
A simple six resistor ladder circuit to solve many ways:

Concepts: Adding resistors in series and parallel; Ohm’s Law; voltage dividers with two or three

resistors; Thevenin equivalent sources; loop (mesh) equations; node equations; node voltages;

loop currents; vectors; matrices; PSpice; solving matrix equations; Gaussian Elimination; matrix

inverse; KVL; KCL; Voltage dividers with non-zero voltages at each end; Linear Algebra …

Method 1: Use PSpice to find the node voltages and currents through each resistor.

Analysis was done to find the DC bias voltages and currents.

R3

10k

400.0uA

R1

10k

3.200mA
R6

10k

400.0uA

Node 1 Node 2
52.00V

R4

10k

2.000mA

0V

Node 3

4.000V

20.00V

0

R2

10k

1.200mA

8.000V

R5

10k

800.0uAVsource
52Vdc

3.200mA

Various reconfigurations showing that the Thevenin sources work.

R3

10k

400.0uA

10.40V

0

R1

10k

3.200mA
R6

10k

400.0uA

Node31

4.000V

R61

10k

400.0uA

Node1

26.00V

0

Node2

R33

10k

1.200mA

Rth1

5k

1.200mA

R31

10k

400.0uA

52.00V

R4

10k

2.000mA

Node11
20.00V

0V

Node3

4.000V

20.00V

0

0V

Node23

8.000V

8.000V

0V

R2

10k

1.200mA

26.00V

Vth1
26Vdc

1.200mA

R51

10k

800.0uA

8.000V

Rth2

6k

400.0uA

R32

10k

400.0uA

R5

10k

800.0uA

Node21

8.000V

Node22
8.000V

8.000V

8.000V

Vth2
10.4Vdc

400.0uA

R62

10k

400.0uA

Vsource
52Vdc

3.200mA

VNode2

8Vdc
1.200mA

Rth13

5k

1.200mA

R21

10k

1.200mA

Node32

4.000V

0

Node13
20.00V

Vth13
26Vdc

1.200mA

0V

Method 2: Solve by combining resistors – in this method, we first combine resistors R2, R3, R4,

R5, R6 to form a voltage divider with R1. Begin by combining R3 and R6 in series by summing

their values and then find the parallel combination of this sum with R5. Then find the sum of the

combination with R2 and then its parallel combination with R4. Note that, in this method, we

simplify the circuit from right to left.

  
 

kkRRR
3

20

30

1020
|| 536 

    kkRRRRR
4

25

80

500

3

20
20

3

20
1010

|||| 45362 















The voltage divider relationship then gives us Vv 2052
65

25
52

4

25
10

4

25

1 





Apply a second voltage divider relationship to obtain Vvv 820
50

20

3

20
10

3

20

12 





Apply a third voltage divider relationship to obtain Vvv 48
2

1

2

1
21 

Method 3: It is also possible to simplify the circuit from left to right using Thevenin equivalent

sources. Begin by finding the Thevenin equivalent source to the left of the dashed line in the

figure below, which can be used to find the voltage at Node 1.

R3

10k

R1

10k

R6

10k

Node 1 Node 2

R4

10k

Node 3

0

R2

10k

R5

10k

Vsource
52Vdc

The voltage divider expression gives us the

open circuit voltage Vvv THoc 2652
2

1
 .

The Thevenin resistance is the parallel

combination of R1 and R4 or kRTH 5 . Next

find the Thevenin source to the left of the

second dashed line shown in the circuit below,

which can be used to find the voltage at Node

2. Begin by using the Node 1 Thevenin source,

to simplify the circuit.

The voltage divider expression gives us the open circuit voltage

V
RRR

R
vv

TH

THoc 4.1026
10105

10
26

521

5 





 . The Thevenin resistance is the parallel

R3

10k

R1

10k

R6

10k

Node 1 Node 2

R4

10k

Node 3

0

R2

10k

R5

10k

Vsource
52Vdc

Node 3

R6

10k

Rth1

5k

R3

10k

Node 1

Vth1
26Vdc

R5

10k

Node 2
R2

10k

0

R3

10k

R1

10k

R6

10k

Node 1 Node 2

R4

10k

Node 3

0

R2

10k

R5

10k

Vsource
52Vdc

combination of R5 and (RTH1 +R2) or kkRTH 6
25

150
 . Since the resulting simplified circuit is

now just a three resistor divider, the voltage at Nodes 2 and 3 and be easily found from the

voltage divider expression: Vv 44.10
61010

10
3 


 and Vv 84.10

61010

1010
3 




 .

