇). (2.28)
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The MHD set should be completed with the state equation p = p(ρ) and is usually
completed with the Ohm’s lawE +V ×B/c = j/σ. When σ →∞ the MHD is ideal
MHD.

2.9 Problems

PROBLEM 2.1. Complete the MHD equations for the case when there is gravity.

PROBLEM 2.2. For p ∝ ργ and no entropy change show that the internal energy per unit
volume u = p/(γ − 1).

PROBLEM 2.3. Derive the energy conservation:

∂

∂t

(
1
2ρV

2 + u+
B2

8π

)
+ div

(
(12ρV

2 + u+ p)V +
1

4π
B × (V ×B)

)
= 0 (2.29)

PROBLEM 2.4. Let a plasma penetrate a neutral fluid. Discuss the form of the frictional force
between the two fluids in the equation of motion for the plasma.
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Chapter 3

MHD equilibria and waves

In this chapter we become familiar with the coordinated behavior of plasma and mag-
netic field, and discover the most important features of the plasma - waves.

3.1 Magnetic field diffusion and dragging
We start our study of MHD applications with the analysis of (2.27). Let us consider
first the case where the plasma is not moving at all, that is, V = 0. Fot simplicity let
B = B(x, t)ẑ, so that one gets

∂

∂t
B =

c2

4πσ

∂2

∂x2
B. (3.1)

Let us represent the magnetic field using Fourier-transform:

B(x, t) =

∫ ∞
−∞

B̃(k, t) exp(ikx)dk, (3.2)

then one has
˙̃

B(k, t) = −k
2c2

4πσ
˜B(k, t) (3.3)

with the solution
˜B(k, t) = ˜B(k, 0) exp(−k2c2t/4πσ). (3.4)

The wavenumber k is the measure of spatial inhomogeneity: the larger k the smaller
is the inhomogeneity scale. Eq. (3.4) shows that the inhomogeneous magnetic field
disappears with time, and the rate of disappearance higher for the components with
smaller scales of inhomogeneity. This phenomenon is known as the magnetic field
diffusion and is responsible for the graduate dissipation of the magnetic fields in stars.

Let us no consider the opposite case: σ → ∞ and V 6= 0. Let us choose a closed
path (contour) L moving with the plasma and calculate the change of the magnetic flux
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across the surface S enclosed by this contour, Φ =
∫
S
B · dS. The flux changes due to

the local change of the magnetic field and due to the change of the contour moving with
the plasma. The total change during the time dt is

dΦ =

∫
S

∂B

∂t
· dSdt+

∮
L

B · (V dt× dL)

=

(∫
S

∂B

∂t
· dS −

∮
L

(V ×B) · dL
)
dt

=

∫
S

(
∂B

∂t
− rot(V ×B)

)
· dSdt = 0

that is, the magnetic flux across the contour moving with the plasma, does not change.
This is often referred to as the magnetic field frozen in plasma: magnetic field lines are
dragged by plasma. For the rest of the course we will be dealing with the ideal MHD
only, if not stated explicitly otherwise.

3.2 Equilibrium conditions
Plasma is said to be in the equilibrium if V = 0 and none of the variables depend on
time. The only equation which has to be satisfied is

grad p =
1

c
j ×B =

1

4π
rotB ×B. (3.5)

One can immediately see that in the equilibrium grad p ⊥ B and grad p ⊥ j, that is,
the current lines and the magnetic field lines all lie on the constant pressure surfaces. In
the special case j ‖ B no pressure forces are necessary to maintain the equilibrium, the
configuration is called force-free.

The right hand side of (3.5) is often casted the in the following form:

1

4π
rotB ×B = − grad

B2

8π
+

1

4π
(B ·∇)B, (3.6)

where the first term represents the magnetic pressure, while the last one is the magnetic
tension.

In order to understand better the physical sense of the two terms let start with con-
sidering the magnetic field of the form B = (Bx, By, 0) and assume that everything
depends on x only. Then (3.5) with (3.6) read

∂

∂x

(
p+

B2

8π

)
=

1

4π
Bx

∂

∂x
Bx,

0 = Bx
∂

∂x
By
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Since divB = (∂Bx/∂x) = 0 we have only two options: a) B = const and p = const
(not interesting), and b) Bx = 0, By = By(x), and

p+
B2
y

8π
= const. (3.7)

Thus, in this case the direction of the magnetic field does not change, and mechanical
equilibrium requires that the total (gas+magnetic) pressure be constant throughout.

3.3 MHD waves
Waves are the heart of plasma physics. There is nothing which plays a more important
role in plasma life than waves, small or large amplitude ones. The rest of this chapter is
devoted to the description of the wave properties of plasmas within the MHD approxi-
mation.

As in other media, waves are small perturbations which propagate in the medium.
Thus, a medium which is perturbed in some place initially would be perturbed in other
place later. In order to study waves we have to learn to deal with small perturbations
near some equilibrium. We outline here the general procedure of the wave equations
derivation, the procedure we shall closely follow later in our studies of waves in more
sophisticated descriptions.

Step 1. Equilibrium. We start with the equilibrium state, where nothing depends
on time and there no flows. In our course we shall study only waves in homogeneous
plasmas, that is, we assume that the background (equilibrium) plasma parameters do not
depend on coordinates either. In the MHD case that means ρ = ρ0 = const, V = 0,
p = p0 = const, andB = B0 = const.

Step 2. Small perturbations. We assume that all variables are slightly perturbed:
ρ = ρ0 + ερ1, V = εV1, p = p0 + εp1, and B = B0 + εB1, where ε � 1 is a formal
small parameter which will allow us to collect terms which are of the same order of
magnitude (see below). We have to substitute the perturbed quantities into the MHD
equations (2.25)-(2.27):

∂

∂t
(ερ1) + div(ερ0V1 + ε2ρ1V1) = 0,

(ρ0 + ερ1)
∂

∂t
(εV1) + (εV1 ·∇)(εV1) = − grad(εp1) +

1

4π
rot(εB1)× (B0 + εB1),

∂

∂t
(εB1) = rot(εV1 ×B0 + ε2V1 ×B1),

where we have taken into account that all derivatives of the unperturbed variables (index
0) vanish.
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Step 3. Linearization. This is one of the most important steps, were we neglect all
terms of the order ε2 and higher and retain only the linear terms ∝ ε, to get

∂

∂t
ρ1 + ρ0 divV1 = 0, (3.8)

ρ0
∂

∂t
V1 = − grad p1 +

1

4π
rotB1 ×B0, (3.9)

∂

∂t
B1 = rot(V1 ×B0). (3.10)

We have to find a relation between p1 and ρ1. It simply follows from the Taylor expan-
sion (first term):

p1 =

(
dp

dρ

)
ρ=ρ0

ρ1 ≡ v2sρ1, (3.11)

where the physical meaning of the quantity v2s will become clear later.

Step 4. Fourier transform. The obtained equations are linear differential equations
with constant coefficients, and the usual way of solving these equations is to assume for
all variables the same dependence exp(ik · r − ωt), that is, ρ1 = ρ̃1 exp(ik · r − ωt),
etc. Here k is the wavevector and ω is frequency. It is easy to see that one has to simply
substitute (∂/∂t)→ −iω and ∇→ ik, so that

− iωρ̃1 + iρ0k · Ṽ1 = 0, (3.12)

− iωρ0Ṽ1 = −iv2skρ̃1 +
i

4π
(k × B̃1)×B0, (3.13)

− iωB̃1 = ik × (Ṽ1 ×B0). (3.14)

The obtained equations are a homogeneous set of 6 equations for 6 variables: the den-
sity, three components of the velocity, and two independent components of the magnetic
field - third is dependent because of divB1 = 0⇒ ik · B̃1 = 0.

Step 5. Dispersion relation. In order for non-trivial (nonzero) solutions to exist the
determinant for this set should be equal zero. This determinant is a function of the un-
perturbed parameters as well as ω and k. Let us assume that the determinant calculation
provided us with the equation

D(ω,k) = 0. (3.15)

This equation established a relation between the frequency and the wavevector, for
which a nonzero solution can exist. This relation (and often (3.15) itself) is called a
dispersion relation.

It is possible to write down the 6×6 determinant derived directly from (3.12)-(3.14).
However, it is more instructive and physically transparent to look at the magnetic field
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and velocity components. Eq. (3.12) shows that density (and pressure) variations are
related only to the velocity component along the wavevector,

ρ̃1 = ρ0(k · Ṽ1)/ω. (3.16)

Eq. (3.14) shows that the magnetic field perturbations are always perpendicular to the
wavevector, B̃1 ⊥ k.

