
A simple six resistor ladder circuit to solve many ways: 

Concepts: Adding resistors in series and parallel; Ohm’s Law; voltage dividers with two or three 

resistors; Thevenin equivalent sources; loop (mesh) equations; node equations; node voltages; 

loop currents; vectors; matrices; PSpice; solving matrix equations; Gaussian Elimination; matrix 

inverse; KVL; KCL; Voltage dividers with non-zero voltages at each end; Linear Algebra …  

Method 1: Use PSpice to find the node voltages and currents through each resistor. 

 

 

Analysis was done to find the DC bias voltages and currents.  
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Various reconfigurations showing that the Thevenin sources work. 
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Method 2: Solve by combining resistors – in this method, we first combine resistors R2, R3, R4, 

R5, R6 to form a voltage divider with R1. Begin by combining R3 and R6 in series by summing 

their values and then find the parallel combination of this sum with R5. Then find the sum of the 

combination with R2 and then its parallel combination with R4. Note that, in this method, we 

simplify the circuit from right to left.  

  
 

kkRRR
3

20

30

1020
|| 536   

    kkRRRRR
4

25

80

500

3

20
20

3

20
1010

|||| 45362 













  

The voltage divider relationship then gives us Vv 2052
65

25
52

4

25
10

4

25

1 



  

Apply a second voltage divider relationship to obtain Vvv 820
50

20

3

20
10

3

20

12 



  

Apply a third voltage divider relationship to obtain Vvv 48
2

1

2

1
21   

Method 3: It is also possible to simplify the circuit from left to right using Thevenin equivalent 

sources. Begin by finding the Thevenin equivalent source to the left of the dashed line in the 

figure below, which can be used to find the voltage at Node 1.  
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The voltage divider expression gives us the 

open circuit voltage Vvv THoc 2652
2

1
 . 

The Thevenin resistance is the parallel 

combination of R1 and R4 or kRTH 5 . Next 

find the Thevenin source to the left of the 

second dashed line shown in the circuit below, 

which can be used to find the voltage at Node 

2. Begin by using the Node 1 Thevenin source, 

to simplify the circuit. 

 

 

 

The voltage divider expression gives us the open circuit voltage 

V
RRR

R
vv

TH

THoc 4.1026
10105

10
26

521

5 





 . The Thevenin resistance is the parallel 

R3

10k

R1

10k

R6

10k

Node 1 Node 2

R4

10k

Node 3

0

R2

10k

R5

10k

Vsource
52Vdc

Node 3

R6

10k

Rth1

5k

R3

10k

Node 1

Vth1
26Vdc

R5

10k

Node 2
R2

10k

0

R3

10k

R1

10k

R6

10k

Node 1 Node 2

R4

10k

Node 3

0

R2

10k

R5

10k

Vsource
52Vdc



combination of R5 and (RTH1 +R2) or kkRTH 6
25

150
 . Since the resulting simplified circuit is 

now just a three resistor divider, the voltage at Nodes 2 and 3 and be easily found from the 

voltage divider expression: Vv 44.10
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If the only voltage we are interested in is at Node 3, the problem is complete. However, if the 

voltages at all three nodes are of interest, the value of the voltage at Node 2 can be used to find 

the voltage at Node 1, using the following circuit. This requires the use of the voltage divider 

expression for the case where the voltage at neither end of the divider is zero. For this case, the 

voltage at node 1 will be   Vv 20
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be determined by taking the superposition of the contributions from both voltage sources. That 

is, Vv 20
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Method 4: Loop (Mesh) Equations (from KVL) 
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Simplifying 
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Solving for the three node voltages:   Vva 20102.352  ;    Vvb 8104.02.1  ; 

  Vvc 4104.0   

Method 5: Solving Using Matlab (It is assumed that the reader knows how to write a Matlab 

script (aka m-file). If this is not the case, review Matlab basics before going through this 

problem.  

% Simple Ladder Circuit 
% K. A. Connor 21 Oct 17 

  
% Solve System of Equations 
syms i1 i2 i3 
eqn1 = 20*i1 - 10*i2 == 52; 
eqn2 = 10*i1 + -30*i2 + 10*i3 == 0; 
eqn3 = -10*i2 + 30*i3 == 0; 

  
% Convert Equations to Matrix 
[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [i1, i2, i3]) 

  
% Use linsolve to solve AI = B for the vector of unknowns I. 
I = linsolve(A,B) 

  



% Determine Voltages 
Vc=I(3)*10 
Vb=(I(2)-I(3))*10 
Va=52-I(1)*10 

 

When the Matlab script is run, the following will be see in the command window.  

>> LadderCktSolve 

 A = 

 [20, -10, 0] 

[10, -30, 10] 

[0, -10, 30] 

 B = 

  52 

  0 

  0 

 I = 

  16/5 

  6/5 

  2/5 

 Vc = 

 4 

 Vb = 

 8 

 Va = 

 20 

Method 6: Solving Matrix Equations by Hand (Gaussian Elimination) 

It is possible to solve matrix equations without the use of Matlab or other matrix tools, but 

usually only for small matrices (e.g. 2x2, 3x3 or somewhat larger if one is ambitious.) Here the 

loop equations are 3x3, so it is reasonable to try. The most common approach to solving matrix 

equations is some form of Gaussian Elimination. This is pretty much what was done to find the 

solution to the three simultaneous equations, but it is more systematic and thus provides a more 



reliable approach. The loop equations are in the form of Ax=b where A is a matrix and x and b 

are vectors for the unknowns and constants, respectively.  