If the only voltage we are interested in is at Node 3, the problem is complete. However, if the

voltages at all three nodes are of interest, the value of the voltage at Node 2 can be used to find

the voltage at Node 1, using the following circuit. This requires the use of the voltage divider

expression for the case where the voltage at neither end of the divider is zero. For this case, the

voltage at node 1 will be   Vv 20
3

2
188

510

10
82681 


 . Note that this voltage can also

be determined by taking the superposition of the contributions from both voltage sources. That

is, Vv 20
3

52

3

8

510

10
26

510

5
81 





 .

0

Rth2

6k

R3

10k

Node 2

Vth2
10.4Vdc

R6

10k

Node 3

0

R2

10k

VNode2

8Vdc

Rth1

5k

Node 1

Vth1
26Vdc

Method 4: Loop (Mesh) Equations (from KVL)

      010101052 211  ikikik

          01010101010 31222  ikikikikik

        010101010 3332  ikikikik

Simplifying

521020 21  ii

0103010 321  iii

03010 32  ii

Rewriting the 3rd equation: 23
3

1
ii 









Rewriting the 2nd equation using the 3rd equation: 12
8

3
ii 









Rewriting the 1st equation using the 2nd equation: mAi 2.31 

Using the other two simplified equations: 12
8

3
ii 







 =1.2mA and mAii 4.0

3

1
23 










Solving for the three node voltages:   Vva 20102.352  ;    Vvb 8104.02.1  ;

  Vvc 4104.0 

Method 5: Solving Using Matlab (It is assumed that the reader knows how to write a Matlab

script (aka m-file). If this is not the case, review Matlab basics before going through this

problem.

% Simple Ladder Circuit
% K. A. Connor 21 Oct 17

% Solve System of Equations
syms i1 i2 i3
eqn1 = 20*i1 - 10*i2 == 52;
eqn2 = 10*i1 + -30*i2 + 10*i3 == 0;
eqn3 = -10*i2 + 30*i3 == 0;

% Convert Equations to Matrix
[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [i1, i2, i3])

% Use linsolve to solve AI = B for the vector of unknowns I.
I = linsolve(A,B)

% Determine Voltages
Vc=I(3)*10
Vb=(I(2)-I(3))*10
Va=52-I(1)*10

When the Matlab script is run, the following will be see in the command window.

>> LadderCktSolve

 A =

 [20, -10, 0]

[10, -30, 10]

[0, -10, 30]

 B =

 52

 0

 0

 I =

 16/5

 6/5

 2/5

 Vc =

 4

 Vb =

 8

 Va =

 20

Method 6: Solving Matrix Equations by Hand (Gaussian Elimination)

It is possible to solve matrix equations without the use of Matlab or other matrix tools, but

usually only for small matrices (e.g. 2x2, 3x3 or somewhat larger if one is ambitious.) Here the

loop equations are 3x3, so it is reasonable to try. The most common approach to solving matrix

equations is some form of Gaussian Elimination. This is pretty much what was done to find the

solution to the three simultaneous equations, but it is more systematic and thus provides a more

reliable approach. The loop equations are in the form of Ax=b where A is a matrix and x and b

are vectors for the unknowns and constants, respectively.

The matrix equation for the three loop currents is written in general form as:

























































0

0

52

30100

103010

01020

3

2

1

i

i

i

For Gaussian Elimination, this is rewritten as an augmented matrix.

















0

0

52

3010-0

1030-10

010-20

First, we manipulate the rows to get the matrix in row echelon form, where the first terms in each

row are diagonal terms (e.g. other terms in lower left are zeros) and the diagonal term is unity.

To begin, replace line 2 with
212

2

1
LLL 

















0

26-

52

3010-0

1025-0

010-20

Next,
232

3

1
LLL 



















0

26-

52

3010-0

0
3

10
25-0

010-20

 or

















0

26

52

3010-0

0
3

65
0

010-20

 or

















0

1.2

52

3010-0

010

010-20

Next, 121 10 LLL 

















0

1.2

64

3010-0

010

0020

 or

















0

1.2

3.2

3010-0

010

001

Finally, 323 10 LLL 

















12

1.2

3.2

3000

010

001

 or

















0.4

1.2

3.2

100

010

001

The three currents can then be found by inspection from the right hand column (in mA).

Method 7: Node Equations (from KCL)

0
101010

52 2111 





k

vv

k

v

k

v

0
101010

32212 





k

vv

k

v

k

vv

0
1010

233 



k

vv

k

v

Simplifying

523 21  vv

03 321  vvv

02 32  vv

Rewriting 3rd equation: 23 5.0 vv  and rewriting 1st equation:
3

522
1




v
v

Equation 2 becomes: 05.03
3

52
22

2 


 vv
v

 or Vv 82 

and the other two voltages are Vv 43  and Vv 201 

Method 8: Solving Using Matlab

% Solve System of Equations from Node Voltages
syms v1 v2 v3
eqn4 = 3*v1-v2 == 52;
eqn5 = -v1+3*v2-v3 == 0;
eqn6 = -v2 + 2*v3 == 0;

% Convert Equations to Matrix
[C,D] = equationsToMatrix([eqn4, eqn5, eqn6], [v1, v2, v3])

% Use linsolve to solve AV = B for the vector of unknowns V.
V = linsolve(C,D)

When the script is run, we see the following in the command window.