The subsequent derivation is a little bit long but rather straightforward and physically
transparent. It is convenient to define a new variable E = k× B̃1, such that k ·E = 0.
The equations take the following form:

− ωρ0Ṽ1 = −v
2
sρ0k

ω
(k · Ṽ1) +

1

4π
E ×B0, (3.17)

− ωE = (k × Ṽ1)(k ·B0)− (k ×B0)(k · Ṽ1). (3.18)

Scalar and vector products of with k give, respectively:(
1− k2v2s

ω2

)
(k · Ṽ1) =

1

4πρ0ω
E · (k ×B0), (3.19)

k × Ṽ1 = −(k ·B0)

4πρ0ω
E. (3.20)

Substituting (3.20) into (3.18) one obtains(
1− (k ·B0)

2

4πρ0ω2

)
E = (k ×B0)(k · Ṽ1). (3.21)

Now the scalar and vector products of (3.21) with k ×B0 give(
1− (k ·B0)

2

4πρ0ω2

)
E × (k ×B0) = 0, (3.22)(

1− (k ·B0)
2

4πρ0ω2

)
E · (k ×B0) = (k ×B0)

2(k · Ṽ1). (3.23)

Equation (3.22) means that E × (k ×B0) 6= 0 only if

ω2 =
(k ·B0)

2

4πρ0
, (3.24)

while (3.23) together with (3.19) give for E × (k ×B0) = 0(
1− k2v2s

ω2

)(
1− (k ·B0)

2

4πρ0ω2

)
=

(k ×B0)
2

4πρ0ω2
. (3.25)
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Before we start analyzing the derived dispersion relations let us introduce some
useful notation: (̂kB0) = θ, so that k ·B0 = kB0 cos θ, |k×B0| = kB0 sin θ. We also
define the Alfven velocity as v2A = B2

0/4πρ0. The wave phase velocity vph = (ω/k)k̂,
vph = ω/k. Now (3.24) takes the following form:

v2ph = v2I ≡ v2A cos2 θ, (3.26)

where index I stands for intermediate. It is easy to see that for this wave B1 ⊥ B0, so
that the perturbation of the magnetic field magnitude δB2 = 2B0 ·B1 = 0, hence the
magnetic pressure does not change. Similarly, V1 ⊥ k and there are no perturbations of
the density and plasma pressure.

The relation (3.25) gives vph = vF (for fast) or vph = vSL (for slow), where

v2F,SL = 1
2

[
(v2A + v2s)±

√
(v2A + v2s)

2 − 4v2Av
2
s cos2 θ

]
. (3.27)

The two modes are compressible, ρ1 6= 0, p1 6= 0, andB1 lies in the plane of k andB0.
The names of the modes are related to the fact that vSL < vI < vF .

It is easy to see that if there is no external magnetic field, B0 = 0, the only possible
mode is v2ph = v2s . In the ordinary gas this wave mode would be just sound, that is,
propagating pressure perturbations, so that vs is the sound velocity. In the presence of
the magnetic field the magnetic pressure and the gas pressure either act in the same
phase (in the fast wave) or in the opposite phases (in the slow wave).

3.4 Alfven and magnetosonic modes
We start our analysis with the intermediate mode, which is also called Alfven wave. The
dispersion relation reads

ω = kvA cos θ = (k · b̂)vA, (3.28)

where b̂ = B0/B0. The magnetic field perturbations B1 ⊥ k,B0 and there are no
density perturbations. The velocity perturbations

Ṽ1 = −vAB̃1/B0. (3.29)

The phase velocity vph = (ω/k)k̂ = vA cos θk̂, while the group velocity (the veloc-
ity with which the energy is transferred by a wave packet) is

vg =
dω

dk
= vAb̂, (3.30)

and is directed along the magnetic field. To summarize, Alfven waves are magnetic
perturbations, whose energy propagates along the magnetic field. Plasma remains in-
compressible in this mode. This perturbations become non-propagating (do not exist)

24



CHAPTER 3. MHD EQUILIBRIA AND WAVES

when k ⊥ B0. The last statement means also that the slow mode does not exist either
for the perpendicular propagation.

The two other modes are both magnetosonic waves, since they combine magnetic
perturbations with the density and pressure perturbations, typical for sound waves. In
the case of perpendicular propagation only the fast mode exists with

vF =
√
v2A + v2s , (3.31)

while the parallel case, k ‖ B0 both are present with

vF = max(vA, vs), vSL = min(vA, vs). (3.32)

In the fast wave the perturbations of the magnetic field and density are in phase, that is,
increase of the magnetic field magnitude is accompanied by the density increase. In the
slow mode the magnetic field increase causes the density decrease.

It is worth mentioning that the ratio vs/vA depends on the kinetic-to-magnetic pres-
sure ratio. Let us assume, for simplicity, a polytropic law for the pressure: p =
p0(ρ/ρ0)

γ , then v2s = γp0/ρ0. Thus,

v2s
v2A

=
4πγp0
B2

0

=
γp0
2pB

. (3.33)

It is widely accepted to denote β = p0/pB = 8πp0/B
2
0 .

3.5 Wave energy
For simplicity we consider only the incompressible Alfven mode here. The general
solution for the magnetic field can be written as

B1 =

∫
B̃1 exp[ik · r − ω(k)t]dk. (3.34)

The corresponding velocity will be written as follows

V1 = −(vA/B0)

∫
B̃1 exp[ik · r − ω(k)t]dk. (3.35)

The energy density is u = ρV 2/2 +B2/8π, which gives

δu = u− u0 = ρ0V
2
1 /2 +B0 ·B1/4π +B2

1/8π,

while the total energy is

U =

∫
(ρ0V

2
1 /2 +B0 ·B1/4π +B2

1/8π)dV.
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The second term vanishes because of the oscillations of the integrand. The other two
terms become

U =

∫
(ρ0v

2
A/2B

2
0 + 1/8π)|B̃1|2dk

which allows to define the quantity

Uk = |B̃1|2/4π (3.36)

as the Alfven wave energy. Thus, in the Alfven wave the energy density of plasma
motions equals the energy density of the magnetic field.

3.6 Summary

3.7 Problems

PROBLEM 3.1. An infinitely long cylinder of plasma, with the radius R, carries current with
the uniform current density J = J ẑ along the axis. Find the pressure distribution required for
equilibrium.

PROBLEM 3.2. Magnetic field is given asB = B0 tanh(x/d)ŷ. Find the current and density
distribution if p = Cργ .

PROBLEM 3.3. A plasma is embedded in a homogeneous gravity field g. How the equilibrium
conditions are changed.

PROBLEM 3.4. A plasma with the conductivity σ is embedded in the magnetic field of the
kind B = ŷB0 tanh(x/D) at t = 0. Find the magnetic field evolution if there is no plasma
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flows.

PROBLEM 3.5. Derive the phase and group velocities for both magnetosonic modes.

PROBLEM 3.6. Express the condition |(1/c)(∂E/∂t)| � | rotB| with the use of the Alfven
velocity.

PROBLEM 3.7. Derive the dispersion relations for vs = vA.

PROBLEM 3.8. Determine the magnetic field of a cylindrically symmetric configuration as
a function of distance from the axis: B(r) = Bz(r)ẑ + Bϕ(r)ϕ̂. Assume a force-free field
configuration of rotB = αB, where α = const.

PROBLEM 3.9. Derive dispersion relations for MHD waves in the case when the resistivity
η = 1/σ 6= 0.

PROBLEM 3.10. Calculate the ratio of plasma pressure perturbation to the magnetic pressure
perturbation for magnetosonic waves ?

PROBLEM 3.11. Find the electric field vector for MHD waves.
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Chapter 4

MHD discontinuities

MHD describes not only small amplitude waves but also large amplitude structures. In
this chapter we shall study discontinuities.

4.1 Stationary structures
A wave (or structure) is said to be stationary if there is an inertial frame where nothing
depends on time, (∂/∂t) = 0. Moreover, in most cases it is assumed that all variables
depend on one coordinate only. Let us choose coordinates so that everything depends
only on x. Then ∇ = x̂(∂/∂x) and the MHD equations can be written as follows:

∂

∂x
(ρVx) = 0, (4.1)

ρVx
∂

∂x
Vx = − ∂

∂x

(
p+

B2

8π

)
, (4.2)

ρVx
∂

∂x
V⊥ =

Bx

4π

∂

∂x
B⊥, (4.3)

∂

∂x
(BxV⊥ − VxB⊥) = 0, (4.4)

where⊥ stands for y and z components, andBx = const because of divB = (∂Bx/∂x) =
0.

Eqs. (4.1)-(4.4) can be immediately integrated to give

ρVx = J = const, (4.5)

ρV 2
x + p+

B2

8π
= P = const, (4.6)

ρVxV⊥ −
Bx

4π
B⊥ = G = const, (4.7)

29



CHAPTER 4. MHD DISCONTINUITIES

BxV⊥ − VxB⊥ = F = const. (4.8)

These equations are algebraic, that is, if we find some solution it will remain constant
in all space, for all x, unless MHD is broken somewhere.

4.2 Discontinuities
One way of breaking down MHD is to allow situations where the plasma variable change
abruptly, that is, say ρ(x < 0) 6= ρ(x > 0), while both are constant. In this case the
variable is not determined at x = 0. In fact, we have to allow such solutions in MHD
since magnetohydrodynamics is unable to describe small-scale variations. On the other
hand, (4.5)-(4.7) are nothing but the mass and momentum conservation laws, while (4.8)
is simply a manifestation of the potentiality of the electric field in the time-dependent
case, so that these equations have to be valid even in the case of abrupt changes.

