The feedback impedance $=\mathrm{R}=\mathrm{Z}_{\text {feedback }}$
The input impedance $=R S+1 /(j \omega C)=Z_{\text {in }}$
Then, $\mathrm{V}_{\text {out }}=-\left(\mathrm{Z}_{\text {feedback }} / Z_{\text {in }}\right)$ Vin
From page 111, to act like an ideal differentiator, $\mathrm{V}_{\text {out }}=-j \omega R C V_{\text {in }}$
This is only true when RS $\ll(1 / \omega C)$ or when $\omega \ll 1 /(\operatorname{RS~C})$
Remember that $\omega=2 \pi \mathrm{f}$
To select some component values and a frequency, we can use the values from problem 4 on last semester's Quiz 3.
$\mathrm{C}=0.2 \mu \mathrm{~F}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{RS}=50 \Omega$
Then, RS C $=10 \times 10^{-6}=10^{-5}$
$\mathrm{f} \ll 1 /\left(2 \pi 10^{-5}\right)=1.6 \times 10^{4}$
$\mathrm{f}=1 \mathrm{kHz}$ should easily satisfy this inequality.
The circuit from Quiz 3 is shown below. We need to change to a sinusoidal source.

The new circuit and its probe outputs follow:

The only change to the circuit is the sinusoidal source rather than the pulse

source. The AC sweep shown demonstrates that the circuit works like a differentiator for frequencies above 1 kHz , since essentially both sides of equation 6-20 are plotted. The transient analysis again shows the differentiator is working at 1 kHz , since the output voltage is 90° out of phase with the input.

