Problem 1 - polarization
Consider a wave travelling in the z direction whose electric field is given by
\[E(z,t) = 3 \cos(\omega t - \beta z) a_x + C \cos(\omega t - \beta z + \phi) a_y. \]
Describe the polarization (e.g. linear, right circular, etc.) and on an xy plot sketch the locus of \(E(0,t) \) over a cycle for the following cases.

a) \(C = 4 \text{ V/m}, \phi = 0^\circ \)
b) \(C = 3 \text{ V/m}, \phi = 45^\circ \)

Problem 2 - Arbitrary propagation angle
The direction of \(E \) and \(\gamma \) of a electromagnetic wave with \(\lambda = 500 \text{ nm} \) are shown below. The wave is traveling through air. The electric field has a magnitude of 30 V/m. What are the \(E \) and \(H \) phasors?

\[\begin{align*}
\text{y axis is out of the page}
\end{align*} \]