Let us now rewrite (4.5)-(4.8) as follows:

J [Vx] + [p] +

[
B2
⊥

8π

]
= 0, (4.9)

J [V⊥] =
Bx

4π
[B⊥], (4.10)

Bx[V⊥] = [VxB⊥], (4.11)

where [A] ≡ A2 − A1 = A(x > 0)− A(x < 0), and J = ρ1V1x = ρ2V2x.
Let us first consider the case when J = 0, which means Vx = 0. In this case

[B⊥] = 0,

Bx[V⊥] = 0,

[p] = 0.

If Bx 6= 0 then [V⊥] = 0, and possibly [ρ] 6= 0. Thus, the only difference in the plasma
state on the both sides of the discontinuity is the difference in density (and temperature,
as the pressure should be the same). By choosing the appropriate reference frame,
moving along the discontinuity, we can always make V⊥ = 0, so that there no flows at
all, and everything is static. This is a contact discontinuity and it is the least interesting
among all possible MHD discontinuities.

If Bx = 0 then it is possible that [V⊥] 6= 0, so that in addition to different densities
at the both sides, the two plasmas are in a relative motion along the discontinuity. This
is a tangential discontinuity. In both types the magnetic field does not change at all.

The situation changes drastically when J 6= 0, that is, there is a plasma flow across
the discontinuity. Let us consider first the case where [ρ] = 0, that is, the density does
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not changes across the discontinuity. This immediately means [Vx] = 0 too, so that
Vx = const and from (4.10)-(4.11) we get

ρVx[V⊥] =
Bx

4π
[B⊥],

Bx[V⊥] = Vx[B⊥],

which means V 2
x = B2

x/4πρ, that is, the velocity of the plasma is equal to the interme-
diate (Alfen) wave velocity. Hence, the discontinuity is called an Alfven discontinuity.
Since in this structure the magnetic field rotates while its magnitude does not change
(the velocity rotates too), it is also called a rotational discontinuity.

4.3 Shocks
The last discontinuity J 6= 0 and [ρ] 6= 0 is called a shock (explained below) and is the
most important, therefore we devote a separate section to it. For the reasons which well
be explained later we shall assume ρ2/ρ1 > 1, and Vx > 0, so that V1x > V2x. It is
easy to show that V1, V2, B1, and B2 are in the same plane. We choose this plane as
x− z plane, and the reference plane so that V1⊥ = 0. Eventually, B1y = B2y = 0, and
V2y = 0.

In what follows we shall assume that all variables at x < 0 (upstream, index 1) are
known, and we are seeking to express all variables at x > 0 (downstream, index 2) with
the use of known ones. With all above, one has

ρ2
ρ1

=
V1x
V2x

, (4.12)

ρ1V1xV2x + p2 +
B2

2z

8π
= ρ1V

2
1x + p1 +

B2
1z

8π
, (4.13)(

B2
x

4π
− ρ1V1xV2x

)
B2z =

(
B2
x

4π
− ρ1V 2

1x

)
B1z, (4.14)

We shall now introduce some notation which has a direct physical sense. Let Bx =
Bu cos θ and B1z = Bu sin θ, where Bu is the total upstream magnetic field, and θ is the
angle between the upstream magnetic field vector and the shock normal. We define also
the upstream Alfven velocity as v2A = B2

u/4πρ1, and the Alfvenic Mach number as

M = V1x/vA. (4.15)

We shall assume the polytropic pressure p ∝ ργ and introduce β = 8πp1/B
2
u. We shall

further normalize (4.12) -(4.14) by substituting N = ρ2/ρ1 and b = B2z/Bu, to get
finally

1

N
+

β

2M2
Nγ +

b2

2M2
= 1 +

β

2M2
+

sin2 θ

2M2
, (4.16)
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(
cos2 θ

M2
− 1

N

)
b =

(
cos2 θ

M2
− 1

)
sin θ. (4.17)

Thus, we reduced our problem to the finding ofN = ρ2/ρ1 and b = B2z/Bu as functions
of M , θ, and β.

In what follows we consider only the simplest cases, leaving more detailed analysis
for the advanced course or self-studies.

Parallel shock, θ = 0. In this case sin θ = 0 and b = 0: the magnetic field does not
change, and the only condition remaining is

f(N) =
1

N
+

β

2M2
Nγ = 1 +

β

2M2
.

[ There is always a trivial solution N = 1 which means that nothing changes - no shock
at all. The function f(N) → ∞ when N → 0 or N → ∞ (γ > 0 !). Thus, there is
always another solution. In order that this solution be N > 1 the derivative we have to
require that df/dN < 0 at N = 1, so that

M2 > γβ ⇒ V 2
1x > v2s = γp1/ρ1. (4.18)

This relation means that the upstream velocity of the plasma flow should exceed the
sound velocity. This is exactly the condition for a simple gasdynamical shock formation,
and this is quite reasonable since the magnetic field does not affect plasma motion at
all. Yet we have to explain why N > 1 was required. It appears (we are not going
to prove that in the course) that in this case entropy is increasing as the plasma flows
across the shock, in accordance with the second thermodynamics law. In the opposite
case, N < 1, the plasma entropy would decrease, which is not allowed,

Perpendicular shock, θ = 90◦. In this case the magnetic field plays the decisive
role. We get b = N , and

f(N) =
1

N
+

β

2M2
Nγ +

N2

2M2
= 1 +

β + 1

2M2
.

The same arguments as above give

M2 > 1 + γβ/2⇒ V1x >
√
v2A + v2s , (4.19)

which means that the upstream plasma velocity should exceed the fast velocity for per-
pendicular propagation.
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4.4 Why shocks ?
Imagine a steady gas flow emerging from a source, and let this flow suddenly encounters
an obstacle. The flow near the obstacle has to change in order to flow around. For the
flow to re-arrange itself it should be affected in some way by the obstacle. In other
words, those parts of the flow which should change must get information about the
obstacle position, size, etc. The only way such information can propagate in the gas
is by means of sound waves. That is, when the flow comes to the obstacle, the latter
send sound waves backward (upstream) to affect those parts of the flow which are still
far from the obstacle, to let them have sufficient time to re-arrange their velocity and
density according to what should occur near the obstacle. The sound velocity is vs
relative to the flow. If the flow velocity is V , and sound has to propagate upstream
(against the flow), its velocity relative to the obstacle would be vs−V . It is obvious that
the flow velocity near the obstacle is subsonic, V < vs, so that sound waves can escape.
If the flow velocity is subsonic everywhere, sound waves have no problem to reach the
flow parts at any distance from the obstacle (that depends only on the time available)
thus allowing the whole flow to re-arrange according to the obstacle requirements. As
a result, in the steady state the gas parameters change smoothly from the source to the
obstacle.

If, however, the gas flow is supersonic, V > vs far from the obstacle, those parts are
not accessible by sound waves, since vs − V < 0, which means that sound is dragged
by the flow back to the obstacle. Yet the flow velocity at the obstacle itself must be
subsonic, otherwise the gas could not flow around the obstacle. The only way to achieve
that in hydrodynamics is to have a discontinuity, at which the gas velocity abruptly drops
from a supersonic velocity to a subsonic one.

The same arguments work for MHD, except in this case MHD waves play the role of
sound wave: whenever the plasma flow exceeds the velocity of the mode which is sup-
posed to propagate information upstream (fast mode in our perpendicular case above),
a shock has to form, where the plasma flow velocity drops from super-magnetosonic
to sub-magnetosonic. As in the ordinary gas, this velocity drop is accompanied by the
density and pressure (and temperature and entropy) increase. Thus, the primary role of
a shock is a) to decelerate the flow from super-signal to sub-signal velocity, and b) con-
vert the energy of the directed flow into thermal energy (in plasma also into magnetic
energy, since the magnetic field also increases).

Of course, real shocks are not discontinuities but have some width, which is deter-
mined by microscopic processes at small spatial scales. At these scales gasdynamic or
MHD approximations fail and have to refined or completed with something else (e.g.
viscosity in the gas or resistivity in MHD) related to collisions (in the gas) or com-
plex electromagnetic processes in collisionless plasmas. The latter, collisionless shocks
play the very important role of the most efficient accelerators of charged particles in the
universe.
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4.5 Problems

PROBLEM 4.1. Consider a parallel shockB⊥ = 0 and show that ρ2/ρ1 ≤ (γ + 1)/(γ − 1).

PROBLEM 4.2. What are the conditions for B⊥1 = 0 but B⊥2 6= 0 in a shock ? For the
opposite case ?

PROBLEM 4.3. Is it possible that the magnetic field decreases across a shock ?

PROBLEM 4.4. For an ideal gas entropy (per unit mass) ∝ p/ργ . Show that entropy does not
change in small-amplitude waves but increases across a chock (consider parallel shocks).
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Chapter 5

Two-fluid description

In this chapter we learn to improve our description of plasmas by analyzing motion of
each plasma species instead of restricting ourselves to the single-fluid representation
(MHD).

5.1 Basic equations
In order to not complicate things, we assume that our plasma consists of only two
species: electrons and ions. Each species constitutes a separate (charged) fluid, so that
we shall describe them by the following parameters: number density ns, particle mass
ms, particle charge qs, fluid velocity Vs, and pressure ps. Here s = e, i. In addition
there are electric and magnetic fields present, which are related to the plasma.