The matrix equation for the three loop currents is written in general form as: 

























































0

0

52

30100

103010

01020

3

2

1

i

i

i

  

For Gaussian Elimination, this is rewritten as an augmented matrix. 
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First, we manipulate the rows to get the matrix in row echelon form, where the first terms in each 

row are diagonal terms (e.g. other terms in lower left are zeros) and the diagonal term is unity. 
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Next, 121 10 LLL   
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The three currents can then be found by inspection from the right hand column (in mA).  

Method 7: Node Equations (from KCL) 
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Simplifying 

523 21  vv  

03 321  vvv  

02 32  vv  

Rewriting 3rd equation: 23 5.0 vv   and rewriting 1st equation: 
3

522
1




v
v  

Equation 2 becomes: 05.03
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 or Vv 82   

and the other two voltages are Vv 43  and Vv 201   

Method 8: Solving Using Matlab 

% Solve System of Equations from Node Voltages 
syms v1 v2 v3 
eqn4 = 3*v1-v2 == 52; 
eqn5 = -v1+3*v2-v3 == 0; 
eqn6 = -v2 + 2*v3 == 0; 

  
% Convert Equations to Matrix 
[C,D] = equationsToMatrix([eqn4, eqn5, eqn6], [v1, v2, v3]) 

  
% Use linsolve to solve AV = B for the vector of unknowns V. 
V = linsolve(C,D) 

 

When the script is run, we see the following in the command window.  

C = 

 [3, -1, 0] 

[-1, 3, -1] 



[ 0, -1,  2] 

  

 D = 

  52 

  0 

  0 

 V = 

  20 

  8 

  4 

Which agrees with the loop equations. 

 

Method 9: Solving by Hand Using Gaussian Elimination 

The matrix equation for the three node voltages is written in general form as: 
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For Gaussian Elimination, this is rewritten as an augmented matrix. 
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The method is the same as for the loop equations. 

 To begin, replace line 2 with 
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Next, 
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Next, 323 LLL   
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Finally, 121 LLL   
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The three voltages can then be found by inspection from the right hand column.  

 

Method 10: Finding the solution using the inverse of the matrix. Again, both the loop and node 

equations are in the form of Ax=b where A is a matrix and x and b are vectors for the unknowns 

and constants, respectively. The inverse of a matrix A-1 is defined by (A-1)(A)=1, where 1 is the 

unit matrix, which, for a 3x3, looks like 
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. If the inverse is known, then multiply Ax=b 

by A-1 to obtain the values for x. That is A-1Ax= x =A-1b. Thus, for either of the matrix 

expressions that describe this circuit, the inverse can provide the currents and/or voltages. For the 

loop equations, 
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 , the matrix is 
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. The inverse was obtained using the Matlab function inv(..).   



For the node equations, 
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 , the matrix is 
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is 



















13
8

13
3

13
1

13
3

13
6

13
2

13
1

13
2

13
5

. The inverse was obtained using the Matlab function inv(..).  Finding the 

inverse manually requires some effort. There is a reasonably clear discussion of how this is done 

at https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html. 

Following the recipe given there, we must do the following: 

 Step 1: calculating the Matrix of Minors, 

 Step 2: then turn that into the Matrix of Cofactors, 

 Step 3: then the Adjugate, and 

 Step 4: multiply that by 1/Determinant. 

 

To see how this works, apply each step to the node equation matrix and then compare with the 

result from Matlab. The definitions of each type of matrix can be found online.  

Matrix of minors: 
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Matrix of cofactors: 
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Adjugate Matrix: 
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Divide each term by the determinant of the original matrix (which = 13) 
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Which agrees with the inverse from Matlab. This process is a good example of what is possible 

with Linear Algebra. Linear systems are complex, but exceptionally well-behaved, so there are 

nearly always systematic approaches to solving problems. The rules of algebra also make it 

https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html


possible to demonstrate the existence of solution approaches when they are in no way intuitively 

obvious.  

 

Method 11: Using Excel to Solve the Matrix Equations 

It is also possible to use Excel to solve the 3x3 matrix equations. This approach is a little less 

elegant but does provide some insights into how matrix arithmetic works. The following is a 

screen capture from Excel showing both the loop and node equations. Note that matrix 

expressions all begin with m so we are using MINVERSE and MMULT and that is it. Note also 

that, because these are arrays, it is necessary to use CTRL-SHIFT-ENTER rather than ENTER 

when working with arrays. To see how these operations work, check out any of the online 

references on solving simultaneous equations with Excel. A particularly good video: 

https://www.youtube.com/watch?v=gSNa3fQX0WQ  

 

Two comments on these results: 1) The inverse does not exactly give just 1’s on the diagonal 

because of the limits of numerical solutions and 2) Matrices are just arrays of numbers and Excel 

forces us to highlight specific cells to identify matrices and vectors. The latter can help us think 

in the more general algebra of matrices rather than just individual numbers (aka scalars).  

 

K. A. Connor   Rensselaer Polytechnic Institute Troy, NY 10 November 2017 

https://www.youtube.com/watch?v=gSNa3fQX0WQ

