Electronic Instrumentation

ENGR-4300 Spring 2002 Section \qquad

Homework 9

Circuit Components and Magnetic Fields - Inductors, Transformers, and ...

1. Inductance of a coil

Remembering from your experiment. The equation for an inductor is given by $L=\left(\mu N^{2} \pi R^{2}\right) / d$ Henries, where the core cylinder has a radius equal to R and we wind a coil N times around the cylinder to cover a length d . If the coil is wound like a coin, and not along the length of the core, then the equation is given by $L \cong \mu N^{2} R\{\ln (8 R / r)-2\}$, where R is the major radius of the coil and r is the radius of the wire.

Also recall that μ_{o} has a different constant value depending upon the ferromagnetic properties of the material the inductor is wound around. Here are some typical values for μ.

MATERIAL	μ in Henries $/$ meter
air	$4 \pi \times 10^{-7}$
iron	$1200\left(4 \pi \times 10^{-7}\right)$

Find the inductance for the following three coils based on the appropriate equation given for L .
a. Coil 1
b. Coil 2
c. Coil 3

$$
\begin{aligned}
& \text { turns }=40 \\
& R=.01 \\
& \text { gauge }=18 \\
& \text { core }=\text { iron } \\
& d=.08 \mathrm{~m}
\end{aligned}
$$

2. Resistance of a Coil

The resistance of a coil is given by $\mathrm{R}=l /(\sigma A)$ where l is the length of the wire, A is the cross sectional area of the wire (thickness), and σ is the conductivity of the wire material. For copper, the conductivity is about 6×10^{7} Siemens/meter. Assuming all coils above are made of copper. Find the resistance of each coil.
a. Coil 1
b. Coil 2
c. Coil 3

Electronic Instrumentation
 ENGR-4300 Spring 2002 Section

3. Transformers

Assume coils 1 and 3 are connected together with an iron core and used as a transformer. Use coil 3 for the source inductance and coil 1 for the load inductance. The equation for the impedance of the transformer is given by $\mathrm{Z}_{\mathrm{in}}=\mathrm{R}_{\mathrm{L}} / \mathrm{a}^{2}$ where R_{L} is the resistance of the load circuit and $\mathrm{a}^{2}=\mathrm{L}_{\mathrm{L}} / \mathrm{L}_{\mathrm{S}}$. You can find the current through the loops by applying the following equations: $I_{L} / I_{S}=1 / a$ or $N_{S} I_{S}=N_{L} I_{L}$ Additionally, the induced output voltage can be found using $V_{L} / V_{S}=N_{L} / N_{S}$. (Assume $R_{S}=R_{L}=50$ ohms and $\mathrm{V}_{\mathrm{S}}=20$ Volts). Find...
a. the inductance of coil 1 when it is wound around the iron core.
b. the input impedance, Zin, of the transformer
c. the output voltage of the secondary coil, V_{L}
d. the current through the primary coil
e. the current through the secondary coil
e. recalling the equation for power $P=I^{2} R$, explain how the voltage induced in the second coil could possibly be bigger than the input voltage.

Electronic Instrumentation
 ENGR-4300 Spring 2002
 Section

K. A. Connor

Electronic Instrumentation

ENGR-4300 Spring 2002 Section

\qquad

4. Digital Electronics

Read through sections 7.1-7.3 at the following website:
http://www.phys.ualberta.ca/~gingrich/phys395/notes/node117.html
Here is a proof of De Morgan's first law.
$\overline{\mathrm{A} \bullet \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \quad$ This can also be written $\sim(\mathrm{A} \bullet \mathrm{B})=(\sim \mathrm{A})+(\sim \mathrm{B})$

A	B	$\sim \mathrm{A}$	$\sim \mathrm{B}$	$\mathrm{A} \bullet \mathrm{B}$	$\sim(\mathrm{A} \bullet \mathrm{B})$	$(\sim \mathrm{A})+$ $(\sim \mathrm{B})$
0	0	1	1	0	1	1
1	0	0	1	0	1	1
0	1	1	0	0	1	1
1	1	0	0	1	0	0

Can you prove De Morgan's second law?
$\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \bullet \overline{\mathrm{B}} \quad$ This can also be written $\sim(\mathrm{A}+\mathrm{B})=(\sim \mathrm{A}) \bullet(\sim \mathrm{B})$

A	B	$\sim \mathrm{A}$	$\sim \mathrm{B}$	$\mathrm{A}+\mathrm{B}$	$\sim(\mathrm{A}+\mathrm{B})$	$(\sim \mathrm{A}) \bullet(\sim \mathrm{B})$
0	0					
1	0					
0	1					
1	1					

