Reading assignment
Ulaby, 8-2, 8-4, 8-5
Connor and Salon, Unit X (On Waves & Materials)

Problem 1 - oblique incidence
A plane wave described by $E_i = 100 \cos(\omega t - \pi x - 1.73\pi z)a_y \text{ V/m}$ is incident upon a dielectric material with $\varepsilon_r = 4$.

a. Write E in phasor form.
b. What are γ_i and θ_i?
c. What are θ_t and γ_t?
d. What are the reflection and transmission coefficients?
e. Write the total electric field phasors in both regions.
f. Confirm your results by running polariz.m

![Diagram](image)

Problem 2 - Snell’s law, critical angle
For visible light, the index of refraction for water is $n = 1.33$. If we put a light source 1 meter under water and observe it from above the surface of the water, what is the largest θ_i for which light will be transmitted?
How large will the circle of illumination be?

![Diagram](image)

Problem 3 - polarization
Consider the same material properties and incident angle as Problem 1, but assume the opposite polarization.

a. What are the reflection and transmission coefficients?
 Which polarization has a lower reflection coefficient (magnitude)?
b. Now allow θ_i to vary. At what value of θ_i is the wave completely transmitted? (i.e. What's the Brewster angle?)