Since each species is a fluid by itself it should be described by the equations similar
to what we have already derived:

∂

∂t
ns + ∇ · (nsVs) = 0, (5.1)

nsms

(
∂

∂t
Vs + (Vs ·∇)Vs

)
= −∇ps + nsqs(E + Vs ×B/c), (5.2)

where we have included the electric force now, since each fluid is charged.
These equations should be completed with the state equations, like ps = ps(ns),

and Maxwell equations in their full form withe the charge and current densities given as
follows

ρ =
∑
s

nsqs, (5.3)

j =
∑
s

nsqsVs, (5.4)
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These charge and current enter the Maxwell equations, producing the electric and mag-
netic field, which, in turn, affect fluid motion and, therefore, produce the charge and
current. Thus, the interaction between electrons and ions occurs via the self-consistent
electric and magnetic fields, and the necessary bootstrap is achieved.

5.2 Reduction to MHD
Somehow we should be able to derive the MHD equations from the two-fluid equations,
otherwise there would be internal inconsistency in the plasma theory. We start with
the mentioning of one of the condition of MHD, namely, quasi-neutrality, which means
ρ =

∑
s nsqs = 0. Notice now that summing (5.2) for electrons and ions we get∑

s

nsms

(
∂

∂t
Vs + (Vs ·∇)Vs

)
= −∇(

∑
s

pss) + ρE + j ×B/c,

and we should drop the electric term in view of the above condition. The right hand side
now looks as it should be if we notice that p =

∑
s ps is the total plasma pressure. The

left hand side still does not look like it was in the MHD case. Before we proceed further
we rewrite the obtained equation in another form (see (2.12)):

∂

∂t

∑
s

(nsmsVsi) +
∂

∂xj

∑
s

(nsmsVsiVsj) = − ∂

∂xi
p+ εijkjjBk/c

The quantity ρm =
∑

s nsms is nothing but the mass density, and
∑

s(nsmsVsi) is
nothing but the momentum density, thus the mass flow velocity should be defined as

V =
∑
s

(nsmsVs)/ρ, ρ =
∑
s

nsms. (5.5)

Now the sum of the (5.1) multiplied byms gives the mass flow continuity equation (2.5).
We have yet to make the term

∑
s(nsmsVsiVsj) look like ρViVj , if possible. Here

we have to be more explicit. Let us write down the obtained relations (s = 1, 2 instead
of i, e here for convenience):

n1m1V1 + n2m2V2 = ρV ,

n1q1V1 + n2q2V2 = j,

from which it is easy to find

V1 =
ρg2V − j

n1m1(g2 − g1)

V2 =
ρg1V − j

n2m2(g1 − g2)
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where gs = qs/ms. Proceeding further, we find

V1 = V − j

n1m1(g2 − g1)
,

where we have taken into account that n1m1g1 + n2m2g2 = 0. After substitution and
some algebra we have∑

s

(nsmsVsiVsj) = ρViVj +
ρjijj

n1n2m1m2(g1 − g2)2
,

which is not exactly what we are looking for. This means that MHD is an approximation
where we neglect the jj term relative to V V term. Let us have a close look at this
negligence when q1 = −q2 = e, m1 = mi � m2 = me, n1 = n2 (electron-ion plasma).
In this case g1 � |g2| = e/me, and the jj term takes the following form

ρjijjme

n2e2mi

and can be neglected when
j � neV

√
mi/me,

that is, when the current is not extremely strong.

5.3 Generalized Ohm’s law
Let us focus on the electron-ion plasma whereme � mi. For simplicity we also assume
quasineutrality, ne = ni = n, which happens when motion is slow and electrons can
easily adjust their density to neutralize ions. Using j = ne(Vi − Ve) we substitute
Ve = Vi − j/ne into the electron equation of motion and get

me
dVe
dt

= −e(E + Vi ×B/c) +
1

nc
j ×B − 1

n
grad pe (5.6)

or
E + Vi ×B/c =

1

nec
j ×B − 1

en
grad pe −

me

e

dVe
dt

. (5.7)

The expression (5.7) is known as the generalized Ohm’s law. If there was no right hand
side (zero electron mass, cold electrons, weak currents) it would become E + Vi ×
B/c = 0. Since in this limit the single-fluid velocity V = Vi, this is nothing but the
Ohm’s law in ideal MHD. The terms in the right hand side of (5.7) modify the Ohm’s
law, adding the Hall term (first), the pressure induced electric field (second) and the
electron inertia term (third).
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5.4 Problems

PROBLEM 5.1. Let q2 = −q1 and m2 = m1. Derive single-fluid equations from two-fluid
ones in the assumption n2 = n1 (quasineutrality).

PROBLEM 5.2. Derive generalized Ohm’s law for a quasineutral electron-positron plasma.

PROBLEM 5.3. Write down two-fluid equations when there is friction (momentum transfer)
between electrons and ions.

PROBLEM 5.4. Derive the Hall-MHD equations substituting the ideal MHD Ohm’s law with

E + V ×B/c =
1

nec
j ×B

PROBLEM 5.5. Treat electrons as massless fluid and derive corresponding HD equations for
quasineutral motion.
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Chapter 6

Waves in dispersive media

In this chapter we learn basics of the general theory of waves in dispersive media.

6.1 Maxwell equations for waves
Whatever medium it is, if propagating waves are of electromagnetic nature they should
be described by the Maxwell equations (2.18)-(2.19). We already know that the two
other equations are just constraints, and once satisfied would be satisfied forever. The
vacuum electromagnetic waves are discovered when j = 0. It is rather obvious that the
"only" influence of the medium is via the current j. In general, this current should in-
clude also the magnetization current, and can be nonzero even without applying external
fields, like in ferromagnets. Although the theory can be developed for these cases too,
for simplicity we shall limit ourselves with the situations where the current is induced by
the fields themselves, that is, in the absence of the fields (except constant homogeneous
fields for which rot = 0 and (∂/∂t) = 0) the current j = 0.

We start again with an equilibrium, where the only possible field is a constant ho-
mogeneous magnetic fieldB0 = const. Let us assume that the equilibrium is perturbed,
that is, there appear time- and space-varying electric and magnetic fieldE andB. These
fields induce current j which we shall consider as being a function of E (since B and
E are closely related it is always possible). In general, j may be a nonlinear function of
E. However, if the fields are weak, we can assume that the induced current is weak too
and is linearly dependent on the electric field. In a most general way this can be written
as follows

ji(r, t) =

∫
Λij(r, r

′, t, t′)Ej(r
′, t′)dr′dt′. (6.1)

Thus, current "here and now" depends on the electric field in "there and then". The
simplest form of this relation implies Λij = σδijδ(r − r′)δ(t − t′) and results in the
ordinary Ohm’s law j = σE. The function Λ is determined by the features of the
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medium and does not depend on E.
If the equilibrium is homogeneous and time-stationary, the integration kernel should

depend only on r − r′ and t− t′. In this case one may Fourier-transform (6.1),

ji(r, t) =

∫
ji(k, ω) exp[i(k · r − ωt)]dkdω, (6.2)

to obtain
ji(k, ω) = σij(k, ω)Ej(k, ω). (6.3)

where σij is the conductivity tensor.
We proceed by Fourier-transforming the Maxwell equations (2.18)-(2.19) which

gives B = ck × E/ω (we do not denote differently Fourier components) and even-
tually

DijEj ≡
[
k2c2

ω2
δij −

kikjc
2

ω2
− εij

]
Ej = 0, (6.4)

where we have defined the dielectric tensor

εij = δij +
4πi

ω
σij. (6.5)

Expression (6.4) is a set of homogeneous equations. In order to have nonzero solu-
tions for Ei we have to require

D(k, ω) ≡ det ||Dij|| = 0, (6.6)

which is known as a dispersion relation. The very existence of the dispersion relation
means that the frequency ω of the wave and the wave vector k are not independent. This
is quite natural. Indeed, even in the vacuum the two are related as ω = kc. All effects
related to the medium are in the dielectric tensor εij (or in σij).

Thus, the only perturbations which can survive in a dispersive medium should be
∝ exp[i(k · r − ω(k)t)], where we emphasize the dependence of the frequency on the
wave vector.

6.2 Wave amplitude, velocity etc.
Once D = 0 the rank of the matrix Dij reduces to 2, which means that we are left with
only two independent equations for three components of the electric field. As usual, it
means that one of these components can be chosen arbitrarily, while the two others will
be expressed in terms of the chosen one. Warning: the above statement is not precise
and not any component can be chosen as an arbitrary one in all cases. Once we have
chosen one component we shall refer to it as a wave amplitude. This is rather imprecise
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and a more rigorous definition would be based on some physical concept, like wave
energy. This will be considered in an advanced section below.

