Homework 9

Circuit Components and Magnetic Fields - Inductors, Transformers, and ...

1. Inductance of a coil

Remembering from your experiment. The equation for an inductor is given by $L = (\mu N^2 \pi R^2)/d$ Henries, where the core cylinder has a radius equal to *R* and we wind a coil *N* times around the cylinder to cover a length d. If the coil is wound like a coin, and not along the length of the core, then the equation is given by $L \cong \mu N^2 R \{\ln(8R/r) - 2\}$, where R is the major radius of the coil and r is the radius of the wire.

Also recall that μ_o has a different constant value depending upon the ferromagnetic properties of the material the inductor is wound around. Here are some typical values for μ .

MATERIAL	μ in Henries/meter		
air	$4\pi \ge 10^{-7}$		
iron	$1200 (4\pi \times 10^{-7})$		

Find the inductance for the following three coils based on the appropriate equation given for L.

2. Resistance of a Coil

The resistance of a coil is given by R = l/(sA) where *l* is the *length of the wire*, *A* is the cross sectional area of the wire (thickness), and *s* is the conductivity of the wire material. For copper, the conductivity is about 6 x 10⁷ Siemens/meter. Assuming all coils above are made of copper. Find the resistance of each coil.

a. Coil 1 b. Coil 2 c. Coil 3

3. Transformers

Assume coils 1 and 3 are connected together with an iron core and used as a transformer. Use coil 3 for the source inductance and coil 1 for the load inductance. The equation for the impedance of the transformer is given by $Z_{in} = R_L/a^2$ where R_L is the resistance of the load circuit and $a^2 = L_L/L_S$. You can find the current through the loops by applying the following equations: $I_L/I_S = 1/a$ or $N_SI_S = N_LI_L$. Additionally, the induced output voltage can be found using $V_L/V_S = N_L/N_S$. (Assume $R_S = R_L = 50$ ohms and $V_S = 20$ Volts). Find...

a. the inductance of coil 1 when it is wound around the iron core.

b. the input impedance, Zin, of the transformer

c. the output voltage of the secondary coil , $V_{\rm L}$

d. the current through the primary coil

e. the current through the secondary coil

e. recalling the equation for power $P = I^2 R$, explain how the voltage induced in the second coil could possibly be bigger than the input voltage.

2

K. A. Connor 3/27/2002 Rensselaer Polytechnic Institute

4. Digital Electronics

Read through sections 7.1-7.3 at the following website: http://www.phys.ualberta.ca/~gingrich/phys395/notes/node117.html

Here is a proof of De Morgan's first law.

 $\overline{\mathbf{A} \bullet \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$ This can also be written $\sim (\mathbf{A} \bullet \mathbf{B}) = (\sim \mathbf{A}) + (\sim \mathbf{B})$

А	В	~A	~B	A ● B	$\sim (\mathbf{A} \bullet \mathbf{B})$	(~A) +
						(~B)
0	0	1	1	0	1	1
1	0	0	1	0	1	1
0	1	1	0	0	1	1
1	1	0	0	1	0	0

Can you prove De Morgan's second law?

 $\overline{A + B} = \overline{A} \cdot \overline{B}$ This can also be written $\sim (A + B) = (\sim A) \cdot (\sim B)$

А	В	~A	~B	A + B	~ (A + B)	(~A) ● (~B)
0	0					
1	0					
0	1					
1	1					