Problem 1 - resistance and attenuation of coaxial cables

In the waves section of the course, we will learn that waves penetrate into a material a distance known as a skin depth, \(\delta = (\pi f \mu \sigma)^{-0.5} \).

a. Calculate the skin depth in copper at 1 kHz and 15 MHz.

b. An RG-58 cable has a polyethylene dielectric (\(\varepsilon_r = 2.3 \) and \(\sigma = 10^{-13}/\text{ohm m} \)) and copper conductors. The inner conductor extends from \(r = 0 \) to \(r = a \approx 0.4 \text{ mm} \) and the outer conductor extends from \(r = b \approx 1.4 \text{ mm} \) to 1.53 mm.
 1) Calculate the resistance per unit length, \(r \), and conductance per unit length, \(g \), at 1 kHz. Use \(\sigma = 1\text{E-13} \text{ [S/m]} \) for the polyethylene and \(\sigma = 5.8\text{E7} \text{ [S/m]} \) for copper.
 2) Repeat for 15 MHz.

c. The inductance and capacitance per unit length, \(I \) and \(C \), have already been calculated (Lesson 1.1). They are 0.25 \(\mu \text{H/m} \) and 100 \(\text{pF/m} \) respectively. At 15 MHz,
 1) determine the characteristic impedance, \(Z_C \),
 2) the propagation constant, \(\gamma = \alpha + j\beta \)
 3) the distance a wave travels before the voltage is attenuated to \(1/e \) of its original value.
 4) The reflection coefficient for a 93 \(\Omega \) load.

d. What parameters are essentially the same for low-loss and lossless lines? What is new?