Let ei(k) be the unit vector corresponding to the wave with the wave vector k. It
is called a polarization vector. The electric field corresponding to this wave can be
written as Ei = a(k)ei(k), where a is the amplitude. The general solution for the wave
(Maxwell) equations in the dispersive medium is

Ei(r, t) =

∫
a(k)ei(k) exp[i(k · r − ω(k)t)]dk. (6.7)

There is no already integration over ω since it is determined by k. Let initially, at t = 0,
the electric field E = E0(r). Then

Ei0(r) =

∫
a(k)ei(k) exp[ik · r]dk. (6.8)

and the amplitudes may be found by inverse Fourier-transform:

a(k)ei(k) = (2π)−3
∫
Ei0(r) exp[−ik · r]dr. (6.9)

Further substitution into (6.7) would give the electric field at all times.
The form Φ = k · r− ωt is the wave phase. The Considering Φ as an instantaneous

function of r, the normal to the constant phase surface (wave front) would be given by
n̂ = gradΦ/| gradΦ| = k/k. It is clear that the constant phase surfaces in our case are
planes perpendicular to k, hence the wave is a plane wave. Let us consider the same
constant phase surfaces= Φ = Φ0 at moments t and t + dt, and let ds be the distance
between the two planes along the normal. Then one has

k · (dsn̂)− ωdt = 0,

so that the velocity of the constant phase surface, the so-called phase velocity is

vph =
ds

dt
n̂ =

ω

k
k̂. (6.10)

The phase velocity describes only the phase propagation and is not related to the energy
transfer. Thus, it is not limited from above and can exceed the light speed. It is worth
noting that n = kc/ω = c/vph is the refraction index.

In order to analyze propagation of physical quantities we have to consider a wave
packet. Let us assume that initial perturbation exists only in a finite space region of
the size |∆r|. The uncertainty principle (or Fourier-transform properties) immediately
tells us that the amplitude a(k) should be large only in the vicinity of some k0: for
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|k − k0| > ∆k the amplitude is negligible. Here |∆k ·∆r| ∼ 1. Let us assume that in
this range ω(k) is a sufficiently slowly varying function, so that we can Taylor expand

ω(k) = ω0 + κi
∂ω

∂ki
+ 1

2
κiκj

∂2ω

∂kikj
, (6.11)

where κ = k− k0, ω0 = ω(k0), and all derivatives are taken at k = k0. Then the wave
packet at moment t would take the form

Ei(r, t) =

∫
a(k)ei(k) exp[i(k · r − ω(k)t)]dk

= exp[i(k0 · r − ω0t)]

∫
a(κ)ei(κ) exp[iκ · (r − vgt)]

· exp[−(i/2)κiκj
∂2ω

∂kikj
]dκ ≈ exp(iΦ)Ei0(r − vgt),

(6.12)

where the group velocity vg = (dω/dk), that is, vgi = (∂ω/∂ki), and in the last line
we neglected the second derivative term in the exponent. Thus, the velocity vg approxi-
mately corresponds to the motion of the initial profile. It can be shown that the second
derivative term describes the variation of the profile shape. It should be sufficiently
small (shape does not change much when the whole profile moves) in order that the
group velocity be of physical sense.

6.3 Wave energy
Let us define

Di(r, t) = Ei(r, t) + 4π

∫ t

−∞
ji(r, t

′)dt′, (6.13)

where ji is the internal current, that is, the current produced by the same particles which
are moving in the wave. In general, external (not related directly to the wave) currents
can be present, that is, j = jint + jext. Since

ji =

∫ t

−∞
dt′
∫
dr′σij(r − r′, t− t′)Ej(r′, t′) (6.14)

and, respectively,
ji(ω,k) = σij(ω,k)Ej(ω,k) (6.15)

we can write

Di =

∫ t

−∞
dt′
∫
dr′εij(r − r′, t− t′)Ei(r′, t′) (6.16)
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and
Di(ω,k) = εij(ω,k)Ej(ω,k) (6.17)

where
εij(ω,k) = δij +

4πi

ω
σij(ω,k) (6.18)

The current equation takes the form

∂D

∂t
= c rotB + 4πjext. (6.19)

Multiplying this equation by E, the induction equation byB and summing up we get

1

4π
E · ∂D

∂t
+

1

4π
B · ∂B

∂t

=
c

4π
(E · rotB −B · rotE) + 4πE · jext

= − c

4π
div(E ×B) + 4πE · jext.

(6.20)

Averaging this equation over a volume large enough relative to the typical length of
variations (much larger than the wavelength) we get

1

V

∫
V

[
1

4π
E · ∂D

∂t
+
∂

∂t

B2

8π

]
dV

= −
∫
V

c

4π
div(E ×B)dV + 4πE · jext

= − 1

V

∫
S

c

4π
div(E ×B) · dS + 4πE · jext

(6.21)

The first term in the right hand side is the energy flux outward from the volume. The
second term is the work done by the wave electric field on the external currents. There-
fore, the left hand side should be interpreted as the rate of change of the wave energy.
Let ω̄ be the typical frequency of the wave. The wave energy change implies the wave
amplitude change. For a monochromatic wave

Ei(r, t) = Ei exp(ikr − iω̄t) + E∗i exp(−ikr + iω̄t) (6.22)

where Ei = const. There is no energy change of a monochromatic wave. In order
to allow energy variation we have to assume that Ei depends on time weakly, so that
(1/E)(∂E/∂t)� ω̄. In other words,

Ei(r, t) =

∫
dωEi(ω)Ei exp(ikr − iωt) + E∗i exp(−ikr + iωt) (6.23)
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where |ω − ω̄| � ω̄. Since we are interested in slow variations, in what following we
have to analyze

〈 1

4π
E · ∂D

∂t
+

1

4π
B · ∂B

∂t
〉

=
1

T

∫
dt

(
1

4π
E · ∂D

∂t
+

1

4π
B · ∂B

∂t

) (6.24)

where T � 1/ω̄.
We shall perform calculations in a more general way. Let

Ei(r, t) =

∫
dωdk

(
Ei(ω,k)ei(kr−ωt) + E∗i (ω,k)e−i(kr−ωt)

)
(6.25)

where ω > 0. Then

Di(r, t) =

∫
dωdk

(
εij(ω,k)Ej(ω,k)ei(kr−ωt)

+ ε∗ij(ω,k)E∗j (ω,k)e−i(kr−ωt)
) (6.26)

This expression uses the relation

εij(−ω,−k) = ε∗ij(ω,k)

Now

E · ∂D
∂t

=

∫
dωdω′dkdk′

(
Ei(ω,k)ei(kr−ωt) + E∗i (ω,k)e−i(kr−ωt)

)
· iω′

(
εij(ω

′,k′)Ej(ω
′,k′)ei(k

′r−ω′t)

− ε∗ij(ω
′,k′)E∗j (ω

′,k′)e−i(k
′r−ω′t)

) (6.27)

When averaging over large volume this results in < ei(k−k
′)r >= δ(k − k′). Let us

write
εij = εHij + εAij (6.28)

where the Hermitian part satisfies

εHij = εH
∗
ji (6.29)

and the anti-Hermitian part satisfies

εAij = −εA∗ji (6.30)
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so that

< E · ∂D
∂t

> = i

∫
dωdω′dk(Ej(ω,k)E∗i (ω

′,k)

· e−i(ω−ω′)t(ω′εij(ω
′,k)− ωε∗ji(ω,k))

= i

∫
dωdω′dk(Ej(ω,k)E∗i (ω

′,k)

· e−i(ω−ω′)t(ω′εHij (ω
′,k)− ωεHij (ω,k))

−
∫
dωdω′dk(Ej(ω,k)E∗i (ω

′,k)

· e−i(ω−ω′)t(ω′εAij(ω
′,k) + ωεAij(ω,k))

(6.31)

Here we dropped the terms with exp[±i(ω+ω′)t] since, when averaging over T � 1/ω,
these fast oscillation terms vanish. On the other hand, the terms with exp[±i(ω − ω′)t]
survive when |ω−ω′|T � 1, that is, ω′ ≈ ω. It is worth emphasizing that exact equality
is not required since the variation time 1/|ω − ω′| is larger than the averaging time. In
this case we can Taylor expand:

ω′εHij (ω
′,k)− ωεHij (ω,k) = (ω′ − ω)

∂

∂ω

(
ωεHij (ω,k)

)
and

ω′εAij(ω
′,k) + ωεAij(ω,k) = 2ωεAij(ω,k)

The term with the anti-Hermitian εA is responsible for the intrinsic nonstationarity of the
way amplitude. In the thermodynamic equilibrium it describes the natural dissipation
of the wave energy. We shall not consider it here. For the rest of the expression notice
that

i(ω′ − ω)e−i(ω−ω
′)t =

d

dt
e−i(ω−ω

′)t

and therefore (restoring all integrations)

<

∫
V

dVE · ∂D
∂t

>=
d

dt

∫
dωdk(Ej(ω,k)E∗i (ω,k)

∂

∂ω

(
ωεHij (ω,k)

)
(6.32)

For a wave with the dispersion relation ω = ω(k) one has

Ej(ω,k)E∗i (ω,k) = Ej(ω(k),k)E∗i (ω(k),k)δ(ω − ω(k)) (6.33)

so that we get

<

∫
V

dVE · ∂D
∂t

>=
d

dt

∫
dk(Ej(ω,k)E∗i (ω,k)

∂

∂ω

(
ωεHij (ω,k)

)
(6.34)
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where now ω is not independent by has to be found from the dispersion relation.

