Problem 1 - Coulomb and Gauss' law
Show that the electric field of a point charge satisfies Gauss' law by evaluating \(\int E \cdot ds \) over the surface of a sphere of radius \(a \).

Problem 2 - Symmetry
Three charge distributions are pictured below. In 1) and 3), assume that the system is very long and ignore fringe effects. For each of the charge distributions, answer the following:

a. Determine the direction in which \(E \) points.

b. Determine surfaces over which \(\int E \cdot ds \) is constant and non-zero.

c. Sketch a surface that can be used with Gauss' law to find \(E \).

1) cylinder with uniform volume charge density
2) spherical shell of charge
3) semiconductor with charged layer
Problem 3 - Use Gauss' law to evaluate E

A charge distribution with cylindrical symmetry is shown below. The inner cylinder has a uniform charge density ρ_{vo} [C/m3]. The outer shell has a surface charge density ρ_{so} [C/m2] such that the total charge per length on the outer shell is the negative of the total charge per length in the inner cylinder. Ignore end effects.

a. Find E for $r < a$.

b. Find E for $a < r < b$.

c. Find E for $b < r$.

d. Check your answer for E by evaluating $\nabla \cdot E$ (the differential form of Gauss's Law) and $\nabla \times E$ for all regions.

e. What is $\oint E \cdot dl$ around the closed contour shown on the right?

f. Express the unknown charge density ρ_{so} in terms of the geometry and the known uniform charge density ρ_{vo}.