C =

 [3, -1, 0]

[-1, 3, -1]

[0, -1, 2]

 D =

 52

 0

 0

 V =

 20

 8

 4

Which agrees with the loop equations.

Method 9: Solving by Hand Using Gaussian Elimination

The matrix equation for the three node voltages is written in general form as:

























































0

0

52

210

131

013

3

2

1

v

v

v

For Gaussian Elimination, this is rewritten as an augmented matrix.

















0

0

52

21-0

1-31-

01-3

The method is the same as for the loop equations.

 To begin, replace line 2 with
212

3

1
LLL 

















0
3

52
52

21-0

1-
3

8
0

01-3

 or

















0

52

52

21-0

3-80

01-3

Next,
232

2

3
LLL 

















0

52

52

21-0

06.50

01-3

 or

















0

8

52

21-0

010

01-3

Next, 323 LLL 

















8

8

52

200

010

01-3

 or

















4

8

52

100

010

01-3

Finally, 121 LLL 

















4

8

60

100

010

003

 or

















4

8

20

100

010

001

The three voltages can then be found by inspection from the right hand column.

Method 10: Finding the solution using the inverse of the matrix. Again, both the loop and node

equations are in the form of Ax=b where A is a matrix and x and b are vectors for the unknowns

and constants, respectively. The inverse of a matrix A-1 is defined by (A-1)(A)=1, where 1 is the

unit matrix, which, for a 3x3, looks like

















100

010

001

. If the inverse is known, then multiply Ax=b

by A-1 to obtain the values for x. That is A-1Ax= x =A-1b. Thus, for either of the matrix

expressions that describe this circuit, the inverse can provide the currents and/or voltages. For the

loop equations,

























































0

0

52

30100

103010

01020

3

2

1

i

i

i

 , the matrix is























30100

103010

01020

 and its inverse is

























26
1

65
1

130
1

65
1

65
3

130
3

130
1

130
3

65
4

. The inverse was obtained using the Matlab function inv(..).

For the node equations,

























































0

0

52

210

131

013

3

2

1

v

v

v

 , the matrix is























210

131

013

 and its inverse

is



















13
8

13
3

13
1

13
3

13
6

13
2

13
1

13
2

13
5

. The inverse was obtained using the Matlab function inv(..). Finding the

inverse manually requires some effort. There is a reasonably clear discussion of how this is done

at https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html.

Following the recipe given there, we must do the following:

 Step 1: calculating the Matrix of Minors,

 Step 2: then turn that into the Matrix of Cofactors,

 Step 3: then the Adjugate, and

 Step 4: multiply that by 1/Determinant.

To see how this works, apply each step to the node equation matrix and then compare with the

result from Matlab. The definitions of each type of matrix can be found online.

Matrix of minors:























831

362

125

Matrix of cofactors:

















831

362

125

Adjugate Matrix:

















831

362

125

Divide each term by the determinant of the original matrix (which = 13)



















13
8

13
3

13
1

13
3

13
6

13
2

13
1

13
2

13
5

Which agrees with the inverse from Matlab. This process is a good example of what is possible

with Linear Algebra. Linear systems are complex, but exceptionally well-behaved, so there are

nearly always systematic approaches to solving problems. The rules of algebra also make it

https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html

possible to demonstrate the existence of solution approaches when they are in no way intuitively

obvious.

Method 11: Using Excel to Solve the Matrix Equations

It is also possible to use Excel to solve the 3x3 matrix equations. This approach is a little less

elegant but does provide some insights into how matrix arithmetic works. The following is a

screen capture from Excel showing both the loop and node equations. Note that matrix

expressions all begin with m so we are using MINVERSE and MMULT and that is it. Note also

that, because these are arrays, it is necessary to use CTRL-SHIFT-ENTER rather than ENTER

when working with arrays. To see how these operations work, check out any of the online

references on solving simultaneous equations with Excel. A particularly good video:

https://www.youtube.com/watch?v=gSNa3fQX0WQ

Two comments on these results: 1) The inverse does not exactly give just 1’s on the diagonal

because of the limits of numerical solutions and 2) Matrices are just arrays of numbers and Excel

forces us to highlight specific cells to identify matrices and vectors. The latter can help us think

in the more general algebra of matrices rather than just individual numbers (aka scalars).

K. A. Connor Rensselaer Polytechnic Institute Troy, NY 10 November 2017

https://www.youtube.com/watch?v=gSNa3fQX0WQ