Now we see that the wave energy can be identified as

U =
∂

∂ω

(
ωεHij (ω,k)

) Ej(ω,k)E∗i (ω,k)

4π
+
Bi(ω,k)B∗i (ω,k)

4π
(6.35)

where ω = ω(k). Let us now take into account that

Bi = εijknjEk, ni =
kic

ω

so that

Bm(ω,k)B∗m(ω,k)

4π
= (n2δij − ninj)EiE∗j

and

U = [n2δij − ninj +
∂

∂ω
(ωεHij )]

EjE
∗
i

4π

= [n2δij − ninj − εHij +
1

ω

∂

∂ω
(ω2εHij )]

EjE
∗
i

4π

=
1

ω

∂

∂ω
(ω2εHij )

EjE
∗
i

4π

(6.36)

since (n2δij − ninj + εHij )Ej = 0 because of the dispersion relation and only the Her-
mitian part of εij is implied. If we now represent the wave electric field as Ei = Eêi,
where E is the wave amplitude, and êi is the wave polarization (unit vector), one gets

Uk =
ê∗i êj
ω

∂

∂ω
(ω2εHij )

|E|2

4π
(6.37)

6.4 Problems

PROBLEM 6.1. Given the initial profile of A(x, t = 0) = A0 exp(−x2/2L2) and the disper-
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sion relation ω = ±kv, find the wave profile at t > 0.

PROBLEM 6.2. Same profile but ω does not depend on k.

PROBLEM 6.3. Same but ω = ±ak2.

PROBLEM 6.4. Same but ω2 = k2v2/(1 + k2d2).

PROBLEM 6.5. Given n(ω) find the group velocity.

PROBLEM 6.6. What are the conditions on (dω/dk) and (d2ω/dk2) when group velocity has
physical sense ?

PROBLEM 6.7. In what conditions initial discontinuity propagates as a discontinuity ?
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Chapter 7

Waves in two-fluid hydrodynamics

In this chapter we apply the theory of waves in dispersive media to the cold two-fluid
hydrodynamics.

7.1 Dispersion relation
Let us consider a plasma consisting of two fluids, electrons and ions. We shall denote
species with index s = e, i. For simplicity we consider cold species only, so the the
corresponding hydrodynamical equations read

∂ns
∂t

+ div(nsVs) = 0, (7.1)

nsms

(
∂Vs
∂t

+ (Vs ·∇)Vs

)
= qsns(E + Vs ×B/c). (7.2)

In the equilibrium ns = ns0, Vs = 0,E = 0, andB = B0. As usual, we write down the
Fourier-transformed linearized equations for deviations from the equilibrium, ñs(k, ω),
Ṽs(k, ω), Ẽ(k, ω) (we do not need perturbations of the magnetic field):

ñs = ns0k · Ṽs/ω, (7.3)

− iωṼs = gs(Ẽ + Ṽs ×B0/c), (7.4)

where gs = qs/ms. Our ultimate goal is to find the current j̃ =
∑

s ns0qsṼs, so that we
do not need (7.3). In order to solve (7.4) let us choose coordinates so that B0 = B0ẑ
and rewrite the equations as follows:

− iωṼsz = gsẼz, (7.5)

− iωṼsx − ΩsṼsy = gsẼx, (7.6)

− iωṼsy + ΩsṼsx = gsẼy, (7.7)
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where Ωs = gsB0/c is the species gyrofrequency. Equation (7.5) is immediately solved:

Ṽsz =
igs
ω
Ẽz. (7.8)

The other two components are most easily found if we define Ẽl = Ẽx + ilẼy, and
Ṽl = Ṽx + ilṼy, where l = ±1. Then (7.6) and (7.7) give

−i(ω − lΩs)Ṽsl = gsẼl,

and, eventually,

Ṽsl =
igs

ω − lΩs

Ẽl. (7.9)

Proceeding further, one has

Ṽsx + ilṼsy =
igs

ω2 − Ω2
s

(ω + lΩs)Ẽl

=
igs

ω2 − Ω2
s

[
(ωẼx + iΩsẼy) + l(ωẼy − iΩsẼx)

] (7.10)

so that eventually we get

Ṽsx =
igsω

ω2 − Ω2
s

Ẽx −
gsΩs

ω2 − Ω2
s

Ẽy, (7.11)

Ṽsy =
gsΩs

ω2 − Ω2
s

Ẽx +
igsω

ω2 − Ω2
s

Ẽy. (7.12)

Respectively, the current will take the form

jx =

(∑
s

igsns0qsω

ω2 − Ω2
s

)
Ẽx −

(∑
s

gsns0qsΩs

ω2 − Ω2
s

)
Ẽy, (7.13)

jy =

(∑
s

gsns0qsΩs

ω2 − Ω2
s

)
Ẽx +

(∑
s

igsns0qsω

ω2 − Ω2
s

)
Ẽy, (7.14)

jz =

(∑
s

igsns0qs
ω

)
Ẽz. (7.15)

Now, using the definitions of σij and εij we can arrive at the following dielectric tensor

εij =

 ε⊥ iG 0
−iG ε⊥ 0

0 0 ε‖

 , (7.16)
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ε⊥ = 1 +

(∑
s

ω2
ps

Ω2
s − ω2

)
, (7.17)

G =

(∑
s

ω2
psΩs

ω(Ω2
s − ω2)

)
, (7.18)

ε‖ = 1−

(∑
s

ω2
ps

ω2

)
, (7.19)

ω2
ps =

4πns0q
2
s

ms

. (7.20)

It is convenient to choose coordinates so that k = (k⊥, 0, k‖) = k(sin θ, 0, cos θ),
where θ = B̂0k is the angle between the wave vector and the equilibrium magnetic
field. Then the dispersion equation will take the following formn2 cos2 θ − ε⊥ −iG −n2 sin θ cos θ

iG n2 − ε⊥ 0
−n2 sin θ cos θ 0 n2 sin2 θ − ε‖

ExEy
Ex

 = 0. (7.21)

Before we analyze the complete dispersion relation (determinant) let us consider special
cases.

7.2 Unmagnetized plasma
In this case B0 = 0 and, therefore, Ωs = 0 and G = 0. Moreover, ε⊥ = ε‖. Since
the dielectric tensor is isotropic, εij = ε‖δij , dispersion relations cannot depend on the
direction, and we may choose θ = 0. We get two identical dispersion relations (for
Ex 6= 0 and for Ey 6= 0) which give

ω2 = ω2
p + k2c2, ω2

p =
∑
s

ω2
ps, (7.22)

with the phase velocity vph = c
√

1 + ω2
p/k

2c2 > c and group velocity vg = c/vph. The
wave is transverse,E ⊥ k and purely electromagnetic. There is no density perturbation.
The lowest possible frequency is ωp.

The third dispersion relation is for Ez 6= 0 and gives ω = ωp. This longitudinal
wave, E ‖ k is the density perturbation waves and is called Langmuir wave.

7.3 Parallel propagation
In this case θ = 0. The determinant is

D =
(
(n2 − ε⊥)2 −G2

)
ε‖ = 0. (7.23)
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The solution ε‖ = 0 corresponds to the Langmuir wave with Ez 6= 0. The two other
correspond to Ey = ±iEx (circular polarization) and n2 = ε⊥ ±G:

n2 = 1 +
ω2
pi

ω(Ωi − ω)
−

ω2
pe

ω(|Ωe|+ ω)
, (7.24)

n2 = 1−
ω2
pi

ω(ω + Ωi)
+

ω2
pe

ω(|Ωe| − ω)
. (7.25)

For a simple electron-proton plasma qi = e, qe = −e, mi/me ≈ 2000 � 1. We have
|Ωe|/Ωi = mi/me, ωpe/ωpi =

√
mi/me, and

ω2
pe

|Ωe|
=
ω2
pi

Ωi

,

ω2
pe

|Ω2
e|

=
me

mi

ω2
pi

Ω2
i

Low frequencies In the range ω � Ωi Taylor expansion gives for both modes

n2 = 1 +
ω2
pi

Ω2
i

, (7.26)

or (for the typical ωpi � Ωi) ω = kcΩi/ωpi = kvA, where

v2A =
c2Ω2

i

ω2
pi

=
B2

4πnimi

.

High frequencies In the range ω � |Ωe| Taylor expansion gives for both modes
n2 = 1 + ω2

pe/ω
2, that is, electromagnetic modes in an unmagnetized plasma.

Intermediate frequencies In the range Ωi � ω � |Ωe| one has only one mode

n2 =
ω2
pe

ω|Ωe|
=

ω2
pi

ω|Ωi|
.

This is so-called whistler ω = k2c2Ωi/ω
2
pi. This is wave is strongly dispersive, vg ∝ k.

7.4 Perpendicular propagation
In this case cos θ = 0 and we have either

n2 = ε‖
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which is the electromagnetic wave like in the unmagnetized plasma, or

n2 = ε⊥ −
G2

ε⊥
.

In the low frequency range, ω � Ωi, we get ω = kcΩi/ωpi = kvA,

7.5 General properties of the dispersion relation

It is easy to see that in general case the dispersion relation for (7.21) takes the form

A(ω)n4 +B(ω)n2 + C(ω) = 0, (7.27)

where

A = ε‖ cos2 θ + ε⊥ sin2 θ,

B = G2 sin2 θ − ε⊥(ε‖ + A),

C = ε‖(ε
2
⊥ −G2).

