Homework #4 Solution

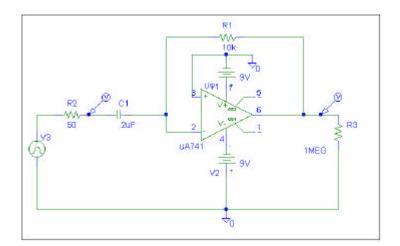
The feedback impedance = $R = Z_{feedback}$ The input impedance = $RS + 1/(j\omega C) = Z_{in}$

Then, $V_{out} = -(Z_{feedback}/Z_{in})$ Vin

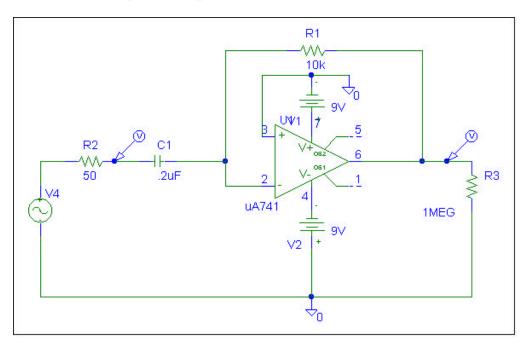
From page 111, to act like an ideal differentiator, $V_{out} = -j\omega RC V_{in}$

This is only true when RS << (1/ ω C) or when ω << 1/(RS C)

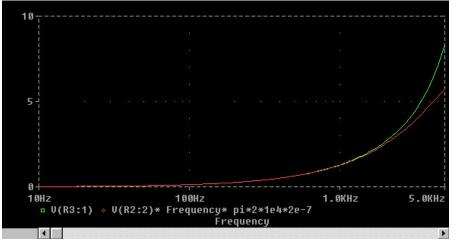
Remember that $\omega = 2\pi f$

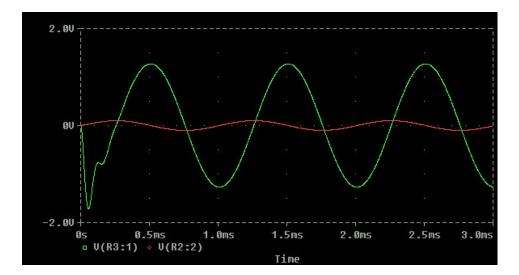

To select some component values and a frequency, we can use the values from problem 4 on last semester's Quiz 3.

 $C = 0.2\mu F$, $R = 10k\Omega$, $RS = 50\Omega$


Then, RS C = $10 \times 10^{-6} = 10^{-5}$

 $f \ll 1/(2\pi 10^{-5}) = 1.6 \times 10^4$ f = 1kHz should easily satisfy this inequality.


The circuit from Quiz 3 is shown below. We need to change to a sinusoidal source.


The new circuit and its probe outputs follow:

The only change to the circuit is the sinusoidal source rather than the pulse

source. The AC sweep shown demonstrates that the circuit works like a differentiator for frequencies above 1kHz, since essentially both sides of equation 6-20 are plotted. The transient analysis again shows the differentiator is working at 1kHz, since the output voltage is 90° out of phase with the input.