Thus, there are two solutions for n2, in general. It can be shown that these solutions
are real. The regions where n2 < 0 correspond to non-transparency: the corresponding
mode does not propagate in this range.
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7.6 Problems

PROBLEM 7.1. Derive dispersion relations for electrostatic waves propagating along the
magnetic field taking into account the electron and ion pressure.

PROBLEM 7.2. Find cutoff frequencies (k → 0) for parallel and perpendicular propagation.

PROBLEM 7.3. Show that waves become longitudinal, E ‖ k, when n2 → ∞ and find
frequencies of these oscillations (resonance frequencies).

PROBLEM 7.4. Derive dispersion relations for an electron-positron plasma.

PROBLEM 7.5. Let a plasma consist of electrons and two ion species. Derive the dispersion
relation for waves propagating in the direction parallel to the magnetic field. What is new ?

PROBLEM 7.6. An electromagnetic wave propagates in the vacuum in the direction perpen-
dicular to the vacuum-plasma interface. There is no external magnetic field. The wave frequency
ω < ωp. Describe the electric field in the plasma.

PROBLEM 7.7. A linearly polarized electromagnetic wave of frequency ω � |Ωe| enters a
column of plasma along the external magnetic field. Calculate the rotation of the electric field
vector upon crossing the plasma.

PROBLEM 7.8. Describe the polarization of obliquely propagating waves.

PROBLEM 7.9. Let me → 0. Derive the corresponding dispersion relations.

54



Chapter 8

Kinetic theory

In this chapter we learn a more detailed method of plasma description.

8.1 Distribution function

In the hydrodynamic description of plasma we forgot about different velocities of plasma
particles and described it with the help of averaged quantities only: density, hydrody-
namical velocity, and pressure. In this description the only reminder of the random
(thermal) motion of particles was pressure. A more sophisticated description would
give us information about different particle motion, at least at some level of averaging.
The approach is in some sense similar to the hydrodynamical density approach. Indeed,
density n(r, t) is nothing but the indication that the number of particles within the vol-
ume dV = d3r is dN = n(r, t)dV at the moment t, if we properly average fast and
small scale fluctuations. The last means that any physically infinitesimal volume should
contain a large number of particles, and that the time averaging is over the time which
is much larger than any time required for any microscopic relaxation process.

Following this principle, we consider the phase space (r,p) and define a phase
space density, which is more often called distribution function, as follows: dN =
f(r,p, t)d3rd3p is a number of particles in a physically infinitesimal volume of the
phase space.

In a more conservative way, f is often defined as a probability for a particle to be in
the phase space volume d3rd3p, so that

∫
fd3rd3p = 1, when the integration is over

the whole phase space. We shall use the first definition, except stated otherwise.
It is easy to see that the particle density and hydrodynamical velocity are related to

the distribution function in a simple way:

n(r, t) =

∫
fd3p, (8.1)
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nV (r, t) =

∫
vfd3p. (8.2)

In general, an integral of the kind vi1 . . . vinfd3p is called nth moment of the distribution
function. Let us consider the second moment (for simplicity we restrict ourselves with
nonrelativistic particles so that pi = mvi):∫

vivjfd
3p =

∫
[(vi − Vi) + Vi][(vj − Vj) + Vj]fd

3p

=

∫
(vi − Vi)(vj − Vj)fd3p+ nViVi

= pij/m+ nViVj,

(8.3)

where pij is the pressure tensor. In the case of ideal gas pij = pδij , where p/m =
(1/3)

∫
v2fd3p.

8.2 Kinetic equation
We need some tools for the description of the evolution of the distribution function. In
order to do this we recall that a particle motion is determined by Hamiltonian dynamics,
which means that the initial position r0 and momentum p0 completely determine, in
principle, the particle future. In other words it is stated in the form of the Liouville
theorem: the phase space volume does not change with time. The last statement means
that the total time derivative of the distribution function along the trajectory vanishes:

df

dt
=
∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
= 0. (8.4)

Taking into account that ṙ = v and ṗ = F (force), we get the kinetic Vlasov equation
in the following form:

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂p
= 0. (8.5)

For the nonrelativistic plasma p = mv, and F = q(E + v ×B/c), so that eventually
we get the equation in the form we will be using throughout:

∂f

∂t
+ v · ∂f

∂r
+

q

m

(
E +

v

c
×B

)
· ∂f
∂v

= 0. (8.6)

If a plasma consists of several species s, Vlasov equation should be written for each
distribution function fs. The set should be completed with the Maxwell equations where

ρ =
∑
s

qs

∫
fsd

3v, (8.7)
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j =
∑
s

qs

∫
vfsd

3v. (8.8)

Here we switched from p to v properly re-normalizing the distribution function.

8.3 Relation to hydrodynamics
Let us take zeroth moment of (8.6), that is, integrate it over d3v. We get∫

∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v +

∫
q

m
(Ei + εijkvjBk/c)

∂f

∂vi
d3v

=
∂

∂t
(

∫
fd3v) +

∂

∂xi
(

∫
vifd

3v)

=
∂

∂t
n+

∂

∂xi
(nVi) = 0,

(8.9)

which is nothing but the continuity equation.
First moment will give, respectively,

m

∫
va
∂f

∂t
d3v +m

∫
vavi

∂f

∂xi
d3v +

∫
qva(Ei + εijkvjBk/c)

∂f

∂vi
d3v

= m
∂

∂t
(

∫
vafd

3v) +m
∂

∂xi
(

∫
vavifd

3v)

− qEa(
∫
fd3v)− q

m
εajk(

∫
vjfd

3v)Bk/c

=
∂

∂t
(nmVa) +

∂

∂xi
(nmVaVi + pai)− q(Ea + εaijViBj/c) = 0

(8.10)

which is nothing but the motion (Euler) equation.

8.4 Waves
In order to make this simple we study here only one-dimensional electrostatic wave
without external magnetic field, that is, everything will depend only on z (and t), there
will be only one, vz component of the velocity, and only one, Ez component of the
electric field. The corresponding Vlasov equation fill take the form

∂f

∂t
+ vz

∂f

∂z
+

q

m
Ez

∂f

∂vz
= 0. (8.11)

Since we are going to study waves we have to start with the equilibrium, where Ez = 0,
(∂f/∂z) = 0, and (∂f/∂t) = 0. Thus, the equilibrium distribution should depend
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only on vz. We shall write f0(vz) = nF0(vz), where n is the equilibrium density, and∫
F0dvz = 1. Perturbing, linearizing, and Fourier-transforming (8.11) one has

−i(ω − kvz)f̃ = −qn
m
Ez
∂F0

∂vz
. (8.12)

Following general rules, we have to calculate current density, which in this case will be
just

jz = −

(∑
s

insq
2
s

ms

∫
vz

ω − kvz
∂F0s

∂vz
dvz

)
Ez, (8.13)

and, respectively,

εzz = 1 +
∑
s

ω2
ps

ω

∫ ∞
−∞

vz
ω − kvz

∂F0s

∂vz
dvz. (8.14)

Here ω2
ps = 4πnsq

2
s/ms. The dispersion relation would read εzz = 0.

8.5 Landau damping
The main task is to evaluate the integrals in (8.14). In order to do that we have to
decide what to do with the singularity at vz = ω/k. The solution is the adiabatic
switch-on, where a perturbation gradually exponentially increases from t → −∞, that
is,Ez ∝ exp(−iωt+εt), with ε→ +0. Technically this means substitution ω → ω+iε,
so that the singularity is removed from real vz into the upper plane of the complex vz.
In other words, the integral over vz in (8.14) is in fact a contour integral in the complex
vz plane, the contour running from vz = −∞ to vz = ∞ below the singular point. The
same can be symbolically written as follows:

1

x+ iε
= P 1

x
+ iπδ(x), (8.15)

where P means the principal value integral

P
∫ b

a

1

x
Fdx ≡ lim

ε→0

(∫ −ε
a

1

x
Fdx+

∫ b

ε

1

x
Fdx

)
,

and δ(x) is the usual delta-function. Summarizing all this, the dispersion relation for
electrostatic waves can be written as follows

εs =
ω2
ps

k2

[
P
∫ ∞
−∞

1

vz − ω/k
∂F0s

∂vz
dvz

+iπ
∂F0

∂vz
|vz=ω/k

]
= 0,

(8.16)
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where εzz = 1 +
∑

s εs.
The singularity vz = ω/k is called Cerenkov resonance. Since now the dispersion

relation is complex its solution ω should be also complex. Let ω → ω + iΓ, where
we retain notation ω for the real part (frequency). Then E ∝ exp(−iωt + Γt). If
Γ < 0 the wave amplitude decreases with time, that is, the wave is damped. We shall
see immediately that this is the situation in the plasma in a thermodynamic equilibrium,
where the distribution functions have the form (Maxwellian)

F0 =
1√

2πvT
exp(−v2z/2v2T ). (8.17)

Here vT is the thermal velocity related to the species temperature as follows: v2T = T/m.
The integral in (8.16) cannot be calculated analytically in the whole range of ω/k.

Maximum of the integrand ∂F
∂vz

is in the range vz ∼ vT , so that it is reasonable to expect
that far from this region some approximations would be useful.

High phase-velocity. In this case ω/k � vT and we expand

1

ω/k − vz
=
k

ω

[
1 +

kvz
ω

+
k2v2z
ω

2

+ . . .

]
.

Substituting and integrating we find

Re εs = −
ω2
ps

ω2

(
1 +

3k2v2T
ω2

)
. (8.18)

Low phase-velocity. In this case ω/k � vT . We introduce a shift vz = u+ω/k, then

F0 =
1√

2πvT
exp

(
− ω2

2k2v2T
− ωu

2kv2T
− u2

2v2T

)
=

1√
2πvT

exp

(
− ω2

2k2v2T

)[
1− ωu

2kv2T
−− u2

2v2T
+ . . .

] (8.19)

Since (∂F0/∂vz)dvz = (∂F0/∂u)du, one finally finds

Re εs =
ω2
ps

k2v2T
. (8.20)

Imaginary part. The imaginary part in both cases is

Im εs =

√
πω2

psω√
2k3v3Ts

exp(−ω2/2k2v2Ts). (8.21)
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Now we are ready to investigate electrostatic waves in an electron-ion plasma, where
mi/me ≥ 2000� 1. We also assume that Ti ≤ Te, so that vTe/vT i = (Te/Ti)

1/2(mi/me)
1/2 �

1. We shall analyze separately three regions: (a) ω/k � vTe, (b) vTe � ω/k � vT i,
and (c) vT i � ω/k. We are looking for waves with |Γ| � ω (otherwise we cannot speak
about a wave). The dispersion relation is developed as follows:

ε(ω + iΓ) = 0, (8.22)
Re ε(ω + iΓ) + i Im ε(ω + iΓ) = 0, (8.23)

Re ε(ω) + iΓ
∂

∂ω
Re ε(ω) + i Im ε(ω) = 0, (8.24)

Re ε(ω) = 0, (8.25)

Γ = − Im ε(ω)

[
∂

∂ω
Re ε(ω)

]−1
. (8.26)

In other words, ω is found from (8.25), without taking into account the imaginary part
of the dielectric tensor. The growth (damping) rate Γ is then found from (8.26) where
we should substitute ω which was found earlier.

High phase velocity range: Langmuir waves. In the range ω/k � vTe � vT i we
have (8.18) for electrons and ions as well, so that

Re ε = 1−
ω2
pe

ω2
(1 +

3k2v2Te
ω2

) = 0, (8.27)

where we neglected the ion contribution. The dispersion relation now reads

ω2 = ω2
pe + 3k2v2Te, (8.28)

and describes Langmuir waves with thermal effects taken into account. For the imagi-
nary part we have

∂

∂ω
Re ε(ω) ≈ 2

ωpe

and

Γ

ωpe
= −

π1/2ω3
pe

23/2k3v3Te
exp(−ω2

pe/2k
2v2Te)

= − π1/2

23/2k3r3De
exp(−1/2k2r2De)

(8.29)

where rDe = vTe/ωpe =
√
Te/4πne2 is the electron Debye radius. According to our

condition krDe � 1, and ω ≈ ωpe, so that |Γ|/ω � 1, that is, Langmuir waves are
weakly damped.
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Intermediate phase velocity range. In the range vTe � ω/k � vT i we have

Re εe =
1

k2r2De
, Re εi = −

ω2
pi

ω2
,

so that we have

Re ε = 1−
ω2
pi

ω2
+

1

k2r2De
= 0, (8.30)

from which we get the dispersion relation for ion-sound waves:

ω2 =
ω2
pik

2r2De
1 + k2r2De

. (8.31)

In the limit krDe � 1 we have

ω = kvTeωpi/ωpe = k
√
Te/mi. (8.32)

In the limit krDe � 1 we get ω → ωpi. Since we required vTe � ω/k � vT i we have
the condition Te � Ti.

Low phase velocities. In the range ω/k � vTe, vT i one has

Re ε = 1 +
1

k2r2De
+

1

k2r2Di
= 0, (8.33)

and we rediscover Debye screening k = ±i1/rD, where r−2D = r−2De + r−2Di .

8.6 Problems

PROBLEM 8.1. Calculate damping rate for ion-sound waves.

PROBLEM 8.2. Derive dispersion relations for cold plasmas using F0 = δ(v).

PROBLEM 8.3. Find the dispersion relation for waves in electron-positron plasma with the
"waterbag" distribution: F0 = θ(v20 − v2)/2v0, where θ(x) = 1 if x ≥ 0 and θ(x) = 0 if x < 0.
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PROBLEM 8.4. Derive the dispersion relation for electromagnetic waves (E ⊥ k,B 6= 0).

PROBLEM 8.5. Derive the dispersion relation for electrostatic waves in a plasma consisting
of cold electrons and ions, moving with the relative velocity V0.
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Chapter 9

Micro-instabilities

In this chapter we learn about instabilities (spontaneous growth of perturbations) caused
by highly nonequilibrium distributions of plasma.

9.1 Beam (two-stream) instability
Let us consider a plasma consisting of two electron populations: body fp = npδ(v), and
beam fb = nbδ(v − V0). We shall assume that the beam density is much smaller than
the plasma body density, nb/np � 1. It is easy to find

ε = 1−
ω2
p

ω2
− ω2

b

(ω − kV0)2
. (9.1)

where ω2
p = 4πnpe

2/m and ω2
b = 4πnbe

2/m. It is worth noting that ω − kV0 is just the
frequency, Doppler shifted into the beam rest frame.

The dispersion relation reads

1−
ω2
p

ω2
− ω2

b

(ω − kV0)2
= 0. (9.2)

In the high frequency limit, ω � kV0, one immediately has ω = ωp (Langmuir wave).
There is no low frequency limit ω � kV0. If |ω − kV0| � kV0 one has

ω = kV0 ± ωb
[
1−

ω2
p

k2V 2
0

]−1/2
(9.3)

When kV0 < ωp the square root becomes imaginary. For long wave lengths kV0 � ωp
one gets the growth rate

Γ = Imω = ±ikV0(nb/np)1/2
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The positive solution gives the instability: the wave amplitude grows exponentially.
The real part of the dispersion relation ω = kV0 shows that the growing oscillations
have zero frequency it the beam frame.

When kV0 ≈ ωp the growth rate goes to infinity and more accurate consideration
is necessary. In this region the beam waves ω = kV0 can be in the resonance with the
plasma body (Langmuir) waves ω = ωp. Putting kV0 = ωp, ω = ωp + δ, one gets

2δ

ωp
=
ω2
b

δ2

and the unstable solution reads

δ = 21/3ωp(nb/np)
1/3

(
1

2
+ i

√
3

2

)
(9.4)

9.2 More on the beam instability
Let us consider again the dispersion relation for the beam instability,

ε = 1−
ω2
p

ω2
− ω2

b

(ω − kV0)2
.

If there were only the plasma body, ωb = 0, we would have regular plasma waves
ω = ±ωp, where ± stands to show that the are waves propagating in both directions.
The energy of this wave is, according to (6.36),

Up =
2ω2

p

ω2

|Ep|2

8π
,

and is always positive.
If there were only beam particles, ωp = 0, then we would have two beam waves with

the dispersion relation
ω = kV0 ± ωb,

with the wave energy

Ub =
2ω2

pω

(ω − kV0)3
|Eb|2

8π
.

The slower wave ω = kV0 − ωb has negative energy. It should be understood that this
energy is negative in the plasma frame. In the beam frame the wave energy remains
positive.

Let us now come back to the plasma-beam system. If two waves with the opposite
sign of energy resonate (couple) so that they have close k and ω, electric field in both can
grow while maintaining energy conservation. Thus, we can expect that instability occurs
where kV0 − ωb ≈ ωp. The condition corresponds to the above resonant hydrodynamic
beam instability.
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9.3 Bump-on-tail instability
Let us now consider the electrostatic instability of a thermal plasma, that is, we assume
that there is a region in the velocity space where dF0/dv > 0. Following the prescrip-
tions outlined in the chapter on kinetic description, we find the growth rate in the form

γ = − Im ε

∂ Re ε/∂ω
,

where

Im ε = −π
ω2
p

k|k|
dF0

dv
|v=ω/k

and
∂ Re ε

∂ω
= −

ω2
p

k3
P
∫ ∞
−∞

1

(v − ω/k)2
dF0

dv
dv.

It can be shown that the above expression may be written as

∂ Re ε

∂ω
=

2

k(vph − vg)
,

where vph = ω/k and vg = dω/dk. Eventually,

γ = π
ω2
p(vph − vg)
|k|

dF0

dv
|v=ω/k. (9.5)

Let us assume that dF0

dv
> 0 for v1 < v < v2. The meaning of this kinetic instability

is that a number of modes with v1 < ω/k < v2 are excited. Lets have a closer look at
the unstable mode with the wave-vector k. The electric field in this mode has the time
dependence of the form

Ek(t) ∝ exp(−iωkt+ γkt)
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Chapter 10

∗Nonlinear phenomena∗

67



CHAPTER 10. ∗NONLINEAR PHENOMENA∗

68



Appendix A

Plasma parameters

Table A.1: Parameters of various plasmas
Source Density, cm−3 Temperature, K Composition Magnetic field, T
Solar wind near Earth 1-10 105 p,e 10 nT
Fusion reactor 1015 108

Ionosphere 105 500 7
Glow discharge 109 104

Flame 108 103

Interplanetary plasma 1 100
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